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Recap of previous lecture
Classification and evaluation of classifiers

• Binary classification
• Confusion matrix
• Metrics:

Accuracy, Error
Sensitivity, Specificity
Precision, Recall

• Multi-class classification
by combining several binary classifiers

• One-versus-rest (OVR) strategy
• One-versus-one (OVO) strategy
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Probability and machine learning

• ML all about reducing our uncertainty.
• Good applications of ML account for uncertainty before and after applying ML.
• How to understand uncertainty?

PROBABILITY AND STATISTICS!
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Why is probability density estimation useful?

• For designing your ML method!
It’s a lot easier to classify data if you have the underlying distributions.

• Build up a probability distribution from previous instances.
• Understand how distributions from two or more classes overlap, to inform choice

of machine learning algorithm.

• Probability density ≈ probability distribution.
For variables that can vary continously, use a density to define more likely and
less likely regions where data samples might lie.
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Examples
Old Faithful Geyser,
Yellowstone National Park, Wyoming
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Important points for interpreting ML results

• The accuracy of a ML algorithm may change on new data.
• Unless you’ve tested your algorithm on an enormous dataset, your estimate of

the accuracy might itself not be that accurate!
• I have two classifiers, one got 86% accuracy, one got 90% accuracy, do I know for

sure which one is better?
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Overview

• Why a good understanding of probability is important in ML.

Probability theory
• Probability density functions
• Properties / parameters of probability distributions
• Multivariate probability distributions
• Uniform distribution and Gaussian distribution (aka normal distribution)
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Probability theory
X Random variable (r.v.)
x Outcome of X
X|Y = y Conditional r.v. for X given that Y = y
P(X = x) Probability that X = x (discrete variable)
p(x) Probability density (continuous variable)

p(x)

x
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Probability density functions
Very often encounter continuous variables in ML, and their distributions are given by:

Height (cm)

The function known as a
probability density function (pdf).

The higher the probability density at x and
around x, the more likely that the value of a
datapoint will be close to x.
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Probability density functions

Height (cm)

• Probability:
Area under the curve
P(173 ≤ X ≤ 175) =

∫ 175
173 p(x)dx

• Normalisation:
Area under whole curve must sum to 1
1 =

∫ ∞
−∞ p(x)dx
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Properties / parameters of distributions
• Distributions and pdfs are often described by parameters, commonly mean and

variance (or mean and standard deviation).
• The mean is the usual average, also known as the expected value E(X) or ⟨X⟩:

⟨X⟩ = ∑
x

xP(X = x) or
∫ ∞

−∞
xp(x)dx

• Compare this with the sample mean (= estimate of the distribution), written as x:

x =
1
n ∑

i
xi

For the probability distribution version, the sum of all the P’s is 1, so the
denominator is just 1.
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Properties / parameters of distributions
• Distributions and pdfs are often described by parameters, commonly mean and

variance (or mean and standard deviation).
• The mean is the usual average, also known as the expected value E(X) or ⟨X⟩:

⟨X⟩ = ∑
x

xP(X = x) or
∫ ∞

−∞
xp(x)dx

• The variance governs the spread of the data. It is given by the expected square of
the deviation from the mean:

Var(X) = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2

In other words, the mean value of the square of the distance from the mean.
• The standard deviation is the square root of the variance, and is similar to an

average distance from the mean.
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Properties / parameters of distributions
Mean ⟨X⟩, E(X), µ Variance Var(X), V(X), σ2

Discrete (distribution) ⟨X⟩ = ∑x xP(X = x) Var(X) = ∑x(x − ⟨X⟩)2P(X = x)

Continuous (pdf) ⟨X⟩ =
∫ ∞
−∞ xp(x)dx Var(X) =

∫ ∞
−∞(x − ⟨X⟩)2 p(x)dx

Sample x = 1
n ∑i xi Var = 1

n ∑i(xi − x)2

• Standard deviation: σX =
√

Var(X)

