
IERG 4210

Web Programming & Security

Tutorial 8

Fan YANG
(Part of slides are modified from the former TA Menghan Sun)

● Phase 4: Secure your website

○ Prevent XSS, CSRF, SQL attacks (Phase 4.1-4.3, 4.5) -> today

○ Authentication for Admin Panel (Phase 4.4, 4.5) -> Last tutorial

■ Otherwise everyone can manipulate your database.

○ Apply SSL certificate (Phase 4.6) -> Last tutorial

Outline

Common Attacks on server side:

● Code injection attack

○ SQL Injection (Manipulate Database query input)

○ File or shell command injection

○ XSS can also be classified as one type of injection attack (used to inject

malicious payload)

● Exploit Session Management Weakness

○ Authorization

○ Cookie management, session hijacking, . . .

● Insecure configurations and components

○ Vulnerable software, like Web server

Server Side Security

SQL injection -- Quick Review

Normal URL and SQL query:

http://www.buynow.com/scripts/purchase.asp?ID=1

Select * from purchase where ID = $id ;

Exploit URL and SQL query:

http://www.buynow.com/scripts/purchase.asp?ID=1%20OR%201=1

Select * from purchase where ID = $id OR 1=1 ;

Why can the attacker perform SQL injection?

1. controling user input; 2. hiding the malicious code in the input data

SQL injection -- Example

How to perform attack?

● "Guess the SQL statement behind, by SQL injection and observe the server

response”

● Method: The server does/doesnot return any error messages -- “debugging

information”

● The attacker tries/constructs different SQL queries (always right/wrong) to

see if the attack makes sense.

● A trick: performing one function repeatedly and compare the executing time

● Examples: Timing attack, SQL column truncation, etc.

SQL injection - Defense

Use prepared statements and parameterized queries.

(PDO prepare in PHP)

Advantages: parse once; auto-processing

- Prepared statements ensures that an application will be able to use the

same data access paradigm regardless of the capabilities of the database.

Example: (1) Repeated inserts; (2) Fetching data; (3) Calling a stored

procedure; (4) Invalid use of placeholder

SQL injection - Defense

(1) Repeated inserts using prepared statements

<?php

$stmt = $dbh->prepare("INSERT INTO REGISTRY (student, height) VALUES (:student, :height)");

$stmt->bindParam(':student', $student);

$stmt->bindParam(':height', $height);

// insert one row

$student = 'amy';

$height = 171;

$stmt->execute();

// insert another row with different values

$student = 'bob';

$height = 181;

$stmt->execute();

?>

SQL injection - Defense

(2) Fetching data using prepared statements

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where

student = ?");

if ($stmt->execute(array($_GET['student']))) {

while ($row = $stmt->fetch()) {

print_r($row);

}

}

?>

SQL injection - Defense

(3) Calling a stored procedure

<?php

$stmt = $dbh->prepare("CALL sp_returns_string(?)");

$stmt->bindParam(1, $return_height, PDO::PARAM_STR, 250);

// call the stored procedure

$stmt->execute();

print "procedure returned $return_height\n";

?>

with an output parameter with an input/output

parameter
<?php

$stmt = $dbh->prepare("CALL

sp_takes_string_returns_string(?)");

$height = 'hello';

$stmt->bindParam(1, $height,

PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 250);

// call the stored procedure

$stmt->execute();

print "procedure returned $height\n";

?>

SQL injection - Defense

(4) Invalid use of placeholder - We should avoid

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where student LIKE

'%?%'");

$stmt->execute(array($_GET['student']));

// placeholder must be used in the place of the whole value

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where student

LIKE ?");

$stmt->execute(array("%$_GET[student]%"));

?>

SQL injection - Defense

- Avoid the usage of dynamic SQL query; Or use strict input sanitization.

- Check input data type, e.g., only integer allowed.

- Use security control interfaces.

- Reference: https://owasp.org/www-project-enterprise-security-api/

https://owasp.org/www-project-enterprise-security-api/

Client Side Security

● Cross-Site Request Forgery (CSRF)

● Cross-Site Scripting (XSS)

Cross-Site Request Forgery (CSRF) -- Quick Review

CSRF is an attack that forces a user to execute unwanted actions on a web application in

which they're currently authenticated.

CSRF example

● Using GET request:

<img src=”https://bank.com/transfer?toAcct=024-666666-882&amt=100” width=”1”

height=”1”/>

● Using POST request

<form action=”https://bank.com/transfer” method=”POST”>

<input type=”hidden” name=”to” value=”024-666666-882”/>

<input type=”hidden” name=”amt” value=”100”/>

</form>

<script>document.forms[0].submit()</script>

The request is automatically attached with the victim’s authentication token.

CSRF - Defense

● Only accept custom http request headers

○ /<form> tags can not generate such customized header

○ XMLHttpRequest can do, but prohibited when cross-origin

■ X-Requested-With: XMLHttpRequest

● Submit a hidden nonce(i.e. number used only once) with every form

○ Why CSRF attack can succeed?

■ All parameters passed can be predicted by the attacker so a

request can be forged.

○ Attackers do not know the nonce due to SOP (Same-origin policy)

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

CSRF - hidden nonce

● Very easy to implement

● Put it into all your forms

● Every time the form is submitted, the hidden nonce will be sent to the server

○ The hidden nonce is generated by the server

○ Unpredictable for attackers

● Two subroutines are needed

○ csrf_getNonce() ⇒ Generate the nonce at the server side and store it.

○ csrf_verifyNonce() ⇒ Verify the nonce sent by the client.

CSRF - hidden nonce

CSRF - hidden nonce

In auth-process.php and admin-process.php:

In all forms:

Cross-Site Scripting (XSS) -- Quick Review

● Unauthorized cross-origin script access

● Consequences: executing script in a victim’s origin

○ May lead to the FULL CONTROL of your browser

● Reflected XSS: payload reflected from request to response

● Stored XSS: The server stores and echoes the payload every time

when a user visits it

● DOM-based XSS: modify the DOM nodes

Cross-Site Scripting (XSS) -- Example
● Reflected XSS attack

● The malicious input is used in the response HTML page.

● https://owasp.org/www-community/attacks/xss/

● <script>alert("Hello\nHow are you?");</script>

https://owasp.org/www-community/attacks/xss/

Reflected XSS

Stored XSS

Dom XSS
● Similar to reflected xss.

● Difference: In reflected and stored XSS, the code is sent to the server and returned to the

browser. But DOM-type XSS is executed directly in the user's browser without contacting

the server.

● https://owasp.org/www-community/attacks/DOM_Based_XSS

● DOM-based XSS vulnerabilities usually arise when JavaScript takes data from an attacker-

controllable source, such as the URL, and passes it to a sink that supports dynamic code

execution, such as eval() or innerHTML.

https://owasp.org/www-community/attacks/DOM_Based_XSS

XSS - Defense

● Input Validation and sanitization

○ PHP filters (Phase 4)

○ Reference:

https://www.php.net/manual/e

n/filter.filters.sanitize.php

(-> Following this week's lectures by the

professor.)

https://www.php.net/manual/en/filter.filters.sanitize.php

XSS - Defense

● Context-dependent Output Sanitizations

○ Why do we still need output sanitization when input validation & sanitization

has been enforced?

■ There may be some unexpected input entrances

■ DO NOT regard contents of your databases as “right”

● They may have been modified

XSS - Defense

Thank you!
Q&A

