
1

SCC.201
Database Management Systems

2023 - Week 3 – Relational Model to SQL

Uraz C Turker & Ricki Boswell

2

Recall

• 1 to 1 relations

3

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 1
PhoneN

Brand

Toyota..

Hyundai.

BMW..

Car(Brand:string,Weight:integer,Length:real,Max_Speed:integer)

Mec_Rep(SSI:string,Name:string,Phone:string,Brand:string)

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

IC for CAR: Primary key Brand

IC’s for Mec_Rep : Primary key SSI, Foreign key Brand referencing CAR.

On deleting car tuple SET NULL/DEFAULT, Brand is UNIQUE.

Recall

• 1 to 1 relations

4

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 1
PhoneN

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Car(Brand:string,Weight:integer,Length:real,Max_Speed:integer)

Mec_Rep(SSI:string,Name:string,Phone:string,Brand:string)
IC for CAR: Primary key Brand

IC’s for Mec_Rep: Primary key SSI, Foreign key Brand referencing CAR.

On delete CASCADE/REJECT, BRAND CANNOT BE NULL, Brand is UNIQUE

Brand

Toyota..

Hyundai.

BMW..

Car_Rep(Brand:string,Weight:integer,Length:real,Max_Speed:integer,SSI: string)

Mec (SSI:string,Name:string,Phone:string)

Recall

• 1 to 1 relations

5

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 1
PhoneN

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

IC’s for Car_Rep: Primary key Brand, Foreign key SSI referencing Mec. On delete CASCADE/REJECT, SSI CANNOT BE NULL, SSI is UNIQUE

IC for Mec: Primary key SSI

SSI

87542702

68201937

23139827

Recall

• 1 to 1 relations

6

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 1
PhoneN

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Car_Rep_Mec(Brand:string, SSI: string)

IC’s for Car_Rep_Mec: Primary key SSI, Foreign Key SSI referencing Mec, Foreign Key Brand referencing Car, On

delete CASCADE/Reject, BRAND CANNOT BE NULL, Brand is UNIQUE

SSI Brand

87542702 Toyota..

68201937 Hyundai.

23139827 BMW..

Mec (SSI:string,Name:string,Phone:string)
Car(Brand:string,Weight:integer,Length:real,Max_Speed:integer)

Recall

• 1 to Many relations

(Same for Many to 1 relations)

7

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 N
PhoneN

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

Price

10

23

12

Car (Brand:string,Weight: integer, Length:real, Max_Speed:integer) IC: Primary key Brand.

Mec_R (Brand:string,Price: integer, SSI:integer, Name:string, Phone_Number:string) IC’s: Primary key SSI, Foreign
Key Brand referencing Car.

Recall

• 1 to Many relations

(Same for Many to 1 relations)

8

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

1 N
PhoneN

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

23761281 Alex 73828732

Price

Price

10

23

12

11

Car (Brand:string,Weight: integer, Length:real, Max_Speed:integer) IC: Primary key Brand.

Mec_R (Brand:string,Price: integer, SSI:integer, Name:string, Phone_Number:string) IC’s: Primary key SSI, Foreign
Key Brand referencing Car, On delete CASCADE/REJECT, BRAND CANNOT BE NULL

BMW 3.21

Recall

• Many to Many (N-N, N-M, X-Y,….)

9

Repairs Car

Brand

Weight Max_Speed

Mechanic

SSI Name

N N
PhoneN

Price

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price SSI

10 87542702

23 68201937

12 23139827

Car (Brand:string,Weight: integer, Length:real,

Max_Speed:integer) IC: Primary key Brand.
Mec (SSI:string, Name:string,

Phone_Number:string,) IC: Primary key

SSI.

Rep(Price:Integer,SSI:integer,Brand:s

tring).

IC’s: Primary Key {SSI,BRAND}
Foreign Key SSI referencing Mec,

Foreign Key Brand referencing Car,

BRAND CANNOT NULL, ON DELETE

CASCADE.

Recall

10

Family name fid

Parent

Father Daughter

Family(fId:integer, Name:string, fatherOf:integer, daughterOf:integer)

IC’s: Primary key fId foreign key, fatherOf referencing Family. Foreign

key daughterOf referencing Family, daughterOf CANNOT Null,

daughterOf is UNIQUE.