13 / 23



Example: Fair 6-sided dice

P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) = 1/6

• Mean:
⟨X⟩ = 1

6 (1 + 2 + 3 + 4 + 5 + 6) = 21
6 = 3.5

• Variance:
Var(X) = ⟨(X − ⟨X⟩)2⟩ = 1

6

(
( 5

2 )
2 + ( 3

2 )
2 + ( 1

2 )
2 + ( 1

2 )
2 + ( 3

2 )
2 + ( 5

2 )
2) = 35

12
• Standard deviation:

σX =
√

Var(X) ≈ 1.71

• C.f. mean distance from mean is 1.5
Standard deviation easier to work with mathematically than mean distance from
mean.
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Multivariate probability distributions
• By multivariate we mean multi-dimensional, i.e., 2 or more random variables.

Example density Example sample
• Multi-dimensional integral of probability density function to get probability a

sample will lie within a certain region.

• E.g., 2 variables:
P ((X, Y) in region) =

∫
(x,y)in region p(x, y)dxdy

• Or for discrete variables:
P ((X, Y) in region) = ∑(x,y)in region P(X = x, Y = y)
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Covariance and correlation
• Covariance:

Cov(X, Y) = ⟨(X − ⟨X⟩)(Y − ⟨Y⟩)⟩ =
∫
(x − ⟨X⟩)(y − ⟨Y⟩)p(x, y)dxdy

Example zero cov. Example positive cov.

• Correlation is a normalised covariance:

Corr(X, Y) =
⟨(X − ⟨X⟩)(Y − ⟨Y⟩)⟩

σXσY
− 1 ≤ Corr(X, Y) ≤ 1

• In sample, estimate it with:

Cov =
1
n ∑

i
(xi − x)(yi − y)
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Independence
• Two variables X and Y are independent if for each x and y:

p(x, y) = p(x)p(y) or equivalently p(x|y) = p(x)

• Independent variables have zero covariance (and correlation)
• But zero covariance (and correlation) does not imply independence!
• Both these examples have zero covariance (and correlation):

Independent Not independent
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Common distributions
• Here will meet the two most common distributions:

1. uniform
2. Gaussian, or normal

• Other distributions include binomial, multinomial, Poisson etc.
(You can look these up on Mathworld or Wikipedia.)

The uniform distribution has the same probability for each point. Thus probability is
governed by the range of the data R and pdf p(x) = 1/R, which equals 0.1 in the
example below:
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Gaussian distribution
• pdf:

p(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
• It is centred on µ and width (and height) are governed by σ2.

Height (cm)

• red has σ2 = 1 (σ = 1)
• blue has σ2 = 4 (σ = 2)
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Gaussian distribution

Wikipedia (CC-BY-SA 3.0)
• 68% chance of being within 1 sd of mean
• 95% chance of being within 2 sd of mean
• 99.7% chance of being with 3 sd of mean
• 99.99994% chance of being with 5 sd of mean
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Central limit theorem

Wikipedia (CC-BY-SA 3.0)

• The distribution of the sum (or the mean)
of n i.i.d. (independent identically
distributed) random variables becomes
increasingly Gaussian as n grows.

• Sum:

X =
n

∑
i=1

Ui

• Mean:

X =
1
n

n

∑
i=1

Ui

• Example: Rolling a fair dice n times.
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Multivariate Gaussian distribution
• Single normal random variable with mean µ and standard deviation σ:

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
(
− (x − µ)2

2σ2

)
• Single normal random variable with mean µ and covariance matrix Σ:

N (x|µ, Σ) =
1

(2π)D/2
1

|Σ|1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)

22 / 23



Summary and outlook
• Probability density functions:

1 =
∫ ∞
−∞ p(x)dx

• Properties / parameters of probability distributions:
mean, variance, standard deviation

• Multivariate probability distributions:
covariance, correlation, independence

• Uniform distribution and Gaussian distribution
(aka normal distribution):
central limit theorem

• Next lecture:
Bayes’ theorem, (non-)parametric probability
density estimation

p(x)

x
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