import cv2 as cv import numpy as np from glob import glob # the directory of the image database database_dir = "image.orig" # Compute pixel-by-pixel difference and return the sum def compareImgs(img1, img2): # resize img2 to img1 img2 = cv.resize(img2, (img1.shape[1], img1.shape[0])) diff = cv.absdiff(img1, img2) return diff.sum() def compareImgs_hist(img1, img2): width, height = img1.shape[1], img1.shape[0] img2 = cv.resize(img2, (width, height)) num_bins = 10 hist1 = [0] * num_bins hist2 = [0] * num_bins bin_width = 255.0 / num_bins + 1e-4 # compute histogram from scratch # for w in range(width): # for h in range(height): # hist1[int(img1[h, w] / bin_width)] += 1 # hist2[int(img2[h, w] / bin_width)] += 1 # compute histogram by using opencv function # https://docs.opencv.org/4.x/d6/dc7/group__imgproc__hist.html#ga4b2b5fd75503ff9e6844cc4dcdaed35d hist1 = cv.calcHist([img1], [0], None, [num_bins], [0, 255]) hist2 = cv.calcHist([img2], [0], None, [num_bins], [0, 255]) sum = 0 for i in range(num_bins): sum += abs(hist1[i] - hist2[i]) return sum / float(width * height) def retrieval(choice): output = [] # print("1: beach") # print("2: building") # print("3: bus") # print("4: dinosaur") # print("5: flower") # print("6: horse") # print("7: man") # choice = input( # "Type in the number to choose a category and type enter to confirm\n" # ) src_input = "" if choice == "1": src_input = cv.imread("beach.jpg") print("You choose: %s - beach\n" % choice) elif choice == "2": src_input = cv.imread("building.jpg") print("You choose: %s - building\n" % choice) elif choice == "3": src_input = cv.imread("bus.jpg") print("You choose: %s - bus\n" % choice) elif choice == "4": src_input = cv.imread("dinosaur.jpg") print("You choose: %s - dinosaur\n" % choice) elif choice == "5": src_input = cv.imread("flower.jpg") print("You choose: %s - flower\n" % choice) elif choice == "6": src_input = cv.imread("horse.jpg") print("You choose: %s - horse\n" % choice) elif choice == "7": src_input = cv.imread("man.jpg") print("You choose: %s - man\n" % choice) else: print("Invalid input") exit() min_diff = 1e50 # src_input = cv.imread("man.jpg") # cv.imshow("Input", src_input) # change the image to gray scale src_gray = cv.cvtColor(src_input, cv.COLOR_BGR2GRAY) # read image database database = sorted(glob(database_dir + "/*.jpg")) for img in database: # read image img_rgb = cv.imread(img) # convert to gray scale img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY) # compare the two images diff = compareImgs(src_gray, img_gray) output.append( [int(img.replace(database_dir + "/", "").replace(".jpg", "")), img, diff] ) # compare the two images by histogram, uncomment the following line to use histogram # diff = compareImgs_hist(src_gray, img_gray) # print(img, diff) # find the minimum difference if diff <= min_diff: # update the minimum difference min_diff = diff # update the most similar image closest_img = img_rgb result = img # print( # "the most similar image is %s, the pixel-by-pixel difference is %f " # % (result, min_diff) # ) # closest_img # cv.destroyAllWindows() return output def SIFT(): img1 = cv.imread("flower.jpg") img2 = cv.imread("image.orig/685.jpg") if img1 is None or img2 is None: print("Error loading images!") exit(0) # -- Step 1: Detect the keypoints using SIFT Detector, compute the descriptors minHessian = 400 detector = cv.SIFT_create() keypoints1, descriptors1 = detector.detectAndCompute(img1, None) keypoints2, descriptors2 = detector.detectAndCompute(img2, None) # -- Step 2: Matching descriptor vectors with a brute force matcher matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE) matches = matcher.match(descriptors1, descriptors2) # -- Draw matches img_matches = np.empty( (max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1], 3), dtype=np.uint8, ) cv.drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches) # -- Show detected matches cv.imshow("Matches: SIFT (Python)", img_matches) cv.waitKey() # draw good matches matches = sorted(matches, key=lambda x: x.distance) min_dist = matches[0].distance good_matches = tuple(filter(lambda x: x.distance <= 2 * min_dist, matches)) img_matches = np.empty( (max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1], 3), dtype=np.uint8, ) cv.drawMatches( img1, keypoints1, img2, keypoints2, good_matches, img_matches, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS, ) # -- Show detected matches cv.imshow("Good Matches: SIFT (Python)", img_matches) cv.waitKey() def test_performance(number): # print("1: Image retrieval demo") # print("2: SIFT demo") if number == 1: retrieval_results = retrieval("1") from pprint import pprint pprint(retrieval_results) elif number == 2: SIFT() # pass else: print("Invalid input") exit() test_performance(1)