Recall

• In a weak-entity set,
the existence of an
entity depends on the
existence of an entity
in the entity set in
relation!

11

Subs. Inventory Player

PName

PID

Date

Payment Amount

• If a player is deleted from the game server,
the inventory information must be deleted.

Inv_Subs(PID:integer,PaymentAmound:string,Date:date)
IC’s: Primary key :{PID,DATE}, foreign key PID, referencing Player, on delete:cascade, PID cannot be null

Player(PID:integer,PName:string

12

Subs. Inventory Player

PName

PID

Date

Payment Amount

13

Subs. Inventory Player

PName

PID

Date

Payment Amount

14

Subs. Inventory Player

PName

PID

Date

Payment Amount

15

Subs. Inventory Player

PName

PID

Date

Payment Amount

16

Subs. Inventory Player

PName

PID

Date

Payment Amount

Recall

17

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

18

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

19

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

20

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

21

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

22

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

Exercise solutions

• Department(DName TEXT NOT NULL, HoD TEXT, NoOfEmp
INTEGER, PRIMARY KEY(DName))

• StudentsEnrol(firstName TEXT, lastName TEXT, RegNumber
INTEGER NOT NULL, Address TEXT, BDate TEXT, Gender
TEXT, DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL)

• CourseRuns(CName TEXT NOT NULL, Desc TEXT, DepName
TEXT, PRIMARY KEY (CName), FOREIGN KEY(DepName)
REFERENCES Department(DName) ON DELETE SET NULL)

• StTakesCourse(CName TEXT NOT NULL, RegNumber
INTEGER NOT NULL, PRIMARY KEY(CNAME,RegNumber),
FOREIGN KEY (CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber))

23

Course

Department Student Enrols
1 N

Runs

Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps

First Name

Last Name

RegNum

Address

BDate

Gender

The SQL Query Language

• Developed by IBM (system R) in the 1970s

• Need for a standard since it is used by many vendors

• Standards:

• SQL-86

• SQL-89 (minor revision)

• SQL-92 (major revision, current standard)

• SQL-99 (major extensions)

SELECT S.rating, MIN (S.age)

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

Creating Relations in SQL

 Creates the Students’ relation. Observe that each field’s type
(domain) is specified and enforced by the DBMS whenever
tuples are added or modified.

CREATE TABLE Students

 (sid TEXT,

 name TEXT,

 login TEXT,

 age INTEGER,

 gpa REAL);

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

Built-in data types varies interpreter to another.

TEXT, VARCHAR(Length), REAL, INTEGER, and BLOB
are the most common data types.

Some interpreters accepts INT and INTEGER, some
accepts DATA and BOOLEAN, but others don’t.

Creating Relations in SQL

 As another example, the Enrolled table holds information about
students’ courses and grades.

CREATE TABLE Enrolled

 (sid TEXT,

 cid TEXT,

 grade TEXT);

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
 (sid VARCHAR(20)
 cid VARCHAR(20),
 grade VARHAR(2),
 PRIMARY KEY (sid,cid));

 “For a given student and course, there is a
single grade in Enrolled.”

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

Primary and Candidate Keys in SQL

Possibly many candidate keys, one of which is
chosen as the primary key.

CREATE TABLE Enrolled
 (sid VARCHAR(20)
 cid VARCHAR(20),
 grade VARCHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade));

 Create Enrolled table

 “Students can take only one course,
and receive a single grade for that
course; further, no two students in a
course receive the same grade.”

sid cid grade

53834 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

Logical DB Design: ER to Relational

Entity sets to tables.

Employees

ssn
name

log

 CREATE TABLE Employees

 (ssn CHAR(11),

 name CHAR(20),

 lot INTEGER,

 PRIMARY KEY (ssn));

Logical DB Design: ER to Relational

Entity sets to tables.

Employees

ssn
name

log

 CREATE TABLE Employees

 (ssn VARCHAR(11),

 name VARCHAR(20),
 log INTEGER,

 PRIMARY KEY (ssn));

Logical DB Design: ER to Relational

Entity sets to tables.

Employees

ssn
name

log

 CREATE TABLE Employees

 (ssn VARCHAR(11),

 name VARCHAR(20),
 log INTEGER,

 PRIMARY KEY (ssn));

Review: Key Constraints

• Each dept has at most
one manager, according
to the key constraint
on Manages.

