
Chapter 3: Flow of Control

Mr. Horence Chan

CIS 129
Advanced Computer Programming

Control Structures

• Control structures are portions of program code that contain
statements within them and, depending on the circumstances,
execute these statements in a certain way.

• There are typically two kinds:
• _______________

• _______________

Conditionals

• Conditionals allow the program
to check the values of variables
and to execute (or not execute)
certain statements.

• C++ has _____ and __________
conditional structures.

Operators

• Conditionals use two kinds of special operators:
• Relational

• Logical

• These are used to determine whether some condition is true or false.

• The _______________ operators are used to test a relation between
two expressions

• The _______________ operators are often used to combine
relational expressions into more complicated Boolean expressions

Operators

Operators Meaning

> Greater than

Greater than or equal to

< Less than

Less than or equal to

Equal to

Not equal to

Operators Meaning

And

Or

Not

Relational Operator Logical Operator

• An expression using operators return a Boolean value of either true or
false, indicating whether the relation tested for holds, which is also called a
Boolean expression.

• E.g. if the variables x and y have been set to 6 and 2, respectively, then x > y
returns true. Similarly, x < 5 returns false.

Operators

• More example: (assume x = 6 and y = 2)
• !(x > 2) → __________
• (x > y) && (y > 0) → __________
• (x < y) && (y > 0) → __________
• (x < y) || (y > 0) → __________

• In fact, any kind of value can be used in a Boolean expression in C++:
• False: represented by 0
• True: anything that is not 0

• Any variable holding a non-zero value is true.
• "Hello, world!" → __________

• 2 → __________

• !x → __________

• x && y → __________

if, then, else
if(condition1)

{

statementA1

statementA2

…

}

else if(condition2)

{

statementB1

statementB2

…

}

else

{

statementC1

statementC2

…

}

• If condition1 is met, the block
corresponding to the if is executed.

• ____________ is used in each block.

• If not, then only if condition2 is
met is the block corresponding to the
else if executed.

• If none of the previous conditions are
met, the else block is executed.

• There may be more than one else
if, each with its own condition.

• Once a block whose condition was
met is executed, any else ifs after
it are ignored.

• In this structure, one of the blocks
must execute.

if, then, else

• _____ can be omitted if there is
only one statement

• For beginner in C++, it is
recommend to write { } in each
block at the first time

• This help to reduce complication
error during editing

if, then, else
#include <iostream>

using namespace std;

int main() {

int x = 6;

int y = 2;

if(x > y){

cout << "x is greater than y\n";

}

else if(y > x){

cout << "y is greater than x\n";

}

else{

cout << "x and y are equal\n";

}

return 0;

}

• Output : x is greater than y

• If we replace int x = 2; int y = 6

• Output: ________________________

• If we replace int x = 2; int y = 2

• Output: ________________________

switch-case
switch(expression)

{

case constant1:

statementA1

statementA2

...

break;

case constant2:

statementB1

statementB2

...

break;

...

default:

statementZ1

statementZ2

...

break;

}

• If expression is equal to constant1,
then the statements below case
constant1: are executed until a
____________ is encountered.

• If expression is not equal to constant1,
then it is compared to constant2. If these
are equal, then the statements below case
constant2: are executed until a
____________ is encountered.

• If not, then the same process repeats for each
of the constants, in turn.

• If none of the constants match, then the
statements below default: are executed.

• ____________ are not necessary for cases.

switch-case
#include <iostream>

using namespace std;

int main() {

int x = 6;

switch(x) {

case 1:

cout << "x is 1\n";

break;

case 2:

case 3:

cout << "x is 2 or 3";

break;

default:

cout << "x is not 1, 2, or 3";

break;

}

return 0;

}

• Output: x is not 1, 2, or 3

• If we replace with int x = 2

• Output: __________________

• Note how to write the expression
when two cases have the _________
output

While and do-while loop

while(condition)

{

statement1

statement2

…

}

do

{

statement1

statement2

…

}

while(condition);

