
DET102 Data Structures

and Algorithms
Lecture 03: Stack and Queue

1

Stack
First In Last Out

2

Stack

 Stack is a data structure with the restriction that insertions
and deletions (usually all the accesses) can only be
performed at one end of the list.

 Rule: Last-in-first-out (LIFO)

3

Insertion Deletion

ADT of stack

Value

A sequence of items that
belong to some data type
ITEM_TYPE

 Top pointer

Nodes are inserted and
removed at the same end of
the list.

4

top

Operations

ostack<Type> s

opush(x)

opop()

otop()

osize()

oempty()

A stack is an abstract data type (ADT) such that an

instance S supports the following two methods:

S.push(x): Add element x to the top of stack S.

S.pop(): Remove and return the top element from the stack

S; an error occurs if the stack is empty.

The following accessory methods for convenience:

S.top(): Return a reference to the top element of stack S,

without removing it; an error occurs if the stack is empty.

S.empty(): Return True if stack S does not contain any

elements.

S.size(): Return the number of elements in stack S; in Python,

we implement this with the special method len.

5

6

Stack S

Implementation of stack

Array-based stack implementation

(List in Python)

(Vector in C++)

Dynamic array

(Linked list)

7

there is a problem

when the amount of

data to be stored in

the stack is not

known in advance or

cannot be

accurately predicted.

Implement Stack in C++

Template <typename T> class Stack: public Vector<T>{

public:

void push(T const & e) { insert (e);}

T pop() { return remove(size() -1); }

T top() { return (*this)[size() -1];}

};

8
Size() and empty()

are already

included in Vector

0 1

Question: Can we use T[0] as the top?

Analyzing the Array-Based Stack

Implementation

9

Operation Running Time

push(x) O(1)

pop() O(1)

top() O(1)

size() O(1)

empty() O(1)

Application 1: reversing data

 input: 1,3,5,7,9

output: 9,7,5,3,1

10

1

3

5

7

9

Application 2: Number system

 Decimal to binary equivalent

64

8

16

32

4

2

2

2

2

2

2

2

1

0

0

0

0

0

1

0

11

2

0

Try:

98 (10) = ________ (2)

2022 (10) = ________ (5)

AF (16) = ________ (2)

64 (10) =1000000 (2)

Application 3: Parenthesis checker

Three sets of grouping symbols:

standard parentheses ()

braces { }

brackets []

For each line of input, it verifies that for each left
parenthesis, brace, or bracket, there is a
corresponding closing symbol and that the
symbols are appropriately nested.

12

Example

 (a [i-1][j+1]) + a [i+1][j-1])*2

 (a [i-1][j+1] + a [i+1][j-1])*2

 Linear scan

 ([][]) [][])

 ([][] [][])

13

How to do next?14

• Trivial case: no parenthesis

• E is matched, only if (E) is matched.

• E and F are both matched, only if EF is matched.

Try to cancel a pair of adjacent parenthesis

L()R is matched, only if LR is matched.

L () R

L () R

(() ()) () () ()) ()(

(() ()) () (() ()) ()

Input examples

Valid inputs

 ()

 { } []

 ({ [] [] })

 [{ ({ } []) { } [] }]

 Invalid inputs

) No matching open symbol

 [Missing closing symbol

 {] Incorrect nesting of symbols

15

16

The Parenthesis-checker Algorithm

For each character, c, in the input line:

if c is a left symbol, push it on the stack

if c is a right symbol, then

if the stack is empty, then

error: “No matching open symbol”

else

pop a symbol, s off the stack

if s doesn’t correspond to c, then

error: “Incorrect nesting of symbols”

If the stack is not empty, then

error: “Missing closing symbol(s)”

clear the stack

17

Running example

Buffer pointer Stack (top is the leftmost item)

[[^

] ^

((^

{ { (^

} (^

) ^

Given the input: [] ({ })

Question: if there are only (and), can we simplify the program?

18
Application 4: Evaluating Expression

 Expression: p+x/y-a*b+c

Operands: p, x, y, a, b, c

Operators: + - * /

Operator priority

unary -, unary + 1

*, / 2

+, - 3

<, ≤, ≥, >, =, ≠ 4

And 5

Or 6

◼ Postfix: an operator followed after its operands

◼ Infix: an operator comes between two operands

◼ Prefix: an operator comes before its operands

Step 1: convert infix to postfix expression

Step 2: evaluate postfix expression

In cmd, use ‘set /a’ to evaluate an expression.

