CIS129
Advanced Computer Programming

Chapter 9: Introduction to Object-Oriented Programming (OOP)

Mr. Horence Chan

The Basic Ideas of OOP

* Object-Oriented Programming (OOP) is about creating objects that
contain both data and functions.

* For example:

TSI obiect oriented Programming

Fruit Apple, Size, How to plant
Orange, Color How to eat 5 ComeName
Mango :

Student Peter Parker, Age, Do assignment, -

Walk
sendEmail

Mary Jane Program, Attend class,
Grade Sleep

The Basic Ideas of OOP

* OOP provides a clear structure for
the programs

* OOP helps to keep the C++ code
DRY (Don't Repeat Yourself), and
makes the code easier to
maintain, modify and debug

* OOP makes it possible to create
full reusable applications with less
code and shorter development
time

& >
k3
»
N
. —— e

[IETN € g CHETALUTHIEL]

Features of OOP

e Encapsulation: grouping related data and
functions together as objects and defining
an interface to those objects

* Inheritance: allowing code to be reused
between related types

* Polymorphism: allowing a value to be one
of several types, and determining at runtime
which functions to call on it based on its

type

-
Abstraction

; Encapsulation ~*

-

Information B
" Hiding;-

»

ModUlaritX

-~

Polymorphism

»”

a
.".",?‘y

.. 3 M*\p
= Al pl

. Object\-\,.\- |
/ Orientationgs

Encapsulation

* The purpose of encapsulation is to make sure that "sensitive" data is
hidden from users.

* To achieve this, we must declare class variables/attributes as
(cannot be accessed from outside the class).

* If we want others to read or modify the value of a private member, we
can provide get and set methods.

Encapsulation

* Analogy:

* A lecturer from the school of computer science wants to know his/her
student grade in the English class.

* The lecturer is not allowed to directly access student grade in English
class.

* Instead, the lecturer need to contact colleagues in the school of
humanity and language and then request them to give the student
grade records.

Encapsulation

#include <iostream> * For example, salary of an employee is a
using namespace std; sensitive data in a company.
class Employee { * It is not recommended to modified the salary

of an employee by simply Emp1l.salary =

public:
25000; inthe main function.

int salary;

! * We should not set the attributes (salary) to

int main () {

Output:

Employee Empl;
Employee 1 monthly salary: $25000

Empl.salary = 25000;
cout << "Employee 1 monthly salary: S"
<< Empl.salary;

return 0O;

Encapsulation

finclude <iostream> e We should create a class to set the attributes
uslng namespace std; (salary) to , which have
class Employee { restricted access.
private: * Then create some public functions/methods
int salary; that can get and set some attributes.
public: * The public setSalary () method takes a
parameter (s) and assigns it to the salary

vold setSalary(int s)
salary = s;

}

int getSalary () {

return salary;

J

attribute.

* The publicgetSalary () method returns
the value of the private salary attribute.

} s

Encapsulation

int main () {
EFmployee Empl;

Empl. (25000) ;
cout << "Employee 1 monthly salary: $"
<< Empl. ()7
return O;
}
* Insidemain (), we create an object of the ¢ Next we call the getSalary () method on
Employee class. (Emp1l) the object to return the value.
* Then we can use the setSalary () Output:

method to set the value of the private

Empl 1 thli lary: $25000
attribute to 25000. mployee 1 monthly salary: $

Encapsulation

* It is considered good practice to declare

your class attributes as (as Infﬂl’mallﬂn Security

often as you can).

* Encapsulation ensures better control of
your data, because you (or others) can
change one part of the code without
affecting other parts

* Increased security of data

o4 ; = i
What my boss thinks I do What IT managers think | do What | actually do

Animals

Inheritance

eat()
* In C++, it is possible to inherit attributes and

methods from one class to another. We group the
"inheritance concept" into two categories:

. class (child): the class that inherits
from another class

. class (parent): the class being
inherited from

* To inherit from a class, use the

symbol.