Translation to
relational model?

Many-to-Many 1-to-1 1-to Many Many-to-1

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

Review: Key Constraints

• Each dept has at most one
manager, according to the
key constraint on Manages.

Translation to
relational model?

dname

budget did

since

log

name

ssn

Manages Employees Departments

CREATE TABLE Manages(
 ssn VARCHAR(11),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees(ssn),
 FOREIGN KEY (did) REFERENCES Departments(did))

1 N

Review: Key Constraints

• Each dept has at most one
manager, according to the
key constraint on Manages.

dname

budget did

since

log

name

ssn

Manages Employees Departments

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname VARCHAR(20),
 budget REAL,
 ssn VARCHAR(11),
 since TEXT,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees(ssn))

1. Since each department has
a unique manager, we
could instead combine
Manages and
Departments.

1 N

Relationship Sets to Tables

CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments(did)
 REFERENCES Departments(did))

dname

budget did log

name

ssn

Works_in Employees Departments

since

M N

Relationship Sets to Tables

CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments(did)
 REFERENCES Departments(did))

dname

budget did lot

name

ssn

Works_in Employees Departments

since

M N

Relationship Sets to Tables

CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments(did)
 REFERENCES Departments(did))

dname

budget did lot

name

ssn

Works_in Employees Departments

since

M N

Relationship Sets to Tables

CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments(did)
 REFERENCES Departments(did))

dname

budget did lot

name

ssn

Works_in Employees Departments

since

M N

Relationship Sets to Tables

CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments(did)
 REFERENCES Departments(did))

dname

budget did lot

name

ssn

Works_in Employees Departments

since

M N

Relationship Sets to Tables

• In translating a relationship
set to a relation, attributes of
the relation must include:

• Keys for each
participating entity set
(as foreign keys).

• All descriptive attributes.
CREATE TABLE Works_In(
 ssn VARCHAR(1),
 did INTEGER,
 since TEXT,
 PRIMARY KEY (ssn, did), FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY Departments (did)
 REFERENCES Departments (did));

dname

budget did log

name

ssn

Works_in Employees Departments

since

M N

Foreign Keys in SQL

CREATE TABLE Enrolled
 (sid VARCHAR(20), cid VARCHAR(20), grade VARCHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students (sid));

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

Enrolled
Students

Review: Participation Constraints

• Does every department have a manager?

• If so, this is a participation constraint: the participation of Departments
in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a row of the
Manages table (with a non-null ssn value!)

log

name dname

budget did

since
name dname

budget did

since

Manages

since

Departments Employees

ssn

Works_In

1 N

M N

Participation Constraints in SQL

• We can capture participation constraints involving one entity set in a
binary relationship, but little else (without resorting to CHECK
constraints).

CREATE TABLE Dept_Mgr(

 did INTEGER,
 dname VARCHAR(20),
 budget REAL,

 ssn VARCHAR(11) NOT NULL,

 since DATE,

 PRIMARY KEY (did),

 FOREIGN KEY (ssn) REFERENCES Employees(ssn),

 ON DELETE CASCADE)

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

Review: Weak Entities

• A weak entity can be identified uniquely only by considering the
primary key of another (owner) entity.

• Owner entity set and weak entity set must participate in a one-to-many
relationship set (1 owner, many weak entities).

• Weak entity set must have total participation in this identifying
relationship set.

log

name

age pname

Employees

ssn
cost

Dependents Policy

Weak Entities

 Weak entity set and identifying relationship set are translated into a
single table.

• When the owner entity is deleted, all owned weak entities must also be
deleted.

log

name

age pname

Dependents Employees

ssn

Policy

cost

Weak Entities

log

name

age pname

Employees

ssn
cost

CREATE TABLE Dep_Policy (

 pname VARCHAR(20),
 age INTEGER,

 cost REAL,

 ssn VARCHAR(11) NOT NULL,

 PRIMARY KEY (pname, ssn),

 FOREIGN KEY (ssn) REFERENCES Employees(ssn),

 ON DELETE CASCADE);

Dependents Policy

Referential Integrity in SQL/92

• SQL/92 supports all 4 options on
deletes and updates.

