Week 4b:

Model selection

G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk

Recap: Regularised linear regression

minimise
$$\left\{ \mathcal{L}(y, \hat{f}(x; \mathbf{w})) + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w} \right\}$$

- Larger λ , higher regularisation: too large, we will not capture any useful trends in the data
- Smaller λ , lower regularisation: too small, our function will likely be too complex

More regularization tends to cause less overfitting.

Outline

At the end of this session, you should be able to:

- Understand what model selection is and why it is an essential part of machine learning
- Understand the decomposition of an error into bias and variance terms, and how model complexity can trade-off between them.
- Be able to explain how validation data can be used for model selection, and to choose regularisation hyper-parameters.

Model selection

- Model selection is the process of choosing an appropriate model, in terms of complexity and hyper-parameters,.
- For simple problems, like most we've considered so far, we can choose an appropriate level of complexity just by visual inspection.
- For high-dimensional regression problems, such as predicting variables associated with climate change, it can be less obvious.
- Can you think of a good guiding principle for model selection?

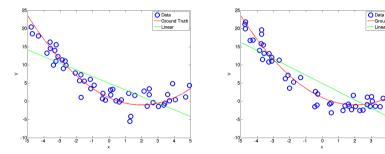
Occam's razor

Entities should not be multiplied without necessity. The simplest explanation is usually the best one.

- This is a fundamental principle that is often followed in science, extra complexity needs to be *justifiable*.
- Simple models are easier to test, understand and in the case of ML, fit the parameters.
- Bayesian inference provides a principled solution to reducing model complexity, through regularisation.
- Today we'll talk about methods for interpreting model fitting issues and overcoming them.

Model complexity

- The simplest models? Functions that return a constant number or a straight line.
- These models are likely to have a large degree of error!
 - Model too "simple" \rightarrow does not fit the data well

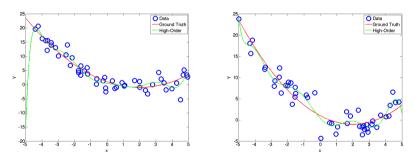


- However, the parameters will be *reliable* to estimate from different subsets of data.
- These models are referred to as biased.

Ground Truth

Model complexity

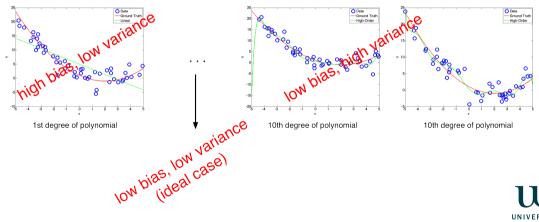
- A more complex model will fit the training samples much better.
- However, if the model is too "complex" → small changes in the training data lead to large differences in the trained model.



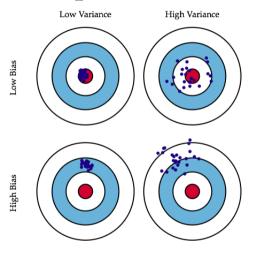
• Because of the variability in model fitting with different training samples, these models are said to have high *variance*.

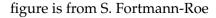
Bias-variance trade-off

- Choice of hypothesis class and hyper-parameters affects bias
 - More complex hypothesis class \rightarrow less bias
 - More complex hypothesis class \rightarrow more variance



Bias-variance example





(Squared) bias of predictor

- Given dataset $\mathcal D$ with N examples, we would like to learn function $\hat f_{\mathcal D}(x)$
- Learning a different dataset \mathcal{D}' also with N examples, results in a different $\hat{f}_{\mathcal{D}'}(x)$
- Expected hypothesis: $\operatorname{Expectation}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] := \hat{f}_{\operatorname{ave}}(x)$
- Bias:

difference between what you expect to learn $\hat{f}_{ave}(x)$ and the ground truth f(x)

- Measures how well you expect to represent true solution
- Decreases with more complex model
- Bias² at a single data point x: $(f(x) \hat{f}_{ave}(x))^2$
- Average Bias²: Expectation_x[$(f(x) \hat{f}_{ave}(x))^2$]

Variance of predictor

- Given dataset \mathcal{D} with N examples, we would like to learn function $\hat{f}_{\mathcal{D}}(x)$
- Learning a different dataset \mathcal{D}' also with N examples, results in a different $\hat{f}_{\mathcal{D}'}(x)$
- Expected hypothesis: Expectation_{\mathcal{D}}[$\hat{f}_{\mathcal{D}}(x)$] := $\hat{f}_{ave}(x)$
- Variance: difference between what you expect to learn $\hat{f}_{ave}(x)$ and what you learn from a particular dataset $\hat{f}_{\mathcal{D}}(x)$
 - Measures how sensitive predictor is to specific dataset
 - · Decreases with simpler model
 - Variance at a single data point x: Expectation_{\mathcal{D}} $[(\hat{f}_{\mathcal{D}}(x) \hat{f}_{ave}(x))^2]$ Note: Var(x) = Expectation_x $[(x - \mu)^2]$
 - Average Variance: Expectation_x[Expectation_D[$(\hat{f}_D(x) \hat{f}_{ave}(x))^2$]]

