
Chapter 6: Pointers

Mr. Horence Chan

CIS 129
Advanced Computer Programming

Variables and Memory

• When you declare a variable, the computer associates the variable
name with a particular location in memory and stores a value there.

• When you refer to the variable by name in your code, the computer
must take two steps:

1. Look up the ___________ that the variable name corresponds to

2. Go to that location in memory and retrieve or set the ___________
it contains

…
100
Olá!
…

Address in hex

456FD4

456FD0

a

b

variable value

Variables and Memory

• C++ allows us to perform either one of these steps independently on
a variable with the & and * operators:

1. ________ evaluates to the address of x in memory.

2. *(&x) takes the address of x and dereferences it – it retrieves the
value at that ___________ in memory. *(&x) thus evaluates to the
same thing as x.

…
100
Olá!
…

Address in hex

456FD4

456FD0

a

b

variable value

Motivating Pointers

• Memory addresses, or pointers, allow us to manipulate data much
more flexibly; manipulating the memory addresses of data can be
more efficient than manipulating the data itself. Just a taste of what
we’ll be able to do with pointers:
• More flexible pass-by-reference

• Manipulate complex data structures efficiently, even if their data is scattered
in different memory locations

• Use polymorphism – calling functions on data without knowing exactly what
kind of data it is

Declaring Pointers

• To declare a pointer variable named ptr that points to an integer variable
named x:

• int *ptr = &x;

• int *ptr declares the pointer to an integer value, which we are
initializing to the address of x.

• We can have pointers to values of any type. The general scheme for
declaring pointers is:

• data_type *pointer_name; // Add "= initial_value "
// if applicable

• pointer_name is then a variable of type data type * – a “pointer to a
data type value.”

Using Pointer Values

• Once a pointer is declared, we can dereference it with the * operator to
access its value:

• cout << *ptr; // Prints the value pointed to by ptr,

// which in the above example would be
//x’s value

• We can use deferenced pointers as values:

• *ptr = 5; // Sets the value of x

• Without the * operator, the identifier x refers to the pointer itself, not the
value it points to:

• cout << ptr; // Outputs the memory address of x
// in base 16

Using Pointer Values

#include <iostream>

using namespace std;

int main(){

int b = 2;

int *pointer = &b;

cout << "Value of b: " << b << endl;

cout << "Address of b: " << &b << endl;

cout << "Value of pointer：" << pointer << endl;

cout << "Address of pointer：" << &pointer << endl;

cout << "Value of *pointer：" << *pointer << endl;

return 0;}

Sample Output:

…
2

7ffe1c7b2f5c
…

Address in hex

7ffe1c7b2f5c

7ffe1c7b2f60

b

pointer

variable value

Value of b:

Address of b:

Value of pointer：

Address of pointer：

Value of *pointer：

Using Pointer Values

#include <iostream>

using namespace std;

int main(){

int b = 2;

int *pointer = &b;

*pointer = 100;

cout << "Value of b: " << b << endl;

cout << "Address of b: " << &b << endl;

cout << "Value of pointer：" << pointer << endl;

cout << "Address of pointer：" << &pointer << endl;

cout << "Value of *pointer：" << *pointer << endl;

return 0;}

Sample Output:

…
100

7ffe1c7b2f5c
…

Address in hex

7ffe1c7b2f5c

7ffe1c7b2f60

b

pointer

variable value

Value of b:

Address of b:

Value of pointer：

Address of pointer：

Value of *pointer：

Using Pointer Values

• Just like any other data type, we can pass pointers as arguments to
functions. The same way we’d say void func(int x) {...}, we can
say void func(int *x){...}.

…

void squareByPtr (int * numPtr) {

*numPtr = * numPtr * * numPtr ;

}

int main () {

int x = 5;

squareByPtr (&x);

cout << x; // Prints 25

}

(* : Multiply operator)

• Pointer need to initialize by assigning it a valid _________, pointer cannot
declared without initialization

• Pointer can be initialize to _____ or NULL, pointer need to assign to a valid
address afterwards, if not dereferencing that pointer will cause error.

int *ptr = 55;

int a;

ptr = &a;

int *ptr = 0;

int a;

ptr = &a;

*ptr =55;

Null and uninitialized pointers

int *ptr;

*ptr =55;

int a;

int *ptr =&a;

*ptr =55;

References

• When we write void f(int &x) {...} and call f(y), the
reference variable x becomes another name – an alias – for the value
of y in memory.

• We can declare a reference variable locally, as well:

int y = 10;

int &x = y; // Makes x a reference to, or alias of, y

• After these declarations, changing x will change y and vice versa,
because they are two names for the _______________.

…
10
…

Address in hex

7ffe1c7b2f5cy , x

variable value

References

• References are just pointers that are dereferenced every time they
are used. Just like pointers, you can pass them around, return them,
set other references to them, etc.

• The differences between using pointers and using references are:
• When writing the value that you want to make a reference to, you do not put

an ______ before it to take its address, whereas you do need to do this for
pointers.

Reference Pointer

int y = 10;

int& x = &y;

int y = 10;

int& x = y;

int a;

int *ptr =&a;

References

• The differences between using pointers and using references are:
• You __________ change the location to which a reference points, whereas

you __________ change the location to which a pointer points. Because of
this, references must always be initialized when they are declared.

