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Recap: Regularised linear regression

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
• Larger λ, higher regularisation:

too large, we will not capture any useful trends in the data

• Smaller λ, lower regularisation:
too small, our function will likely be too complex

More regularization tends to cause less overfitting.
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Outline

At the end of this session, you should be able to:
• Understand what model selection is and why it is an essential part of machine

learning
• Understand the decomposition of an error into bias and variance terms, and how

model complexity can trade-off between them.
• Be able to explain how validation data can be used for model selection, and to

choose regularisation hyper-parameters.
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Model selection

• Model selection is the process of choosing an appropriate model, in terms of
complexity and hyper-parameters,.

• For simple problems, like most we’ve considered so far, we can choose an
appropriate level of complexity just by visual inspection.

• For high-dimensional regression problems, such as predicting variables
associated with climate change, it can be less obvious.

• Can you think of a good guiding principle for model selection?
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Occam’s razor
Entities should not be multiplied without necessity.
The simplest explanation is usually the best one.

• This is a fundamental principle that is often followed in science, extra complexity
needs to be justifiable.

• Simple models are easier to test, understand and in the case of ML, fit the
parameters.

• Bayesian inference provides a principled solution to reducing model complexity,
through regularisation.

• Today we’ll talk about methods for interpreting model fitting issues and
overcoming them.
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Model complexity
• The simplest models? Functions that return a constant number or a straight line.
• These models are likely to have a large degree of error!

• Model too “simple” → does not fit the data well

• However, the parameters will be reliable to estimate from different subsets
of data.

• These models are referred to as biased.
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Model complexity
• A more complex model will fit the training samples much better.
• However, if the model is too “complex” → small changes in the training data lead

to large differences in the trained model.

• Because of the variability in model fitting with different training samples,
these models are said to have high variance.
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Bias-variance trade-off
• Choice of hypothesis class and hyper-parameters affects bias

• More complex hypothesis class → less bias
• More complex hypothesis class → more variance
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Bias-variance example

figure is from S. Fortmann-Roe
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(Squared) bias of predictor
• Given dataset D with N examples, we would like to learn function f̂D(x)
• Learning a different dataset D′ also with N examples, results in a different f̂D′(x)
• Expected hypothesis: ExpectationD [ f̂D(x)] := f̂ave(x)

• Bias:
difference between what you expect to learn f̂ave(x) and the ground truth f (x)

• Measures how well you expect to represent true solution

• Decreases with more complex model

• Bias2 at a single data point x: ( f (x)− f̂ave(x))2

• Average Bias2: Expectationx[( f (x)− f̂ave(x))2]
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Variance of predictor
• Given dataset D with N examples, we would like to learn function f̂D(x)
• Learning a different dataset D′ also with N examples, results in a different f̂D′(x)
• Expected hypothesis: ExpectationD [ f̂D(x)] := f̂ave(x)

• Variance:
difference between what you expect to learn f̂ave(x) and what you learn from a
particular dataset f̂D(x)

• Measures how sensitive predictor is to specific dataset

• Decreases with simpler model

• Variance at a single data point x: ExpectationD [( f̂D(x)− f̂ave(x))2]
Note: Var(x) = Expectationx[(x − µ)2]

• Average Variance: Expectationx[ExpectationD [( f̂D(x)− f̂ave(x))2]]
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Bias-variance decomposition of squared error

ExpectationD [( f̂D(x)− f (x))2]

= ExpectationD [( f̂D(x)− f̂ave(x))2]︸ ︷︷ ︸
variance(x)

+ ( f̂ave(x)− f (x))2︸ ︷︷ ︸
bias2(x)

• Bias:
difference between what you expect to learn f̂ave(x) and the ground truth f (x)

• More complex hypothesis class → less bias

• Variance:
difference between what you expect to learn f̂ave(x) and what you learn from a
particular dataset f̂D(x)

• More complex hypothesis class → more variance
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Bias-variance decomposition - demonstration
• This approach of understanding model error gives us some insight into the

appropriateness of our model complexity.
• For example, you wanted some more intuition into the performance of a

regression model, rather than just looking at the squared error.

1

1from Bishop, Pattern Recognition and Machine Learning
13 / 29



Training and test error
as a function of model complexity

For example, the higher the degree of a polynomial, the more complex.

The Elements of Statistical Learning
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Extreme case of bias vs. variance
• Over-fitting: a learning algorithm overfits the training data if it outputs a

solution ŵ when there exists another solution w∗ such that

errortrain(ŵ) < errortrain(w∗) ∧ errortrue(w∗) < errortrue(ŵ)

where errortrue is the error at test set and errortrain is the error at training set.

• Low (near zero) bias but very high variance is over-fitting
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Analysing machine learning models

• Imagine you’re training a model, but it’s not going well.
• Common approach: try improving the algorithm in different ways:

• Try a smaller set of features
• Try a larger set of features
• Use a different value for regularisation parameter
• Try using different machine learning models: naı̈ve Bayes, logistic regression,

decision tree, k-Nearest Neighbour, linear perceptron, random forest, etc.