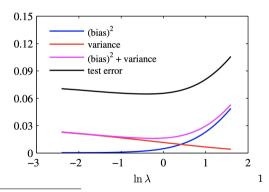
Bias-variance decomposition of squared error

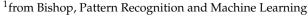
$$\begin{aligned} & \operatorname{Expectation}_{\mathcal{D}}[(\hat{f}_{\mathcal{D}}(x) - f(x))^{2}] \\ &= \underbrace{\operatorname{Expectation}_{\mathcal{D}}[(\hat{f}_{\mathcal{D}}(x) - \hat{f}_{\operatorname{ave}}(x))^{2}]}_{\operatorname{variance}(x)} + \underbrace{(\hat{f}_{\operatorname{ave}}(x) - f(x))^{2}}_{\operatorname{bias}^{2}(x)} \end{aligned}$$

- Bias: difference between what you expect to learn $\hat{f}_{ave}(x)$ and the ground truth f(x)
 - More complex hypothesis class ightarrow less bias
- Variance: difference between what you expect to learn $\hat{f}_{ave}(x)$ and what you learn from a particular dataset $\hat{f}_{\mathcal{D}}(x)$
 - More complex hypothesis class \rightarrow more variance

Bias-variance decomposition - demonstration

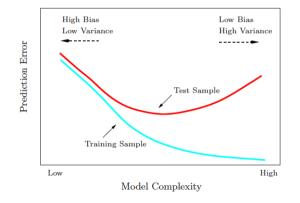
- This approach of understanding model error gives us some insight into the appropriateness of our model complexity.
- For example, you wanted some more intuition into the performance of a regression model, rather than just looking at the squared error.





Training and test error as a function of model complexity

For example, the higher the degree of a polynomial, the more complex.

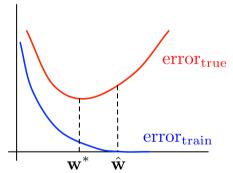


Extreme case of bias vs. variance

• Over-fitting: a learning algorithm overfits the training data if it outputs a solution $\hat{\mathbf{w}}$ when there exists another solution \mathbf{w}^* such that

$$\operatorname{error}_{\operatorname{train}}(\hat{\mathbf{w}}) < \operatorname{error}_{\operatorname{train}}(\mathbf{w}^*) \wedge \operatorname{error}_{\operatorname{true}}(\mathbf{w}^*) < \operatorname{error}_{\operatorname{true}}(\hat{\mathbf{w}})$$

where $error_{true}$ is the error at test set and $error_{train}$ is the error at training set.



• Low (near zero) bias but very high variance is over-fitting

Analysing machine learning models

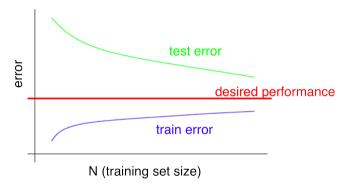
- Imagine you're training a model, but it's not going well.
- Common approach: try improving the algorithm in different ways:
 - Try a smaller set of features
 - Try a larger set of features
 - Use a different value for regularisation parameter
 - Try using different machine learning models: naïve Bayes, logistic regression, decision tree, k-Nearest Neighbour, linear perceptron, random forest, etc.
- The approach above might work, but it is very time consuming, and largely a matter of luck whether you end up fixing what the problem really is.

Diagnostic for bias vs. variance

- Better approach:
 - Run diagnostics to figure out what the problem is
 - Fix whatever the problem is
- Suppose you suspect the problem is either:
 - Over-fitting (high variance)
 - Too few features to differentiate positive class from negative class (high bias)
- Diagnostic:
 - High variance: training error will be much lower than test error
 - High bias: training error will also be high

More on bias vs. variance

Typical learning curve for high variance (at fixed model complexity):

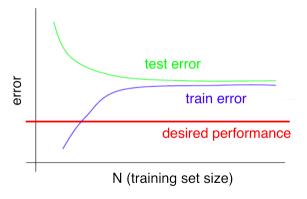


- Validation error still decreasing as N increases.
- Large gap between training and validation error.

figure is from Andrew Ng

More on bias vs. variance

Typical learning curve for high bias (at fixed model complexity):



- Even training error is unacceptably high
- Small gap between training and validation error

figure is from Andrew Ng

Diagnostics tell you how to proceed

- Fixes to try:
 - Try a smaller set of features (feature selection) or introduce more regularisation
 Fixes high variance
 - Try a larger set of features (non-linear mapping on features / kernel methods) or reduce regularisation

Fixes high bias

How to choose our hyper-parameters?

