
Chapter 9: Introduction to Object-Oriented Programming (OOP)

Mr. Horence Chan

CIS129
Advanced Computer Programming

The Basic Ideas of OOP

• Object-Oriented Programming (OOP) is about creating objects that
contain both data and functions.

• For example:

Class Object Attribute Methods

Fruit Apple,
Orange,
Mango

Size,
Color

How to plant
How to eat

Student Peter Parker,
Mary Jane

Age,
Program,
Grade

Do assignment,
Attend class,
Sleep

The Basic Ideas of OOP

• OOP provides a clear structure for
the programs

• OOP helps to keep the C++ code
DRY (Don't Repeat Yourself), and
makes the code easier to
maintain, modify and debug

• OOP makes it possible to create
full reusable applications with less
code and shorter development
time

Features of OOP

• Encapsulation: grouping related data and
functions together as objects and defining
an interface to those objects

• Inheritance: allowing code to be reused
between related types

• Polymorphism: allowing a value to be one
of several types, and determining at runtime
which functions to call on it based on its
type

Encapsulation

• The purpose of encapsulation is to make sure that "sensitive" data is
hidden from users.

• To achieve this, we must declare class variables/attributes as
____________ (cannot be accessed from outside the class).

• If we want others to read or modify the value of a private member, we
can provide ____________ get and set methods.

Encapsulation

• Analogy:

• A lecturer from the school of computer science wants to know his/her
student grade in the English class.

• The lecturer is not allowed to directly access student grade in English
class.

• Instead, the lecturer need to contact colleagues in the school of
humanity and language and then request them to give the student
grade records.

Encapsulation

#include <iostream>

using namespace std;

class Employee {

public:

int salary;

};

int main() {

Employee Emp1;

Emp1.salary = 25000;

cout << "Employee 1 monthly salary: $"

<< Emp1.salary;

return 0;

}

• For example, salary of an employee is a
sensitive data in a company.

• It is not recommended to modified the salary
of an employee by simply Emp1.salary =
25000; in the main function.

• We should not set the attributes (salary) to
_____________.

Output:

Employee 1 monthly salary: $25000

Encapsulation

#include <iostream>

using namespace std;

class Employee {

private:

int salary;

public:

void setSalary(int s) {

salary = s;

}

int getSalary() {

return salary;

}

};

• We should create a class to set the attributes
(salary) to ___________, which have
restricted access.

• Then create some public functions/methods
that can get and set some attributes.

• The public setSalary() method takes a
parameter (s) and assigns it to the salary
attribute.

• The public getSalary() method returns
the value of the private salary attribute.

Encapsulation
int main() {

Employee Emp1;

Emp1._____________(25000);

cout << "Employee 1 monthly salary: $"

<< Emp1._____________();

return 0;

}

• Next we call the getSalary() method on
the object to return the value.

Output:

Employee 1 monthly salary: $25000

• Inside main(), we create an object of the
Employee class. (Emp1)

• Then we can use the setSalary()
method to set the value of the private
attribute to 25000.

Encapsulation

• It is considered good practice to declare
your class attributes as __________ (as
often as you can).

• Encapsulation ensures better control of
your data, because you (or others) can
change one part of the code without
affecting other parts

• Increased security of data

Inheritance

• In C++, it is possible to inherit attributes and
methods from one class to another. We group the
"inheritance concept" into two categories:

• ___________ class (child): the class that inherits
from another class

• ___________ class (parent): the class being
inherited from

• To inherit from a class, use the

_____ symbol.

Animals

eat()

sleep()

Dog

bark()

Cat

meow()

Inheritance
class Drink{

public:

string Name;

int price;

};

class Tea: public Drink{

public:

string topping;

void tea_msg() {

cout << "Enjoy your tea!" <<endl; }

};

class Coffee: public Drink{

public:

void coffee_msg() {

cout << "Enjoy your coffee!"

<< endl; }

};

Drink

string Name

int price

Tea Coffee

Inheritance
class Drink{

public:

string Name;

int price;

};

class Tea: public Drink{

public:

string topping;

void tea_msg() {

cout << "Enjoy your tea!" <<endl; }

};

class Coffee: public Drink{

public:

void coffee_msg() {

cout << "Enjoy your coffee!"

<< endl; }

};

• Class Drink is a __________ class,
the code in the based class can be
used by the derived class

• Class Tea and Coffee are
__________ class, they can use the
code from Drink

• “:” is used to show that class Tea and
coffee are inherit from class Drink

• Code within a __________ class can
be used by that derived class only, the
code can’t used by the based class or
another class

Inheritance

int main(){

Tea product1;

product1.Name = "Milk Tea";

product1.price = 25;

product1.topping = "Bubble";

cout << product1.topping << " "

<< product1.Name << ": $"

<< product1.price << endl;

product1.tea_msg();

Coffee product2;

product2.Name = "Mocha";

product2.price = 30;

cout<< product2.Name<<": $"

<< product2.price << endl;

product2.coffee_msg();

return 0;}

• product1 is an object of Tea

• To use the attribute of Drink, simply
type product1.Name,
product1.price, etc

• Since product2 is not an object of
Tea, product2 can’t use the
attribute

Output:

Bubble Milk Tea: $25

Enjoy your tea!

Mocha: $30

Enjoy your coffee!

Multilevel Inheritance
#include <iostream>

using namespace std;

class Drink{

public:

void msg() {

cout << "Enjoy your drink!" <<endl; }};

class Coffee: public Drink{

};

class Latte: public Coffee{

};

int main(){

Latte product1;

product1.msg();

return 0;

}

• A class can also be derived from one
class, which is already __________
from another class.

• For example, Latte is derived from
class Coffee (which is derived from
Drink).

