python png_to_jpg.py echo "Create vector file from positives, negatives and starts the training" echo "Parameters: posivies size, number of posties, " # Number of training stages nrStages=20 # detection types [HAAR,LBP] # fn=HAAR # object size, width, height imgw=24 imgh=24 # number of images containg the object to detect (see pos directory content) nrf=0 FILES=./pos/*.jpg for f in $FILES; do nrf=$((nrf+1)) done nrPos=$nrf nrPosThreeTimes=$(($nrPos * 3)) # number of images NOT containg the object to detect (see neg directory content) nrf=0 FILES=./neg/*.jpg for f in $FILES; do nrf=$((nrf+1)) done nrNeg=$nrf # # create positive dat file and negative txt file python3 ./prepare_data.py \ -posWidthX 24 \ -posWidthY 24 \ -negWidthX 64 \ -negWidthY 64 # create vector file from positives opencv_createsamples \ -info info.dat \ -vec positives.vec \ -bg neg.txt \ -maxxangle 1.1 \ -maxyangle 1.1 \ -maxzangle 1.1 \ -w $imgw -h $imgh \ -num $nrPos # create positives from a single image #opencv_createsamples \ # -img object.jpg \ # -bg neg.txt \ # -info info/info.lst \ # -pngoutput info \ # -maxxangle 1.1 \ # -maxyangle 1.1 \ # -maxzangle 1.1 \ # -num $nrPos \ # -w $imgw -h $imgh # train cascade opencv_traincascade \ -data data \ -vec positives.vec \ -bg neg.txt \ -numPos $nrPos \ -numNeg $nrNeg \ -numStages $nrStages \ -w $imgw \ -h $imgh \ -minHitRate 0.999 \ -maxFalseAlarmRate 0.5 \ -mode ALL \ -numThreads 4 \ -precalcValBufSize 8192 -precalcIdxBufSize 8192 # -featureType $fn \