• The approach above might work, but it is very time consuming, and largely a
matter of luck whether you end up fixing what the problem really is.
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Diagnostic for bias vs. variance

• Better approach:
• Run diagnostics to figure out what the problem is
• Fix whatever the problem is

• Suppose you suspect the problem is either:
• Over-fitting (high variance)
• Too few features to differentiate positive class from negative class (high bias)

• Diagnostic:
• High variance: training error will be much lower than test error
• High bias: training error will also be high
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More on bias vs. variance
Typical learning curve for high variance (at fixed model complexity):

• Validation error still decreasing as N increases.
• Large gap between training and validation error.

figure is from Andrew Ng
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More on bias vs. variance
Typical learning curve for high bias (at fixed model complexity):

• Even training error is unacceptably high
• Small gap between training and validation error

figure is from Andrew Ng
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Diagnostics tell you how to proceed

• Fixes to try:
• Try a smaller set of features (feature selection) or introduce more regularisation

Fixes high variance
• Try a larger set of features (non-linear mapping on features / kernel methods) or

reduce regularisation
Fixes high bias
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How to choose our hyper-parameters?

• How do we pick the regularisation constant λ

• and all other constants or parameters in machine learning models:
one thing machine learning does not lack is constants to tune!
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Training/validation split

• What we really care about is whether the classifier has learned to generalise.
• This can be evaluated by assessing the classification accuracy on a validation set.

• This is a set of labelled data that was not used during training.
• It is assumed that this data is randomly chosen from a set of images that share

common characteristics.
• this is often referred to as “independently and identically distributed” or iid.
• If the validation set is unusual in some way, it will give us a poor measure of how

good our classifier is.

• Penalises the model overfitting, i.e., just understanding the training set really well.
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Random subsampling
Random subsampling performs K data splits of the entire dataset

• Each data split randomly selects a fixed number of examples without
replacement as test examples

• For each data split we retrain the classifier from scratch with the training
examples and then estimate error rate for split i, ei, with the test examples

• The true error estimate is obtained as the average of the separate estimates ei

e =
1
K

K

∑
i=1

ei
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K-fold cross-validation

• The dataset is split into K sections, in this case K=3.
• In each run, one fold of data instances is removed from the training set and used

to validate or test the model.
• Expected accuracy calculate by averaging over splits:

e =
1
K

K

∑
i=1

ei
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Leave-One-Out (LOO) cross-validation
Leave-one-out is the degenerate case of K-fold cross-validation, where K is chosen as
the total number of examples

• For a dataset with N examples, perform N experiments
• For each experiment use N-1 examples for training and the remaining example

for testing

• As before, the true error is estimated as the average error rate on test examples

e =
1
N

N

∑
i=1

ei
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Peeking and maintaining a test set
• Having validation sets is all well and good, but it still leaves a problem: as we

may make choices based on validation set performance.
• For this reason we might want to keep a separate test set, to evaluate our final

performance.
• We never look at the test set, until right at the end.
• This is useful if we build a real-life system and need to say how accurate we think

it will be.
• If we ever mix our training/validation/testing datasets, this is called peeking. It

results in over-inflating our ideas of how well our model will perform.
• Always choose your train/test/split randomly, otherwise you might introduce

some odd differences, e.g., the first half of the dataset might only contain cats.

26 / 29



Case study
• Model: linear classifier?

L′ = Lmse +
λ

2
w⊤w

• We search λ in the λ-parameter space over {10−4, 10−3, 10−2, 10−1, 1}
• We will use 10-fold stratified cross-validation for each λ and compute accuracy
• Accuracy rate± STD result: 10-fold cross-validation table for varying the

parameter λ

results are example only! λ = 10−4 10−3 10−2 10−1 1
63.15 ± 2.7 66.47 ± 1.8 67.79 ± 1.5 67.27 ± 1.9 63.11 ± 2.5

• Based on the cross-validation results, I will choose λ = 10−2

• Re-train the classifier with λ = 10−2 using the whole training dataset and predict
the labels for test set where the labels are unknown.
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Case study – more generally
• Magic parameters are everywhere in machine learning models, for example,

• number of trees, minimum number of instances required to split an internal node,
choice of impurity measure in random forest

• choice of kernel function, value of kernel coefficients, and regularisation parameter
in support vector machine

• choice of regularisation parameter in logistic regression
• choice of parameter k in k nearest neighbour (kNN) classifier
• . . .

• The more parameters to find, the more computational cost to do cross-validation
• Suppose we want to find out the best number of trees and minimum samples at leaf

nodes in random forest
aaaaaaaaaaaaa

number
of trees

minimum
samples

1 5 10 50

500 ? ? ? ?
1,000 ? ? ? ?
5,000 ? ? ? ?

10,000 ? ? ? ?
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Summary and outlook

• Today we’ve discussed some of the principles behind model selection:
Occam’s razor, model complexity, bias-variance trade-off

• We’ve talked about how to diagnose model training issues, and choose your
hyper-parameters:
training/validation split

Next lecture:
• Neural networks I
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