
Chapter 4: User Defined Functions

Mr. Horence Chan

CIS 129
Advanced Computer Programming

Pseudocode & Flow Chart

• Before writing the program directly, it
is a good practice to write the
“pseudocode” first

• Using plain English to describe what’s
supposed to happen, then keep
expanding each sentence until it’s
sufficiently detailed that you can
express it as if-statements, loops, etc.

• Often some of the initial English
descriptions will describe good ways
to divide up the code into functions.

Function

• Dumping all the code into main
would be extremely long and
difficult to keep track of.

• Nobody who read a single line
would have a clue where that line
fit in. We would lose track of our
programming goals.

• It would be much more intuitive to
break the code in serval parts,
which is call ____________

• A function is a block of code with a
name

Function

• For example, we are trying to program a robot to launch someone from
Hong Kong to Tokyo via rocket, here is the pseudocode:

int main() {

buildRocket();

setUpRocket();

fireRocket();

}

• This style is often a good design for main – main a few calls to some
functions that do all the real work.

• Each of the functions buildRocket(), setUpRocket(),
fireRocket() is said to be “invoked” or “called” via a “function call”
from “calling function” or “caller” (in this case, main).

• To call a function, type the ________ of the function, followed by
______________.

Predefined functions

• Example of predefined functions in C++ libraries:

Function Purpose Parameter(s)
Type /Result

Example

floor(x) Returns the largest whole number that is
not greater than x

double floor(45.67) = ______

islower(x) Return true if x is a lowercase letter;
otherwise, it returns false

int islower('h') is ______

isupper(x) Return true if x is a uppercase letter;
otherwise, it returns false

int isupper('K') is ______

pow(x, y) Return xy; if x is negative, y must be a
whole number

double pow(0.16 , 0.5) =

sqrt(x) Returns the nonnegative square root of x;
x must be nonnegative

double sqrt(4.0) = ______

User defined functions (without return value)

#include <iostream>

using namespace std;

int main()

{

return 0;

}

______________________ {

cout << "Hello world!";

}

// __________ the function

// __________ the function

// __________ of the function

This definition specifies that we want to name the sequence of commands within the curly braces {…}
___________________, so that we can then call it from another function, such as main, with the syntax

User defined functions (without return value)

• The __________ return type
specifies that there is
___________________, which
generally means that this function
is for issuing instructions, not
asking a question.

• Returning a value from a _______
function is a syntax error.

• Not returning a value from a non-
void function is not a syntax error
but sometimes may cause runtime
errors.

#include <iostream>

using namespace std;

int main()

{

return 0;

}

______________________ {

cout << "Hello world!";

}

User defined functions (With return value)

#include <iostream>

using namespace std;

bool ______________(int x, int y);

int main()

{

cout << ______________(6,2) << endl;

cout << ______________(7,5) << endl;

}

bool ______________(int x, int y) {

if (x % y == 0)

return true;

else

return false;

}

• In this example, we are asking “Is
x a multiple of y?”

• bool: __________

• isMultiple: Function name

• x and y are ______________

• return true and return
false: __________________

Output

User defined functions (With return value)
#include <iostream>

using namespace std;

int big(int a, int b);

int main(void) {

int bigger;

bigger = big(31, 24);

cout << bigger << " is bigger!";

cout << endl;

return 0;

}

int big(int a, int b) {

if (a > b) {

}

else {

}

}

Output
• In “with return value” function,

remember to write code(s)
contains _____________!!!

Scope

• Variables exist within scopes – blocks of code
within which identifiers are valid. An
identifier can be referenced anywhere within
its scope, if the reference comes after its
declaration.

• ___________________ – variables declared
outside of any function – have file scope,
meaning they can be referred to from
_____________ in the file. Global variables
should generally be avoided, except for
global named ___________________.

#include <iostream>

using namespace std;

const int global = 1;

int main()

{

int local = 0;

return 0;

}

Scope

• ___________________ - the set of braces in
which a variable was declared ends, the
variable goes out of scope, i.e. it can no
longer be referenced as an identifier. The
program usually ___________ variables that
have gone out of scope from memory. The
scope of arguments to a function is the
entire function body.

#include <iostream>

using namespace std;

const int global = 1;

int main()

{

int local = 0;

return 0;

}

Reference
#include <iostream>

using namespace std;

void reference(int _____ x, int y);

int main()

{

int a = 0;

int b = 0;

reference(a, b);

cout << "a = " << a << endl;

cout << "b = " << b << endl;

return 0;

}

void reference(int _____ x , int y)

{

x = 2;

y = 3;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

}

• A reference (_____) is an alias for
another variable

• If the value of the reference is
__________, the value of another
variable also __________

Output
x = 2

y = 3

a = _____

b = _____

Reference
#include <iostream>

using namespace std;

void reference(int _____ x, int y);

int main()

{

int a = 0;

int b = 0;

reference(a, b);

cout << "a = " << a << endl;

cout << "b = " << b << endl;

return 0;

}

void reference(int _____ x , int y)

{

x = 2;

y = 3;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

}

• x and a : “pass by ___________”

• y and b : “pass by ___________”

Conversion

#include <iostream>

using namespace std;

int main (){

float x = 67.89;

int y;

y = static_cast < __ >(x);

cout << "x = " << x << endl;

cout << "y = " << y << endl;

return 0;

}

• static_cast <>() is used to
convert the data type of a variable

• <>: input the new ___________

• (): input the __________ need to convert

Output:

x = 67.89

y = 67

Function and File Input/Output
void ReadandWrite(ifstream _____inp, ofstream _____out, string food, int price);

int main(){

ifstream inFile;

ofstream outFile;

string inputFile, product;

int prices;

cout << "Enter the file name: ";

cin >> inputFile;

cout << endl;

inFile.open(inputFile___________);

outFile.open("price_output.out");

ReadandWrite(inFile, outFile, product, prices);

inFile.close();

outFile.close();

return 0;

}

• If the file name is input by the user,

• Use “___________” to open the file

• When passing ________________
and ________________ datatype to
a function, they must be

Function and File Input/Output
void ReadandWrite(ifstream _____inp, ofstream _____out, string food, int price){

inp >> food >> price;

while(_____){

out << "The price of " << food << " is $" << price << "." << endl;

inp >> food >> price;

}

}

// While inp is ________ (i.e. still ___________from the file)

• Input file
burger 15

fries 11

ice-cream

coke

Steak

9

7

100

• Output file
The price of burger is $15.

The price of fries is $11.

The price of ice-cream is $9.

The price of coke is $7.

The price of steak is $100.