- How do we pick the regularisation constant λ
 - and all other constants or parameters in machine learning models: one thing machine learning does not lack is constants to tune!

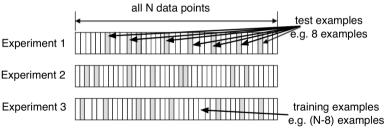
Training/validation split

- What we really care about is whether the classifier has learned to *generalise*.
- This can be evaluated by assessing the classification accuracy on a validation set.
 - This is a set of labelled data that was not used during training.
 - It is assumed that this data is randomly chosen from a set of images that share common characteristics.
 - this is often referred to as "independently and identically distributed" or iid.
 - If the validation set is unusual in some way, it will give us a poor measure of how good our classifier is.
- Penalises the model *overfitting*, i.e., just understanding the training set really well.

Random subsampling

Random subsampling performs K data splits of the entire dataset

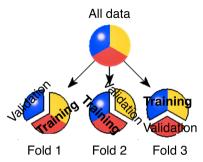
- Each data split randomly selects a fixed number of examples without replacement as test examples
- For each data split we retrain the classifier from scratch with the training examples and then estimate error rate for split i, e_i , with the test examples



• The true error estimate is obtained as the average of the separate estimates e_i

$$e = \frac{1}{K} \sum_{i=1}^{K} e_i$$

K-fold cross-validation



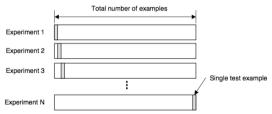
- The dataset is split into K sections, in this case K=3.
- In each run, one fold of data instances is removed from the training set and used to validate or test the model.
- Expected accuracy calculate by averaging over splits:

$$e = \frac{1}{K} \sum_{i=1}^{K} e_i$$

Leave-One-Out (LOO) cross-validation

Leave-one-out is the degenerate case of *K*-fold cross-validation, where *K* is chosen as the total number of examples

- For a dataset with N examples, perform N experiments
- For each experiment use N-1 examples for training and the remaining example for testing



• As before, the true error is estimated as the average error rate on test examples

$$e = \frac{1}{N} \sum_{i=1}^{N} e_i$$

Peeking and maintaining a test set

- Having validation sets is all well and good, but it still leaves a problem: as we may make choices based on validation set performance.
- For this reason we might want to keep a separate test set, to evaluate our final performance.
- We *never* look at the test set, until right at the end.
- This is useful if we build a real-life system and need to say how accurate we think it will be.
- If we ever mix our training/validation/testing datasets, this is called peeking. It results in over-inflating our ideas of how well our model will perform.
- Always choose your train/test/split randomly, otherwise you might introduce some odd differences, e.g., the first half of the dataset might only contain cats.

Case study

• Model: linear classifier?

$$\mathcal{L}' = \mathcal{L}_{\mathrm{mse}} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

- We search λ in the λ -parameter space over $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$
- We will use 10-fold stratified cross-validation for each λ and compute accuracy
- Accuracy rate \pm STD result: 10-fold cross-validation table for varying the parameter λ

results are example only!	$\lambda = 10^{-4}$	10^{-3}	10^{-2}	10^{-1}	1
	63.15 ± 2.7	66.47 ± 1.8	67.79 ± 1.5	67.27 ± 1.9	63.11 ± 2.5

- Based on the cross-validation results, I will choose $\lambda = 10^{-2}$
- Re-train the classifier with $\lambda = 10^{-2}$ using the whole training dataset and predict the labels for test set where the labels are *unknown*.

Case study – more generally

- Magic parameters are everywhere in machine learning models, for example,
 - number of trees, minimum number of instances required to split an internal node, choice of impurity measure in random forest
 - choice of kernel function, value of kernel coefficients, and regularisation parameter in support vector machine
 - choice of regularisation parameter in logistic regression
 - choice of parameter k in k nearest neighbour (kNN) classifier

• ...

- The more parameters to find, the more computational cost to do cross-validation
 - Suppose we want to find out the best number of trees and minimum samples at leaf nodes in random forest

minimum samples number of trees	1	5	10	50
500	?	?	?	?
1,000	?	?	?	?
5,000		?	?	?
10,000	?	?	?	?

Summary and outlook

- Today we've discussed some of the principles behind model selection: Occam's razor, model complexity, bias-variance trade-off
- We've talked about how to diagnose model training issues, and choose your hyper-parameters: training/validation split

Next lecture:

Neural networks I

