
IERG 4210
Web Programming & Security

Tutorial 5
CHEN Lin

(Modified from the slides of former TA William Mui)

Previous Phase
● Main Website

○ Phase 2 - Content dynamically from database

○ Phase 3 - AJAX shopping list

● Admin panel

○ Phase 2 - Maintain the product database

● AWS EC2 Server

○ Phase 2 – your website is accessible at http://[your-own-public-IP]

Domain Name
● sxx.ierg4210.ie.cuhk.edu.hk

● secure.sxx.ierg4210.ie.cuhk.edu.hk

● Do not release your elastic IP!

default page of Nginx

http://sxx.ierg4210.ie.cuhk.edu.hk http://secure.sxx.ierg4210.ie.cuhk.edu.hk

http://[your-own-public-IP]

http://sxx.ierg4210.ie.cuhk.edu.hk/
http://sxx.ierg4210.ie.cuhk.edu.hk/
http://%5Byour-own-public-ip/

Domain Name
● Configure the VM so that your website is accessible at http://[your-own-

public-IP] and http://sxx.ierg4210.ie.cuhk.edu.hk

● Similar to Phase 2 Nginx Configuration (in Tutorial 2 Page 16)
• Edit the Nginx configuration file with nano

nano /etc/nginx/sites-available/nextjs.conf
• Add your domain name in nextjs.conf

server {
listen 80;
server_name 107.23.196.81 # Replace to your elastic IP

sxx.ierg4210.ie.cuhk.edu.hk; # Replace to your domain name

• Then press Ctrl+O to save modification, hit Enter, and press Ctrl+X to exit nano editor.
• Test configuration file. If ok, reload Nginx

sudo nginx -t
sudo systemctl reload nginx

http://sxx.ierg4210.ie.cuhk.edu.hk/

Domain Name
● Your website is accessible at http://[your-own-public-IP] and

http://sxx.ierg4210.ie.cuhk.edu.hk (Not Secure)

● Next: Secure your website https://secure.sxx.ierg4210.ie.cuhk.edu.hk

http://sxx.ierg4210.ie.cuhk.edu.hk/
https://secure.sxx.ierg4210.ie.cuhk.edu.hk/

Phase 4: Secure your website
● Prevent XSS, CSRF, SQL attacks (Phase 4.1-4.3, 4.5)

● Authentication for Admin Panel (Phase 4.4, 4.5)

○ Otherwise everyone can manipulate your database.

● Apply SSL certificate (Phase 4.6)

○ Do it first, it takes time to apply

TLS/SSL

client

HTTP

server

HTTP

My credit card is 444-555...

transaction succeeded

Alice Store

HTTP

SSL/TLS

HTTP

SSL/TLS

ks100asd+2@!..x#5%@

87&#@!90$**asd

client server

Alice Store

ED D E

- To make the whole procedure “secure”:
- Alice’s credit card information can not be eavesdropped during the transition.
- Credentiality ⇒ Symmetric Encryption and Decryption

- Alice’s credit cart information can not be tampered during the transition.
- Integrity ⇒ Message Authentication Code

Transport Layer Security / Secure Sockets Layer

“plaintext” “ciphertext”
HTTPS

Apply TLS/SSL to your website

● Create RSA Private Key and Certificate Signing Request (CSR)
- In your shell, input following commands
- openssl req -nodes -newkey rsa:2048 -keyout

secure.sxx.ierg4210.ie.cuhk.edu.hk.key -out server.csr

Replace it with your
number here!

Apply TLS/SSL to your website

- ssh to your server
- In your shell, input following commands to create RSA Private Key and

Certificate Signing Request (CSR)
- openssl req -nodes -newkey rsa:2048 -keyout

secure.sxx.ierg4210.ie.cuhk.edu.hk.key -out server.csr

- In the interactive prompt:
- Country Name (2 letter code) [XX]:HK
- State or Province Name (full name) []:Hong Kong
- Locality Name (eg, city) [Default City]:
- Organization Name (eg, company) [Default Company Ltd]:CUHK
- Organizational Unit Name (eg, section) []:
- Common Name (eg, your name or your server's hostname) []:secure.sxx.ierg4210.ie.cuhk.edu.hk
- Email Address []:your email

- DO NOT input password at this step or your servercan not read it!

Replace it with your
number here!

Apply TLS/SSL to your website

- DO NOT input password at this step or your servercan not read it!

Apply TLS/SSL to your website
- Just put the csr and key file in somewhere inaccessible by common users
- cat server.csr

Sign up for free

- https://www.ssl.com/certificates/free/buy is illustrated here

https://www.ssl.com/certificates/free/buy/

- Open server.csr you created and paste into the field
cat server.csr

- Start with
-----BEGIN CERTIFICATE REQUEST-----

Validation

Select “CSR hash text file using http://”.
Do not use ‘email’ as validation method, otherwise the IE admin will receive
many emails
● Follow the instruction to download the xxx.txt file
● Upload the xxx.txt file to AWS EC2 server
● Copy xxx.txt file to a dedicated folder /.well-known/pki-validation

sudo mkdir -p /usr/share/nginx/html/.well-known/pki-validation

sudo cp xxx.txt /usr/share/nginx/html/.well-known/pki-validation

will become green if you
pass the validation

Validation

● Edit the Nginx configuration file and add a new server block
nano /etc/nginx/sites-available/nextjs.conf

sudo systemctl reload nginx

the path to /.well-known/pki-validation

Validation

Select “CSR hash text file using http://”. Click “Validation”

will become green if you
pass the validation

Download Nginx file (.crt)
Follow the guide

Download the CRL File

Uploaded crt to the sever

Configure an HTTPS server

nano /etc/nginx/sites-available/nextjs.conf

● Add the following content the configuration file
server {
listen 443 ssl;
server_name secure.sxx.ierg4210.ie.cuhk.edu.hk;
ssl_certificate /path/to/secure_sxx_ierg4210_ie_cuhk_edu_hk.chained.crt;
ssl_certificate_key /path/to/secure.sxx.ierg4210.ie.cuhk.edu.hk.key;

location / {
proxy_pass http://localhost:3000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;
}
}

based on your domain name, your
path to the server certificate chain file,
and your path to private key file

Configure an HTTPS server (cont.)