• Default is NO ACTION

(delete/update is rejected)

• CASCADE (also delete all tuples
that refer to deleted tuple)

• SET NULL / SET DEFAULT (sets
foreign key value of referencing
tuple)

CREATE TABLE Enrolled
 (sid VARCHAR(20),
 cid VARCHAR(20),
 grade VARCHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students (sid)
 ON DELETE CASCADE

 ON UPDATE SET DEFAULT);
DRAW ER DIAGRAM FOR THIS

Example

• CREATE TABLE Department(DName TEXT NOT
NULL, HoD TEXT, NoOfEmp INTEGER, PRIMARY
KEY(DName));

• CREATE TABLE StudentsEnrol(firstName TEXT,
lastName TEXT, RegNumber INTEGER NOT NULL,
Address TEXT, BDate TEXT, Gender TEXT,
DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE CourseRuns(CName TEXT NOT
NULL, Desc TEXT, DepName TEXT, PRIMARY KEY
(CName), FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE StTakesCourse(CName TEXT NOT
NULL, RegNumber INTEGER NOT NULL, PRIMARY
KEY(CNAME,RegNumber), FOREIGN KEY
(CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

48

Course

Department Student Enrols
1 N

Runs
Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps
First Name

Last Name

RegNum

Address

BDate

Gender

Example

• CREATE TABLE Department(DName TEXT NOT
NULL, HoD TEXT, NoOfEmp INTEGER, PRIMARY
KEY(DName));

• CREATE TABLE StudentsEnrol(firstName TEXT,
lastName TEXT, RegNumber INTEGER NOT NULL,
Address TEXT, BDate TEXT, Gender TEXT,
DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE CourseRuns(CName TEXT NOT
NULL, Desc TEXT, DepName TEXT, PRIMARY KEY
(CName), FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE StTakesCourse(CName TEXT NOT
NULL, RegNumber INTEGER NOT NULL, PRIMARY
KEY(CNAME,RegNumber), FOREIGN KEY
(CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

49

Course

Department Student Enrols
1 N

Runs
Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps
First Name

Last Name

RegNum

Address

BDate

Gender

Example

• CREATE TABLE Department(DName TEXT NOT
NULL, HoD TEXT, NoOfEmp INTEGER, PRIMARY
KEY(DName));

• CREATE TABLE StudentsEnrol(firstName TEXT,
lastName TEXT, RegNumber INTEGER NOT NULL,
Address TEXT, BDate TEXT, Gender TEXT,
DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE CourseRuns(CName TEXT NOT
NULL, Desc TEXT, DepName TEXT, PRIMARY KEY
(CName), FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE StTakesCourse(CName TEXT NOT
NULL, RegNumber INTEGER NOT NULL, PRIMARY
KEY(CNAME,RegNumber), FOREIGN KEY
(CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

50

Course

Department Student Enrols
1 N

Runs
Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps
First Name

Last Name

RegNum

Address

BDate

Gender

Example

• CREATE TABLE Department(DName TEXT NOT
NULL, HoD TEXT, NoOfEmp INTEGER, PRIMARY
KEY(DName));

• CREATE TABLE StudentsEnrol(firstName TEXT,
lastName TEXT, RegNumber INTEGER NOT NULL,
Address TEXT, BDate TEXT, Gender TEXT,
DepName TEXT, PRIMARY KEY (RegNumber),
FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE CourseRuns(CName TEXT NOT
NULL, Desc TEXT, DepName TEXT, PRIMARY KEY
(CName), FOREIGN KEY(DepName) REFERENCES
Department(DName) ON DELETE SET NULL);

• CREATE TABLE StTakesCourse(CName TEXT NOT
NULL, RegNumber INTEGER NOT NULL, PRIMARY
KEY(CNAME,RegNumber), FOREIGN KEY
(CName) REFERENCES CourseRuns(CName),
FOREIGN KEY (RegNumber) REFERENCES
StudentsEnrol(RegNumber));

51

Course

Department Student Enrols
1 N

Runs
Takes

1

N

M

N

CName Description

DName

HoD

NoOfEmps
First Name

Last Name

RegNum

Address

BDate

Gender

52

SCC.201
Database Management Systems

2023 - Week 3 – Relational Model to SQL

Uraz C Turker & Ricki Boswell

Please read chapters 5 and 7.1 from “Fundamentals of Database
Systems by Elmasri”

53

Evaluation results

54

The module overall so far The quality of teaching is

Very good Very good

55

How did you found the module as a whole? Helpfulness of the staff is

Very good

Manageable

Actions
Another Evaluation after 2 weeks.