Reference Pointer

int y = 10;

int z = 20;

int& x = y;

& x = z;

int y = 10

int z = 20;

int * x = &y;

x = &z;

* operator

1. When ____________ a pointer, * is placed before the variable
name to indicate that the variable being declared is a pointer – say,
a pointer to an int or char, not an int or char value.

(e.g. int * pointer = &b;)

2. When using a pointer that has been set to point to some value, * is
placed before the pointer name to ____________ it – to access or
set the value it points to.
(e.g. *pointer = 100;

cout<< *pointer;)

& operator

1. To indicate a __________ data type

(e.g. int &x = y;)

2. To take the ___________ of a variable

(e.g. int *ptr = &x;)

Pointers and Arrays

long arr[] = {6, 0, 9, 5};

long *ptr = arr; //Point to ________ element of

array

cout << "arr[0] = " << *ptr<< endl;

ptr++;

cout << "arr[1] = " << *ptr<< endl;

long *ptr2 = arr + 3; // Point to _____ element

of array

cout << "arr[3] = " << *ptr2<< endl;

cout<< "No. of array element between ptr2 and

ptr: "<<(ptr2-ptr);

• The name of an array is actually a pointer to
the _________ element in the array.

Output:

arr[0] = _____

• Writing myArray[3] tells the compiler to
return the element that is 3 away from the
starting element of myArray.

Output:

arr[3] = _____

Pointer Step Size

long arr[] = {6, 0, 9, 5};

long *ptr = arr; //Point to ________ element of

array

cout << "arr[0] = " << *ptr<< endl;

ptr++; //Point to ________ element of array

cout << "arr[1] = " << *ptr<< endl;

long *ptr2 = arr + 3; // Point to ________

element of array

cout << "arr[3] = " << *ptr2<< endl;

cout<< "No. of array element between ptr2 and

ptr: "<<(ptr2-ptr);

Complete Output:

arr[0] = _____

arr[1] = _____

arr[3] = _____

No. of array element between ptr2 and ptr:

Array Access Notations

long arr[] = {6, 0, 9, 5};

long *ptr = arr;

cout << "arr[0] = " << *ptr<< endl;

ptr++; cout << "arr[1] = " << *ptr<< endl;

long *ptr2 = arr + 3;

cout << "arr[3] = " << *ptr2<< endl;

cout << "arr[3] = " << arr[3]<< endl;

cout<< "No. of array element between ptr2 and

ptr: "<<(ptr2-ptr);

• Array-subscript notation (the form arr3[3])can be
used with pointers as well as arrays.

• When used with pointers, it is referred to as pointer-
subscript notation.

• For instance, an alternate and functionally identical
way to express arr3[3] is _______________

• Output

arr[3] = _____

arr[3] = _____

char * Strings
char arr[] = { 'A', 'n', ' ', 'Y', 'e', 'o' , 'n' , 'g'};

char* ptr = arr + 3;

*ptr = 'D';

ptr++;

*ptr = 'w';

ptr++;

*ptr = 'a';

ptr++;

*ptr = 'e';

ptr++;

*ptr = '!';

ptr = arr;

for (int i = 0; i < 8; i++) {

cout << *ptr;

ptr++;}

• For simplicity, we can also write arr[]
= ____________; in the beginning

• We can modify the contents of an array of
characters.

• Attempting to modify one of the
elements each time in arr[] is
permitted

Output:

Array size

#include <iostream>

using namespace std;

int main() {

int arr[] = {10, 20, 30, 40, 50};

int arrSize = *(&arr + 1) - arr;

cout << "The length of the array is: "

<< arrSize;

return 0;

}

• Since we have a pointer at the start of the array

• The ________ of the​ array can be calculated if we manage
to find out the address where the array ________.

• &arr is a pointer to an __________ array, if we move
&arr by 1 position it will point the next block of 5
elements (&arr + 1)

• *(&arr + 1) simply casts the above address to an
int *.

• Subtracting the address of the ________ of the array, from
the address of the ________ of the array,​ gives the
________ of the array.

• Output

• The length of the array is: _____

Array size

#include <iostream>

using namespace std;

int main() {

int arr[] = {10, 20, 30, 40, 50};

int arrSize = *(&arr + 1) - arr;

cout << "The length of the array is: "

<< arrSize;

return 0;

}

Dynamic Array

• Consider a regular array in C++,

int x[5]

• Once an array has been created, its ________ cannot be changed.

• It is allocated a predetermined amount of memory

• Dynamic array is different, its size is ______________ during program
runtime. Dynamic array elements occupy a contiguous block of
memory

• Dynamic array grows its memory size by a certain factor when there is
a need

new and delete

• _________ a dynamic array using the new keyword.

• pointer_variable = new data_type;

• E.g. int *arr = new int[n];

• (n: size of array)

• Dynamic array should be _________ from the computer memory once its
purpose is fulfilled

• The released memory space can then be used to hold another set of data

• delete [] arr;

Dynamic Array
#include<iostream>

using namespace std;

int main() {

int x, n;

cout << "How many numbers will you type?" << "\n";

cin >> n;

cout << "Enter " << n << " numbers" << endl;

for (x = 0; x < n; x++) {

cin >> arr[x];

}

cout << "You typed: ";

for (x = 0; x < n; x++) {

cout << " " << arr[x];

}

cout << endl;

return 0;

}

• Create a dynamic array according to the size
input by the user

• Delete dynamic array from the computer
memory