- Open port 443 in AWS security group!
- Restart the server

- sudo nginx -t
- sudo systemctl reload nginx

More configuration for an HTTPS server

https://nginx.org/en/docs/http/configuring_https_servers.html?_gl=1*vokg3m*_gcl_au*NTkzOTkxNDA5LjE3MDk4MTg2NDc.

Check the certificate

● Visit using the browser your website
(https://secure.sxx.ierg4210.ie.cuhk.edu.hk)

● If you use Chrome
- Developer Tool (F12)
- Go to Security tab
- View certificate

● You can redirect user if they access

● Modify the configure file
- nano /etc/nginx/sites-available/nextjs.conf

● Restart the server
- sudo nginx -t
- sudo systemctl reload nginx

Redirect HTTP requests to HTTPS

http://secure.sxx.ierg4210.ie.cuhk.edu.hk -> https://secure.sxx.ierg4210.ie.cuhk.edu.hk

Redirect HTTP
requests to HTTPS

http://sxx.ierg4210.ie.cuhk.edu.hk/
http://sxx.ierg4210.ie.cuhk.edu.hk/
https://secure.sxx.ierg4210.ie.cuhk.edu.hk/

Authentication for Admin Panel – Phase 4.4

● A website page and an admin page. But everyone can access admin panel now.

○ We need to add an admin user to the user management database

(only user with special privilege could visit admin page and do operations)

○ Store hashed passwords in database (user table) (// Why not original?)

○ Build a login page and perform the authentication.

○ Use cookies to remember the authentication result. (via maintaining the token)

○ Support logout and password changing

Phase 4.4
● Create a user table

● Login

● Maintain an authentication token using Cookies

● Validate the token

● Support logout and password changing

If(!auth){jump to login.php}

Admin form field

admin.php

If(!auth){jump to login.php}

Form handling

admin-process.php auth-process.php

login form field

login.php

main.php

Website content

“name”

As admin

As normal user

database
Manage DB Auth user

If(normal user){jump to main.php}

If(admin){set token in cookie; jump

to admin.php}

If(validation failure){back to login

and prompt message }

Workflow

Hashed password
● Saving user passwords in the database in plain text format is reckless. It is preferable to hash your

password before storing it.

● For instance, it will be tough to decipher the passwords in your database if they are leaked. Hashing

passwords is a cautious and reliable practice.

Hash Function
● Accept variable size message M and produce a fixed-size digest h(M)

○ h(M) can be thought as “fingerprint” of M

● A “good” hash function:

○ Easy to compute h(M)

○ Computationally infeasible to find M from h(M)

○ Computationally infeasible to find collision (X ≠ Y, but h(X)=h(Y))

However, collision always exists since the length of messages is longer than that of digest.

Salted and hashed password
● Secure Hash Functions

○ Offline-dictionary attack: pre-computed a list of hashed values to create a lookup table

○ Salting, i.e., add a random string to expand the effective space for brute-force attack

○ Many hash functions, some are broken: MD5, SHA-1, SHA-256, …

○ Just call the existing libraries; don’t implement the algorithm yourself

Database – User Table
● Create user table to save userid (primary key), email, salt, “salted and hashed password”, admin flag.

○ flag (e.g., integer 1) to indicate “admin” or not

● Every user has its own random salt, so the salted password generated by below will be different
<?php

echo ($salt = mt_rand())."
";

echo hash_hmac('sha256', $_REQUEST['password'], $salt);

?>

● Adding a user: INSERT INTO account (email, salt, password) VALUES
("1@gmail.com","1160029811","5d2b3d93eba5eb05e34b7c2301c517a17c593bc364ca88fa3417944cb5a4e74d");

Secret key for HMACMessage Authentication Code built from hash

● Build login.php and auth-process.php

○ Create the HTML yourself

○ Form will be submitted to auth-process.php

■ submit email, password (first validate the format)

■ get “salt” from DB, compute the “salted hash value” then compare.

■ lead admin to admin panel, common user to main page, refuse incorrect password.

● Now you have:

○ login, admin, mainpage

○ Related process file auth-process, admin-process

○ Every time need password?

■ Set admin token kept in cookie.

Login Page

Reminder
● Watch out the Amazon billing notification

○ May charge you if you open redundant resources

● Secure your private key

● Backup your server data

● Domain names are released. Do not release your elastic IP!

● Do NOT hack your classmates’ website at this stage!

Node.js User Authentication
1. https://www.loginradius.com/blog/engineering/guest-post/nodejs-

authentication-guide/

https://www.loginradius.com/blog/engineering/guest-post/nodejs-authentication-guide/
https://www.loginradius.com/blog/engineering/guest-post/nodejs-authentication-guide/

	IERG 4210
Web Programming & Security
Tutorial 5
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	TLS/SSL
	Apply TLS/SSL to your website
	Apply TLS/SSL to your website
	Apply TLS/SSL to your website
	Apply TLS/SSL to your website
	Sign up for free
	幻灯片编号 13
	幻灯片编号 14
	Validation
	Validation
	Validation
	Download the CRL File
	Configure an HTTPS server
	Configure an HTTPS server (cont.)
	Check the certificate
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31