• Preparing Q&A (Video tutorials)

• More examples

• Refining slides

• “Use cases behind creating
ER diagrams, context behind
database can help us
approach better”

• Upload lecture slides before
the lecture

• I am uploading DRY contend
without

• Providing Q & A’s

• Providing animations

• Providing Recall Sections

56

Things will be done Things already started:

What will you learn today?

• Relational Model

• Review, Relational Algebra

• Reintroduction to SQL

57

Participation Constraints in SQL

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

• “Employee can manage one department, a department must be
managed by many employees”

Participation Constraints in SQL

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

• “Employee must manage one department, a department may be
managed by many employees”

Participation Constraints in SQL

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

• “Employee can manage many departments, a department may be
managed by many employees”

Participation Constraints in SQL

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

• “Employee can manage many departments, a department must be
managed by one employee”

• “Employee must manage department(s) but department may be
managed by employee(s).”

62

dname

budget did

since

log

name

ssn

Manages Employees Departments

• “Employee can manage department(s) but department must be
managed by employee(s).”

63

dname

budget did

since

log

name

ssn

Manages Employees Departments

RECALL

• Multiplicty constraints are given in the OPPOSITE ends of the relation

64

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

RECALL

• Multiplicty constraints are given in the OPPOSITE ends of the relation

• Employee manages MANY departments.

65

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

RECALL

• Participation constraints are given BY the entity set.

• Employee MAY manage MANY departments.

66

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

RECALL

• Multiplicty constraints are given in the OPPOSITE ends of the relation,
Participation constraints are given BY the entity set.

• Employee may manage many departments.

• Department managed by ONE employee.

67

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

RECALL

• Multiplicty constraints are given in the OPPOSITE ends of the relation,
Participation constraints are given BY the entity set.

• Employee may manage many departments.

• A department must be managed by one employee.

68

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

69

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

70

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

71

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

72

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

73

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB…

74

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2,
IC3,…);

• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… ->

75

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… -> SQL interpreter dependent.

76

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… -> SQL interpreter dependent.

• IC PRIMARY KEY(Atti, Attj,…)
• IC2 FOREIGN KEY()

• NOT NULL

• ON DELETE CASCADE/SET NULL/REJECT/SET DEFAULT

• UNIQUE

77

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… -> SQL interpreter dependent.

• IC PRIMARY KEY(Atti, Attj,…)
• IC FOREIGN KEY(Attk,Attl,…)
• NOT NULL

• ON DELETE CASCADE/SET NULL/REJECT/SET DEFAULT

• UNIQUE

78

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… -> SQL interpreter dependent.

• IC PRIMARY KEY(Atti, Attj,…)
• IC FOREIGN KEY(Attk,Attl,…)
• NOT NULL -> The corresponding attribute CANNOT BE NULL in any instance

• ON DELETE CASCADE/SET NULL/REJECT/SET DEFAULT

• UNIQUE

79

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• Creates a table in a database.

• Domain: TEXT, INT, INTEGER, REAL, BLOB… -> SQL interpreter dependent.

• IC PRIMARY KEY(Atti, Attj,…)
• IC FOREIGN KEY(Attk,Attl,…)
• NOT NULL -> The corresponding attribute CANNOT BE NULL in any instance

• UNIQUE -> The corresponding attribute CANNOT REPEAT in any instance

80

Recall Foreign Keys

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

81

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

Recall Foreign Keys

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

82

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

IC FOR MEC_REPAIRS: FOREIGN KEY Brand REFERENCES CAR(Brand)

Recall Foreign Keys

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

83

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

IC FOR MEC_REPAIRS: FOREIGN KEY Brand REFERENCES CAR(Brand)

Note that the foreign key attribute (Brand) of the referenced table (MEC_REPAIR) is a PRIMARY KEY attribute for the

referencing table (CAR). We can remove tuples from the referencing table (e.g. remove tuple with Primary Key Hyundai

E.GLS). Since this tuple is in relation to a tuple in MEC_REPAIR, we have to inform DBMS about the outcome of this

modification on the referenced table according to the ER diagram/Rules.