• As long as condition holds, the block of statements will be repeatedly executed
• do-while loop is a variation that guarantees the block of statements will be

executed at least _________

While loop

#include <iostream>

using namespace std;

int main() {

int x = 0;

while(x < 10){

x = x + 1;

}

cout << "x is " << x << "\n";

return 0;

}

Output: ______________

for loop

for(initialization; condition; incrementation)

{

statement1

statement2

…

}

for loop is designed to allow a counter variable that is initialized at
the beginning of the loop and incremented (or decremented) on
each iteration of the loop.

for loop

#include <iostream>

using namespace std;

int main() {

for(int x = 0; x < 5; x = x + 1)

{

cout << x << "\n";

}

return 0;

}

Output:

for loop

#include <iostream>

using namespace std;

int main() {

int x = 0;

for(; x < 5; x = x + 1)

{

cout << x << "\n";

}

return 0;

}

• If the counter variable is already defined, there is no need to define a new one in
the initialization portion of the for loop.

• Note that the _______________ inside the for loop's parentheses is still required.

for and while loop

#include <iostream>

using namespace std;

int main() {

int x = 0;

for(; x < 5; x = x + 1)

{

cout << x << "\n";

}

return 0;

}

#include <iostream>

using namespace std;

int main() {

int x = 0;

while(x < 5) {

cout << x << "\n";

x = x + 1;

}

return 0;

}

Both have the same output!

for and while loop
#include <iostream>

using namespace std;

int main() {

int x = 0;

int y = 0;

while(y < 5) {

cout << x << "\n";

x = x + 1;

}

cout << "Why can’t print me :(";

return 0;

}

• Please pay attention when writing
the condition in for / while loop !!!

• Please make sure a loop has exit
condition. (or entry condition)

Nested if conditionals

#include <iostream>

using namespace std;

int main() {

int x = 6;

int y = 0;

if(x > y) {

cout << "x is greater than y\n";

if(x == 6) {

cout << "x is equal to 6\n";

} else{

cout << "x is not equal to 6\n";

}

} else

cout << "x is not greater than y\n";

return 0;

}

Output:

Nested loops

#include <iostream>

using namespace std;

int main() {

for(int x = 0; x < 4; x++) {

for(int y = 0; y < 4; y++){

cout << y;

}

cout << "\n";

}

return 0;

}

• ‘x++’ means __________

Output:

Simple file input and output

• We have a text file showing the
price of each products

• We want to covert the price list
into full sentence

• Input file

• Output file
The price of burger is $15.

The price of fries is $11.

The price of ice-cream is $9.

burger 15

fries 11

ice-cream 9

Simple file input and output
#include <iostream>

#include <fstream>

#include <iomanip>

#include <string>

using namespace std;

int main(){

//Declare variables

ifstream inFile;

ofstream outFile;

string burger_name, fries_name, icecream_name;

int burger_price, fries_price, icecream_price;

//Open the input file and output file

inFile.open("price.txt");

if (!inFile) {

cout << "Cannot open the input file."

<< "The program terminates." << endl;

return 1;

}

outFile.open("price_output.out");

cout << "Processing data" << endl;

• fstream: Stream class to both
______ and ______ from/to files.

• string: for using string
variable

• ifstream: variable to ______
from files

• ofstream: variable to ______ on
files

• .open(): open a file

• Check if the file “price.txt” exists, if
not the program terminates

Simple file input and output

//Read file word by word

inFile >> burger_name >> burger_price;

inFile >> fries_name >> fries_price;

inFile >> icecream_name >> icecream_price;

//Output file

outFile << "The price of " << burger_name

<< " is $" << burger_price <<"." << endl;

outFile << "The price of " << fries_name

<< " is $" << fries_price << "." << endl;

outFile << "The price of " << icecream_name

<< " is $" << icecream_price << "." << endl;

inFile.close(); // .close(): close a file

outFile.close();

cout << "Processing completed" << endl;

return 0;

}

• Input file

• Output file
The price of ________ is _____.

The price of ________ is _____.

The price of ________ is _____.

• Remember to close the input and
output file at the end!

burger 15

fries 11

ice-cream 9