In Excel, use ‘=’ to evaluate an expression

Convert infix to postfix

INFIX: P*Q/R

POSTFIX: PQ*R/

INFIX: P*Q/R

Let T=P*Q

POSTFIX PQ*

INFIX T/R

POSTFIX TR/

Substituting value of ‘T’ in postfix form

POSTFIX: PQ*R/

19

Postfix Expression Evaluation

 Postfix expression: 1 2 + 3 4 - +

For more examples about postfix expression evaluation, you can read

http://www.btechsmartclass.com/data_structures/postfix-evaluation.html

20

http://www.btechsmartclass.com/data_structures/postfix-evaluation.html

Other Applications

▪ Menu: each level

▪ Maze: find a way from entrance to exit

▪ Undo function

▪ Operating system simulation: call a function

21

Queue
First In First Out

22

Phenomena on the computer

▪ In Game, when factory produces units

▪ See online movies

▪ The way printer works

23

Queue24

▪ The queue is the dual of the stack.

▪ With a queue, data items are placed at the rear and

removed from the front.

▪ The items are removed from a queue in the same order in

which they were added.

enter leave

First in, first out (FIFO)

ADT of Queue

Value

A sequence of items that belong to some data type

Rule: FIFO

Fundamental methods for a queue Q:

Q.enqueue(e): Add element e to the back of queue

Q.

Q.dequeue(): Remove and return the first element

from queue Q; an error occurs if the queue is empty.

25

The essence of ADT is that the user

can access the queue through

these operations without knowing

how the queue is actually

implemented

ADT of Queue26

Operation Function

size() report the size of the queue

empty() decide whether the queue is empty

enqueue(e) insert an element e to the end of the

queue

dequeue() remove an element from the front of the

queue

front() get the element at the front

27

rearfront

front

rear

28

Using an Array Circularly

When we dequeue an element and want to

“advance” the front index, we use the

arithmetic = (front + 1) % N.

Recall that the % operator in C++/Python

denotes the modulo operator, which is

computed by taking the remainder after an

integral division.

29

30

Analyzing the Array-Based Queue

Implementation

Operation Running Time

enqueue(x) O(1)

dequeue() O(1)

first() O(1)

size() O(1)

front() O(1)

31

32

Application 1: Reversing a stack

Stack *s;

Queue *p;

…

while(s.IsEmpty()==0)

{ x = s.pop();

p.Enqueue(x);

}

while(p.IsEmpty()==0)

{ x =p.Dequeue();

s.Push(x);

}

D
C
B
A

empty

A
B
C
D

stack

D C B A
queue

Pop from stack and
insert into a queue

Delete from queue and
Push onto stack

Application 2

Phenomena on the computer
See online movies

The way printer works

Round Robin Schedule
Establish a queue for current jobs

Whenever a time slot is used up

Insert the current job into the queue

Begin executing the job fetched from the queue

33

 job 1 : 4 time slots; job 2 : 3 time slots

 job 3 : 1 time slot; job 4 : 2 time slots

Round Robin Schedule

1(4 left) 2(3 left) 3(1 left) 4(2 left)

2(3 left) 3(1 left) 4(2 left) 1(3 left)

3(1 left) 4(2 left) 1(3 left) 2(2 left)

4(2 left) 1(3 left) 2(2 left)

1(3 left) 2(2 left) 4(1 left)

2(2 left) 4(1 left) 1(2 left)

2(1left) 4(1 left) 1(2 left)

2(1left) 1(2 left)

2(1left) 1(1 left)

1(1 left)

34

Queue in STL

 #include<queue>

queue<Type> q;

q.push(x); //Add data to the end of the queue.

q.pop(); //Removes first element. Note that no data is returned, and if the

first element's data is needed, it should be retrieved before pop() is called.

q.size(); //Returns the number of elements in the queue.

q.front(); //Returns a read/write reference to the data at the first element of

the queue.

q.back(); //Returns a read/write reference to the data at the last element of

the queue.

q.empty(); //Returns true if the queue is empty.

35

https://gcc.gnu.org/onlinedocs/gcc-4.6.2/libstdc++/api/a00667.html

Deque
Double ended queue

36

ADT of Deque in STL37

 #include<deque>

deque<type>q;

q.front(); // return the element at the front

q.back(); // return the element at the back

q.pop_back(); // delete the element at the back

q.pop_front(); // delete the element at the front

q.push_back(x); // insert element x at the back of the queue

q.push_front(x); // insert element x at the front of the queue

