CIS 129
Advanced Computer Programming

Chapter 10

Mr. Horence Chan

Enumeration

 Enumerations (enum) is a set of named integer values

* To define an enumeration type, you need the following items:
* A name for the data type
* A set of values for the data type
* A set of operations on the values

* The syntax for enumeration is:

* Enum typeName {valuel, valueZ, ..};

Enumeration

*E.g.enum Day {Sun, Mon, Tue, Wed, Thu, Fri, Sat};
* Day is the name for the data type

 Sun, Mon, Tue, Wed, Thu, Fri, Sat are enumeration values
(enumerators), all of them are

* Without specification, the first value is , and the next one is
increment by

* i.e. Sun=0, Mon=1, Tue= , .., Sat=

Enumeration

* We can specify the values of some enumerators if necessary, those without
specification will increment by based on previous value

*E.g.enum Day {Sun=7, Mon=1, Tue, Wed, Thu, Fri, Sat};
e Values of each enumeration are:
e Sun=7, Mon=1, Tue= , Wed=

Declaring Variables

#include <iostream> e In this example:

using namespace std;

* Defines an enumeration type

enum fruit {apple=10, orange=20, grape=50}; |/C3”€d frUIt

int main () {

fruit quantity; * Declares quantity to be variables
quantity = orange; of type fruit.

cout <<"The quantity of oranges is "

e quantity isalso call

tit dl; i '
<< quantity << en enumeration object

return 0O;

}

Enumeration Assignment

#include <iostream> * Once a variable is declared, we
using namespace std; can store values in it

int main () {

cnum fruit (apple=10, orange-20, grape—so}; - Storésorangein quantity

frult quantity;

quantity = orange;

Output:
The quantity of orange is

cout <<"The quantity of oranges is "

<< quantity << endl;

return 0O;

}

Operations on Enumeration Types

#include <iostream> e No operations are
using namespace std; allowed on enumeration

int main () {

* Increment and decrement
operations are not allowed to
enumeration types

enum fruit {apple=10, orange=20, grape=50};
fruit quantity;

quantity = orange;

quantity = quantity * 2;
quantity = apple + orange;

quantity++;

return 0;

}

Operations on Enumeration Types

#include <iostream> ° operator is used for
using namespace std; operation

int main () {

enum fruit {apple=10, orange=20, grape=50};
fruit quantity, remain; OUtpUt:

quantity = orange;

The number of oranges remain
today is

remain = static cast<fruit>(orange - 15);

cout << "The number of oranges remailn today 1s

<< remain << endl;

return 0O;

}

Relation Operations

finclude <iostream> * Relation operations can be used on
using namespace std; enumeration

int main () {

enum fruit {apple=10, orange=20, grape=50};

fruit quantity apple, quantity orange; OUtpUt:
quantity apple = apple;

quantity orange = orange;

if (quantity apple > quantity orange) {

cout << "The quantity of apple is larger than orange.";
}

else {

cout << "The quantity of orange 1is larger than apple.";

}return 0;

}

Loops

#include <iostream>

using namespace std; OUtpUt:
int main () {

enum fruit {empty, apple, orange, grape};

fruit quantity, total quantity; Total Quantity of fruit:
total quantity = empty;

for (quantity = apple; gquantity <= grape; quantity = static cast<fruit>(quantity + 1))
{

total quantity = static cast<fruilt>(total quantity + quantity);

}
cout << "Total Quantity of fruit: " <<total quantity;

return 0;

}

Functions and Templates

* Functions can take arguments of specific types and have a specific
return type.

 Templates allow us to work with generic types.

* Through templates, rather than repeating function code for each new
type we wish to accommodate,

* We can create functions that are capable of using the same code for
different types.

Functions and Templates

* For example, this example calculate the sum of two integers
int sum(const i1nt x, const 1nt y) {
return x + y;
}
* To calculate the sum of “doubles”, it must be modified to the following:
double sum (const double x, const double y) {
return x + vy;

J

* Since copying the entire function for each new datatype can be
problematic.