Output:

Enjoy your drink!

Drink

msg()

Coffee

Latte

Multiple Inheritance
class MilkTea{

public:

void milktea() {

cout << " Milk Tea"; }};

class Coffee{

public:

void coffee() {

cout << " Coffee";}};

class YuenYeung: public MilkTea, public Coffee {

};

int main(){

YuenYeung product1;

cout << "YuenYeung is";

product1.coffee();

product1.milktea();

return 0;

}

• A class can also be derived from more
than one ________, using a comma (,)

• For example, class Yuenyeung is
derived from class MilkTea and
Coffee

Output:

Yuenyeung is Coffee Milk Tea

MilkTea

milktea()

YuenYeung

Coffee

coffee()

YuenYeung

Access Specifiers: Protected

• Protected: Members cannot be accessed from
outside the class, however, they can be accessed in
____________ classes.

• Private: Members cannot be accessed from outside
the class, including ____________ classes.

Specifiers Own Class Derived Class Main Function

Public Yes Yes Yes

Private Yes

Protected Yes

Inheritance: “Protected” Access Specifiers

class Employee {

int salary;

};

class Clerk: public Employee {

public:

void setSalary(int s) {salary = s;}

int getSalary() {return salary;}

};

int main() {

Clerk clerk1;

clerk1.setSalary(18000);

cout << "Salary of Clerk 1: "

<< clerk1.getSalary() << endl;

return 0;

}

• Class Clerk can access
______________ attribute
(salary) in class Employee
through functions
setSalary() and
getSalary()

Output

Salary of Clerk 1: 18000

Inheritance: Overriding
class Drink{

public:

void msg() {

cout << "Enjoy your drink!" <<endl; }};

class Tea: public Drink{

public:

void msg() {

cout << "Enjoy your tea!" <<endl; }

};

class Coffee: public Drink{

};

int main(){

Tea product1;

product1.msg();

Coffee product2;

product2.msg();

return 0;}

• In class drink, function msg()
contains an output statement

• If we would like to change msg()
output statement for a certain derived
class, rewrite the code in the function
inside a derived class.

• Polymorphism reuse attributes and
methods of an existing class when you
create a new class.

Output:

Polymorphism

• Polymorphism means "many forms",
and it occurs when we have many
classes that are related to each
other by inheritance.

• Inheritance lets us inherit attributes
and methods from another class.

• Polymorphism uses those methods
to perform different tasks.

• This allows us to perform a single
action in different ways.

Polymorphism: Virtual Function
class Drink {

public:

virtual void msg() {

cout << "Enjoy your drink!\n";}

};

class Tea : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your tea!\n";}

};

class Coffee : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your coffee!\n";}

};

class Unknown : public Drink {

};

• A virtual function is a member
function which is declared
within a _______ class

• It is re-defined (Overridden) by a
derived class.

• To re-defined a virtual function
in derived class, we need to
write “_________”

Polymorphism: Virtual Function

int main() {

Drink * drink;

Tea tea;

Coffee coffee;

Unknown u;

drink = & tea;

drink -> msg();

drink = &coffee;

drink -> msg();

drink = & u;

drink -> msg();

return 0;

}

• To call a virtual function for that
object and execute the derived
class’s version of the function

• We need to refer to a derived
class object using a __________
or a __________ to the base
class

• Selecting the correct function at
runtime is called dynamic
dispatch

Polymorphism: Virtual Function

int main() {

Drink * drink;

Tea tea;

Coffee coffee;

Unknown u;

drink = & tea;

drink -> msg();

drink = &coffee;

drink -> msg();

drink = & u;

drink -> msg();

return 0;

}

• To call the virtual function, we
declared a __________ * drink in
base class

• Then we reference the derived class
object (e.g. drink = & tea;)

• drink -> msg(); is used to
dereferences and gets a member.

Output:

Enjoy your tea!

Enjoy your Coffee!

Enjoy your drink!

Polymorphism: Pure Virtual Function
class Drink {

public:

virtual void msg() = 0;

};

class Tea : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your tea!\n";}

};

class Coffee : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your coffee!\n";}

};

/*class Unknown : public Drink {

};*/

• A pure virtual function (or
abstract function) in C++ is a
virtual function for which we
don’t have an implementation
we only declare it.

• A pure virtual function is
declared by assigning _____ in
the declaration.

Polymorphism: Pure Virtual Function
class Drink {

public:

virtual void msg() = 0;

};

class Tea : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your tea!\n";}

};

class Coffee : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your coffee!\n";}

};

/*class Unknown : public Drink {

};*/

• Virtual function msg() is
declared to _____.

• So it becomes a pure virtual
function

• This implies that we can no
longer create an instance of
Drink

• We can only create instances of
its derived classes which do
implement the msg() method.

Polymorphism: Pure Virtual Function
class Drink {

public:

virtual void msg() = 0;

};

class Tea : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your tea!\n";}

};

class Coffee : public Drink {

public:

virtual void msg() override {

cout << "Enjoy your coffee!\n";}

};

/*class Unknown : public Drink {

};*/

• Drink is then an __________
class : which defines only an
interface, but doesn’t actually
implement it, and therefore cannot
be instantiated.

• Note that class Unknown does not
have re-defined function,

• We can’t use this class, else
compilation error occur.

Polymorphism: Pure Virtual Function

int main() {

Drink * drink;

Tea tea;

Coffee coffee;

//Unknown u;

drink = & tea;

drink -> msg();

drink = &coffee;

drink -> msg();

//drink = & u;

//drink -> msg();

return 0;

}

• Note that we cannot declare variable
‘u’ to be of abstract type ‘Unknown’

Output:

Enjoy your tea!

Enjoy your Coffee!