Inheritance

class Drink/{ string Name
public:
string Name;
int price; int price
i
class Tea: public Drink({
public:

string topping;

void tea msg()
cout << "Enjoy your tea!" <<endl; } Coffee
b
class Coffee: public Drink({
public:
void coffee msg() {
cout << "Enjoy your coffeel!l™
<< endl; }

Y

Inheritance

class Drink/{ e Class Drinkis a ClaSS,

Publicf the code in the based class can be
string Name; used by the derived class

int price;

} s * Class Tea and Coffee are
class Tea: public Drink| class, they can use the
public: code from Drink
String topping; e “:” is used to show that class Tea and
vold tea msg() | coffee are inherit from class Drink
cout << "Enjoy your teal!" <<endl; } .
. Code within a class can
class Coffee: public Drink{ be used by that derived class only, the
public: code can’t used by the based class or
void coffee msg() { another class

cout << "Enjoy your coffee!"
<< endl; }

b

Inheritance

int main () { * productl is an object of Tea
fea productl; * To use the attribute of Drink, simply
productl.Name = "Milk Tea"; type productl .Name,
productl.price = 25; productl.price, etc
productl.topping = "Bubble"; e Since product?2 is not an object of
cout << productl.topping << " " Tea, product?2 can’t use the
<< productl.Name << ": $" attribute

<< productl.price << endl;

productl.tea msqg();

Coffee product?; OUtpUt:

product2.Name = "Mocha"; Bubble Milk Tea: $25

product?2.price = 30; c . |
cout<< product2.Name<<": S$" nJOy YOUF tea!

<< productZ2.price << endl; MOCha: S3O
product2.coffee msg(); Enjoy your coffee!

return 0;}

Multilevel Inheritance

#include <iostream>
using namespace std;
class Drink/{

public:

void msg () |

cout << "Enjoy your drink!" <<endl; }};

class Coffee: public Drink({
I
class Latte: public Coffee{
I

int main () {
Latte productl;
productl.msg () ;

return 0;

* A class can also be derived from one
class, which is already
from another class.

* For example, Latte is derived from
class Cof fee (which is derived from
Drink).

Output:
Enjoy your drink!

Coffee MilkTea

Multiple Inheritance

class MilkTea{ coffee() milktea()
public:
void milktea () {
cout << " Milk Tea"; }};
class Coffee{
public: YuenYeung

void coffee () {

cout << " Coffee";}};

class YuenYeung: public MilkTea, public Coffee {

b

int main () {

e A class can also be derived from more
than one , using a comma (,)

YuenYeung productl;

* For example, class Yuenyeung is

cout << "YuenYeung 1is";

Suetl . coffes) derived from class Mi1lkTea and P ey l/ \4
productl.coffee(); C rewed coffee
offee
productl.milktea () ; » @ =
Output:

return 0;

} Yuenyeung is Coffee Milk Tea &

Access Specifiers: Protected

* Protected: Members cannot be accessed from
outside the class, however, they can be accessed in

classes.
* Private: Members cannot be accessed from outside | '5;‘3“,?,2,"%&";%
the class, including classes. membeff“"c“o"s '
T T T
Public
Private Yes

Protected Yes

Inheritance: “Protected” Access Specifiers

class Employee {

int salary; * Class Clerk can access
. attribute
class Clerk: public Employee { (Salary) in CIaSS Employee
public: through functions
void setSalary(int s) {salary = s;} SetSalary () and
int getSalary () {return salary;} getsalary ()
b
int main() {
Clerk clerkl; Output
clerkl.setSalary (18000);
cout << "Salary of Clerk 1: " Salary Of Clerk 1: 18000

<< clerkl.getSalary () << endl;

return 0;

Inheritance: Overriding

class Drink({

public: * In class drink, function msg ()
void { contains an output statement
cout << "Enjoy your drink!" <<endl; 1}}; o |f we WOUld I|ke to Change msqg ()
class Tea: public Drink{ output statement for a certain derived
public: class, rewrite the code in the function
void msg () { inside a derived class.

cout << "Enjoy your tea!" <<endl; } . .
e Polymorphism reuse attributes and

methods of an existing class when you
create a new class.

I
class Coffee: public Drink{
I
int main () {
Tea productl; Output:
productl.msg () ;
Coffee product?;
product?2. ;

return 0;}

Polymorphism

* Polymorphism means "many forms",
and it occurs when we have many

classes that are related to each Polymorphism

other by inheritance.