Recall Foreign Keys

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

84

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

IC FOR MEC_REPAIRS: FOREIGN KEY Brand REFERENCES CAR(Brand)

Note that the foreign key attribute (Brand) of the referenced table (MEC_REPAIR) is a PRIMARY KEY attribute for the

referencing table (CAR). We can remove tuples from the referencing table (e.g. remove tuple with Primary Key Hyundai

E.GLS). Since this tuple is in relation to a tuple in MEC_REPAIR, we have to inform DBMS about the outcome of this

modification on the referenced table according to the ER diagram/Rules.

Recall

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

85

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

IC FOR MEC_REPAIRS: FOREIGN KEY Brand REFERENCES CAR(Brand)

Note that the foreign key attribute (Brand) of the referenced table (MEC_REPAIR) is a PRIMARY KEY attribute for the

referencing table (CAR). We can remove tuples from the referencing table (e.g. remove tuple with Primary Key Hyundai

E.GLS). Since this tuple is in relation to a tuple in MEC_REPAIR, we have to inform DBMS about the outcome of this

modification on the referenced table according to the ER diagram/Rules.

Recall Foreign Keys

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

86

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

IC FOR MEC_REPAIRS: FOREIGN KEY Brand REFERENCES CAR(Brand)

Note that the foreign key attribute (Brand) of the referenced table (MEC_REPAIR) is a PRIMARY KEY attribute for the

referencing table (CAR). We can remove tuples from the referencing table (e.g. remove tuple with Primary Key Hyundai

E.GLS). Since this tuple is in relation to a tuple in MEC_REPAIR, we have to inform DBMS about the outcome of this

modification on the referenced table according to the ER diagram/Rules.

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referencing table (CAR)

87

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referencing table (CAR)

88

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referencing table (CAR)

89

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referencing table (CAR)

90

SSI Name Phone_Number

87542702 Tom 75315567

23139827 Nick 75315544

Price

10

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referencing table (CAR)

91

SSI Name Phone_Number

87542702 Tom 75315567

23139827 Nick 75315544

Price

10

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If CASCADE -> Delete all these tuples in the referenced table (MEC_REPAIR) and delete the tuple in
the referencing table (CAR).

• If REJECT-> Do NOT allow deletion of the tuple in the referenced and in the referencing table (CAR)

92

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET DEFAULT -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign
key value to a default value (you have to specify this) of these tuples in the referencing table (CAR).
And delete tuples in CAR

93

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET DEFAULT -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign
key value to a default value (you have to specify this) of these tuples in the referencing table (CAR).
And delete tuples in CAR

94

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET DEFAULT -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign
key value to a default value (you have to specify this) of these tuples in the referenced table
(MEC_REPAIR). And delete tuples in CAR

95

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

DEFAULT

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET DEFAULT -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign
key value to a default value (you have to specify this) of these tuples in the referenced table
(MEC_REPAIR). And delete tuples in CAR

96

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

DEFAULT

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET NULL -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign key
value to a NULL value of these tuples in the referencing table (CAR).

97

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET NULL -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign key
value to a NULL value of these tuples in the referenced table (MEC_REPAIR).

98

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

NULL

Referential Integrity

CREATE TABLE (Att1 Domain, Att2, Domain,…, IC1, IC2, IC3,…);
• ON DELETE (CASCADE/SET NULL/REJECT/SET DEFAULT)

• Used for an IC Foreign Key / Hierarchical Tables (out of the scope of this module)

• If a tuple (say 2nd tuple) is to be deleted from referencing table (CAR)

• Get the primary key value of the tuple (Toyota_Corolla).

• Find all the tuples with values (Toyota_Corolla) in the referenced table (MEC_REPAIR)

• If SET NULL -> Select all these tuples in the referenced table (MEC_REPAIR) and set the foreign key
value to a NULL value of these tuples in the referenced table (MEC_REPAIR). And delete the tuples in
the referencing table (CAR).

99

SSI Name Phone_Number

87542702 Tom 75315567

68201937 Uraz 75335521

23139827 Nick 75315544

Price

10

23

12

CAR MEC_REPAIR

NULL

Integrity Constraints (Key,Participation) in
SQL

• We can capture participation constraints involving one entity set in a
binary relationship, but little else (without resorting to CHECK
constraints).