* To overcome this we rewrite sum as a function template.

Templates

* The format for declaring a function template is:

template <class 1dentifier> function declaration;

or

template <typename identifier> function declaration;

* Both forms are equivalent to one another, regardless of what
datatype identifier ends up being.

* We can then use identifier to replace all occurrences of the datatype
we wish to generalize.

Templates

* So, we rewrite our sum function:

template <typename T> T sum(const T a, const T b) {

return a + b;

J

* Now, when sum is called, it is called with a particular datatype, which will
replace all Ts in the code. To invoke a function template, we use:

function name <type> (parameters);

Templates

* In the main function:
int main () {
cout << sum<int>(1l, 2) << endl;
cout << sum<float>(1.21, 2.43) << endl;

return 0;

J

* This program prints out 3 and 3. 64 on separate lines.

* The identifier can be used in any way inside the function template, as
long as the code makes sense after identifier is replaced with some
datatype.

Templates

* Itis also possible to invoke a function template without giving an explicit type, in
cases where the generic tyﬁe identifier is used as the type for a parameter for the
function. In this example, the following would also have been valid:

int main () {

cout << sum(l, 2) << endl;

cout << sum(1l.21, 2.43) << endl;
return O;

}

How about
cout << sum(l, 2.43) << endl; // ok or error ?
cout << sum<float>(1l, 2.43) << endl; // ok or error ?

Templates

* Templates can also specify more than one type parameter. For example:
#include <iostream>

using namespace std;

template <typename T, typename U>

U sum(const T a, const U b) {
return a + b;

}

int main () |
cout << sum<int, float>(1l, 2.5) << endl;
return O;

}
Output:

Standard Template Library

* Part of the C++ Standard Library, the Standard Template Library (STL)
contains many useful container classes and algorithms.

* As you might imagine, these various parts of the library are written
using templates and so are generic in type.

* The containers found in the STL are lists, maps, queues, sets, stacks,
and vectors.

* The algorithms include sequence operations, sorts, searches, merges,
heap operations, and min/max operations.

Standard Template Library

#include <iostream>

#include <set>

#include <algorithm>

using namespace std;

int main() {
set<int> iset;
iset.insert (5);
iset.insert (9) ;
iset.insert (1) ;
iset.insert (8) ;
iset.insert (3);
cout << "iset contains:";
set<int>::iterator 1it;
for(it=iset.begin(); it != iset.end(); it++)

{cout << " " << *it;}

cout << endl;

In this example, we create an integer set and
insert several integers into it.

We then create an iterator corresponding to
the set (set<int>::iterator 1it;)

An iterator is basically a that
provides a view of the set. (Most of the
other containers also provide iterators.)

By using this iterator, we display all the
elements in the set and print out :

1set contains:

Note that the set automatically its
own items.

Standard Template Library

int searchFor;
cin >> searchFor;
if (binary search(iset.begin(), iset.end(), searchFor))
cout << "Found " << searchFor << endl;
else
cout << "Did not find " << searchFor << endl;
return 0;

} * Next, we ask the user for an integer, search for

that integer in the set, and display the result.

Sample Output: (Two cases is show here)

Did not find 2

Found 3

Standard Template Library

#include <iostream>
#include <algorithm>
using namespace std;
void printArray(const int arr([], const int len) {
for(int 1=0; i < len; 1i++)
cout << " " << arr[i];
cout << endl;

}

int main () {
int al] = {5, 7, 2, 1, 4, 3, 6};
sort (a, a+t7);
printArray(a, 7);
rotate(a,a+3,a+7); OUtpUt:
printArray(a, 7); 1 2 3 4-5 6‘7
reverse (a, at’);
printArray(a, 7);

return 0;

Operator Overloading

* We can make operators to work for user defined classes.