* Inheritance lets us inherit attributes
and methods from another class.

* Polymorphism uses those methods
to perform different tasks.

* This allows us to perform a single
action in different ways.

Polymorphism: Virtual Function

class Drink f e A virtual function is a member
public: function which is declared
virtual void msg () { . 4
within a class

cout << "Enjoy your drink!\n";}

}; * It is re-defined (Overridden) by a
class Tea : public Drink { deriVEd CIaSS.
pubtie: | | * To re-defined a virtual function
virtual void msg () override { . .
cout << "Enioy your te NPl in derived class, we need to
. write “ g

When | override my

: 11 Drink
class Coffee public Drink { parent'smethods

public:
virtual void msg () override {
cout << "Enjoy your coffee!\n";}
i

class Unknown : public Drink {

b

B Are you really in charge here?

Polymorphism: Virtual Function

int main() {

Drink * drink;

Tea toa: * To call a virtual function for that
Coffee coffee; ObjECt and execute the derived
Unknown u; class’s version of the function

 We need to refer to a derived
class object using a

drink = & tea;

drink -> msg () ;

or a to the base
drink = scoffee; class
drink -> msg(); Selecting the correct function at
| runtime is called dynamic
ek s e dispatch

drink -> msg() ;

return 0;

Polymorphism: Virtual Function

int main() {
Drink * drink;
Tea tea;
Coffee coffee;

Unknown u;

drink = & tea;

drink -> msg/();

drink = &coffee;

drink -> msqg () :;

drink = & u;
drink -> msg() ;

return 0;

* To call the virtual function, we
declared a * drink in
base class

* Then we reference the derived class
object (e.g. drink = & tea;)

* drink -> msg () ; isusedto
dereferences and gets a member.

Output:

Enjoy your tea!
Enjoy your Coffee!
Enjoy your drink!

Polymorphism: Pure Virtual Function

class Drink {

public:
lrtual 1d () = 0y . .

T * A pure virtual function (or
Class Tea : public Drink | a!ostract func.:tlon) in C++is a
bublic: virtual function for which we

virtual void msq() override | don’t have an implementation

cout << "Enjoy your tea!\n";] we only declare it.

' * A pure virtual function is
class Coffee : public Drink { . . .
ubic: declared by assigning in

irtual void me | the declaration.

g() override {

cout << "Enjoy your coffee!\n";}
i
/*class Unknown : public Drink {

Y x/

Polymorphism: Pure Virtual Function

class Drink {

public:
lrtual 1d () = 0y . . .
y TR veRe TR e Virtual function msg () is
class Tea : public Drink { dEC|ared tO
public: e So it becomes a pure virtual
virtual void msg () override ({ function

cout << "Enjoy your tea!\n";}

. * This implies that we can no
class Coffee : public Drink | longer create an instance of
public: Drink

it e ki * We can only create instances of
t << "Enj ffee!\n";} . . .
o IR its derived classes which do

K implement the msg () method.

/*class Unknown : public Drink {

Y x/

Polymorphism: Pure Virtual Function

class Drink {

public:

virtual void msg() = 0;
i
class Tea : public Drink {
public:

virtual voil

cout << "Enjoy your tea!\n";}

Y
class Coffee
public:

virtual voil

cout << "Enjoy your coffee!\n";}

Y
/*class Unknown

Y x/

d msg() override {

: public Drink {

d msg() override {

: public Drink {

e Drinkis thenan
class : which defines only an
interface, but doesn’t actually
implement it, and therefore cannot
be instantiated.

* Note that class Unknown does not
have re-defined function,

 We can’t use this class, else
compilation error occur.

Polymorphism: Pure Virtual Function

int main() {

Drink * drink;

 Note that we cannot declare variable
‘u’ to be of abstract type ‘Unknown’

Tea tea;
Coffee coffee;

//Unknown u;

Output:

Enjoy your tea!

drink = & tea;
drink -> msg();

Enjoy your Coffee!
drink = &coffee;

drink -> msqg () ;

//drink = & u;
//drink -> msqg () ;

return 0;