CREATE TABLE Dept_Mgr(

 did INTEGER,
 dname VARCHAR(20),
 budget REAL,

 ssn VARCHAR(11) NOT NULL,

 since DATE,

 PRIMARY KEY (did),

 FOREIGN KEY (ssn) REFERENCES Employees(ssn),

 ON DELETE CASCADE)

dname

budget did

since

log

name

ssn

Manages Employees Departments
1 N

QUIZ (Formative-Grade yourself)

• “We are running an instrument store in Uxbridge, London. We have
products with immutable ProductID, and name, price, product picture, and
amount_in_Store. Moreover, we want to create a database that keeps
transaction information with transaction date, ProductID (customer
purchased), and amount_purchased, transactionID.

• We can issue one transaction per item, and we will not keep records of a
transaction if the purchased items are dated (removed from the store).”

• Draw ERD, Reveal Relational Schema and Integrity Constraints and write
SQL code to create the database.

101

QUIZ (Formative-Grade yourself)

• “We are running an instrument store in Uxbridge, London. We have
products with immutable ProductID, and name, price, product picture, and
amount_in_Store. Moreover, we want to create a database that keeps
transaction information with transaction date, ProductID (customer
purchased), and amount_purchased, transactionID.

• We can issue one transaction per item, and we will not keep records of a
transaction if the purchased items are dated (removed from the store).”

• Draw ERD, Reveal Relational Schema and Integrity Constraints and write
SQL code to create the database.

102

Product(ProductID INTEGER)
IC: Primary Key ProductID

TransactionIsRelated(ProductID INTEGER, Amount REAL,
Date TEXT, P_ProductID INTEGER, TransactionID
INTEGER)

IC: Primary Key (P_PruductID,transactionID)
IC: Foreign Key (P_ProductID) References Product ON
DELETE CASCADE

103

CREATE TABLE Product(ProductID INTEGER, PRIMARY KEY(ProductId));

CREATE TABLE TransactionIsRelated(ProductID INTEGER, Amount
REAL, Date TEXT, P_ProductID INTEGER, TransactionID

INTEGER,Primary Key (ProductID,TransactionID), Foreign Key

(P_ProductID) References Product(ProductID) ON DELETE CASCADE
);

Moreover, we want to create a database that keeps transaction information with transaction date, ProductID

(customer purchased), and amount_purchased, transactionID.

We can issue one transaction per item, and we will not keep records of a transaction if the purchased items are

dated (removed from the store).

Some more introduction to SQL

• Inserting and querying

104

Adding and Deleting Tuples

One can insert a single tuple using

INSERT INTO <relationalschema_for_the_table> Values <all_the_values>

Directives

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

DELETE and SELECT

106

DELETE
FROM Relational Schema
WHERE <Conditions>

SELECT <Attributes>
FROM Schema
WHERE <Conditions>

The DELETE statement is used to delete

existing records in a table.

The SELECT statement is used to select data from a database.

The data returned is stored in a result table, called the result
set.

Adding and Deleting Tuples

 Can delete all tuples satisfying some condition (e.g., name =
Shero):

DELETE
FROM Students S
WHERE S.name = ‘Jones’

 Powerful variants of these commands are available; more later!

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

The SQL Query Language

SELECT *
FROM Students S
WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

53650 Shero shero@math 19 3.8

Find all students
with age 18

The SQL Query Language

SELECT S.name, S.login
FROM Students S
WHERE S.age=18

name login

Jones jones@cs

Shero shero@cs

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Shero shero@cs 18 3.2

53650 Shero shero@math 19 3.8

Names and logins of
all students
with age 18

 Querying Multiple Relations

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Shero Topology112

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

sid name login age gpa

53666 Jones jones@cs 18 3.4

53650 Shero shero@cs 18 3.2

Students Enrolled

Names and cids of
Students who had an A
From the cid they are
enrolled

Where does this selection come from? How does it operate?

Query Languages

• For manipulation and retrieval of stored data

• Relational model supports simple yet powerful query languages

• Query languages are not as complex as programming languages

• They are specialized for data manipulation and retrieval

Relational Algebra

• It is a mathematical query language

• Forms the basis of the SQL query language

• Relational Calculus is another mathematical query language but it is
declarative rather than operational

• We will concentrate on relational algebra in this course