* This means C++ has the ability to provide the operators with a special
meaning for a data type, this ability is known as operator overloading

* The list of overloadable operators:

+ - * / += —= * = = — ++ -
= == < > <= >= | | = & ‘
<< >> <<= >>= & ~ | 5= = = ~

Operator Overloading

class Sum {

private:
int X, Y;
public:
Sum(int x = 0, int y = 0) ({X = x; Y = v} * For example we Wan} to
calculate the sum of “2x + 3y”
Sum operator + (Sum &obj) { and ”9X+ 7yn
Sum total; * By using Sum operator +
total.X = X + obj.X; we can calculate the sum of the
Cotal.Y = Y + obs.Y: objects in class Sum.
return total;
}
void print () { cout << X << "x + " <K Y << "y" << endl; }

Y

int main () {

sum f1(2, 3), £2(9, 7); Output

f3.print (),

return 0;

Exceptions

* Sometimes functions encounter errors that
make it impossible to continue normally.

* To avoid the program terminate when an
error is encounter, we can throwing an

exception.

* We can specify how it should be handled
when an exception (error) occurs.
Jcatch(Exception){

* The program can when an . /400 BSERID
error is encounter.

Gotta catch ‘em all!

C++ Exception Handling

Exceptions...

Exceptions

#include <iostream>
using namespace std;
int main () {
try |
int age = 9;

if (age >= 12) {

cout << "Access granted - you are old enough.";

} else {

(1nt myNum)

cout << "Access denied - You must be at least 12 years old.\n";

cout << "Age is:

}

return 0;

{

" << myNum;

* In this example, the codes
inside catch are execute if
the age is smaller than 12

* ltuse throw (age) tocall
it

Output:

Access denied - You must be at
least 12 years old.

Age is: 9

Exceptions

double division (int a, int b)
if(b ==) |
throw "Division by zero
}
return (a/b);
}

int main () {

int x

|
ul
o
~

int y = 0;

double z = 0;

try {
z = division(x, Vy);
cout << z << endl;

} catch (const char* msqg)
cout << msg << endl;

}

return 0;

{

condition!";

{

* One of a common usage of exceptions is to
check if the divisor is zero.

* In this example, if the divisor (b) is zero, it
print out the msg, rather than output a error
message

Output

Division by zero condition!

try {

f 'Tld-'lg-.-'l'l_",h code

}catch(Exception éi“{}

do {
{ Dangerous code

twhile{youCan};

friend Functions/Classes

 Recall that private fields/methods of a class
be access outside the class

* If you want to allow a function that is not a
member of a given class to access the private
fields/methods of that class.

* We can specify that a given external function
gets full access rights by placing the signature of
the function inside the class, preceded by the
word friend.

A class having Biivate
and Protected'members

friend Functions/Classes

#include <iostream>
using namespace std;

e setWidth () isa member function

class Square {
double width; e printArea () is not a member function of
public: any class

friend void printArea(Square square);

* because printArea () is a friend of
Square, it can directly access
member of this class (Square)

volid setWidth (double wid) ;

b

volid Square::setWidth (double wid) {
width = wid;

}

void printArea(Square square) {

cout << "Area of square : "

<< square.width*square.width <<endl;

friend Functions/Classes

int main() {
Square square;

square.setWidth (10.0) ; // set box width with member function
printArea (square); // Use friend function to print the width.

return 0O; Output:

Area of square :

Preprocessor Macros

* Macros is a small snippets of code that

using namespace std;
depend on arguments. #include <iostream>
. . #define print cout
* Macros are like small functions that are int ;ain?)i e

not type-checked print "Hello World";

* They are implemented by simple textual ¥

substitution. I'm taking a c++ class and last

* Because they are not type-checked, year | took a python class. Yes,
they are considered less robust than this code works
functions.

Preprocessor Macros

#include <iostream>
#include <string>
#define sum(x, vy) (x + vy)
using namespace std;

int main () {
cout<<sum(1l, 2)<<endl;

cout<<sum(3.14,6.89)<<endl;

//cout<<sum("a", "b")<<endl;
return 0;

}

e For example , we can write:
e fdefine sum(x, V)

* Now, every time sum (a, b)
appears in the code, for any
arguments a and b, it will be
replaced with

(x + vy)

* Note that we can’t add string using

this macros
Output:
3
10.03

