
INT3075 Programming and Problem

Solving for Mathematics

Control (Part I):

Selection

Control, Quick Overview

2

Selection

3

Selection

• Selection is how programs make choices,

and it is the process of making choices

that provides a lot of the power of

computing

4

5

6

Note that == is equality,

= is assignment

7

Python if statement

if boolean expression :

suite

• evaluate the boolean (True or False)

• if True, execute all statements in the suite

8

Warning about indentation

• Elements of the suite must all be indented

the same number of spaces/tabs

• Python only recognizes suites when they

are indented the same distance (standard

is 4 spaces)

• You must be careful to get the indentation

right to get suites right.

9

Python Selection, Round 2

if boolean expression:

suite1

else:

suite2

The process is:

• evaluate the boolean
• if True, run suite1

• if False, run suite2

10

11

Safe Lead in Basketball

• Algorithm due to Bill James

(http://www.slate.com/id/2185975/)

• under what conditions can you safely

determine that a lead in a basketball game

is insurmountable?

12

http://www.slate.com/id/2185975/

The algorithm

• Take the number of points one team is

ahead

• Subtract three

• Add ½ point if team that is ahead has the

ball, subtract ½ point otherwise

• Square the result

• If the result is greater than the number of

seconds left, the lead is safe

13

Code Listing

L2-3.py

Add / subtract ½ point

14

first cut

Problem, what if the lead_calculation_float is

less than 0?

15

Code Listing

L2-4.py

Catch the lead < 0

16

second cut

catch the lead less than 0

17

Code Listing

L2-7.py

Safe lead program

18

19

Control in Depth

20

Booleans

21

Boolean Expressions

• George Boole's (mid-1800's) mathematics

of logical expressions

• Boolean expressions (conditions)

have a value of True or False

• Conditions are the basis of choices in a

computer, and, hence, are the basis of the

appearance of intelligence in them.

22

What is True, and what is False

• true: any nonzero number or nonempty
object. 1, 100, "hello", [a,b]

• false: a zero number or empty object. 0,

"",[]

• Special values called True and False,

which are just substitutes for 1 and 0.
However, they print nicely (True or

False)

23

Boolean expression

• Every boolean expression has the form:

– expression booleanOperator expression

• The result of evaluating something like the

above is also just true or false.

• However, remember what constitutes true

or false in Python!

24

Relational Operators

• 3 > 2  True

• 8 < 1  False

• '1' < 2  Error

•can only compare like types

• int('1') < 2  True

•like types, regular comparison

25

What does Equality mean?

Two senses of equality

•two variables refer to different objects, each

object representing the same value

•two variables refer to the same object. The
id() function used for this.

26

27

equal vs. same

• == compares values of two variable's

objects to check whether they represent

the same value

• is operator determines if two variables are

associated with the same object

From the figure:

a_float == b_float  True

a_float is b_float  False

b_float is c_float  True
28

Pitfall

floating point arithmetic is approximate!

29

compare using "close enough"

Establish a level of "close enough" for

equality

30

Chained comparisons

• In Python, chained comparisons work just

like you would expect in a mathematical

expression:

• Given myInt has the value 5

0 <= myInt <= 5  True

0 < myInt <= 5 < 1  False

31

Compound Expressions

Python allows bracketing of a value between

two Booleans, as in math

a_int = 5

0 <= a_int <= 10  True

•a_int >= 0 and a_int <= 10

•and, or, not are the three Boolean

operators in Python

32

Truth Tables

p q not p p and q p or q

True True False True True

True False False False True

False True True False True

False False True False False

33

Compound Evaluation

• Logically 0 < a_int < 3 is actually

(0 < a_int) and (a_int < 3)

• Evaluate using a_int with a value of 5:

(0< a_int) and (a_int < 3)

• Parenthesis first: (True) and (False)

• Final value: False

34

Precedence & Associativity

Relational operators have precedence and

associativity just like numerical operators.

35

Boolean operators vs.

relationals
• Relational operations always return True

or False

• Boolean operators (and, or) are different

in that:

– They can return values (that represent True

or False)

– They have short circuiting

36

Remember!

• 0, '',[] or other “empty” objects are

equivalent to False

• anything else is equivalent to True

37

More on Assignments

38

Remember Assignments?

• Format: lhs = rhs

• Behavior:

– expression in the rhs is evaluated producing a

value

– the value produced is placed in the location

indicated on the lhs

39

Can do multiple assignments

a_int, b_int = 2, 3

first on right assigned to first on left, second

on right assigned to second on left

print(a_int, b_int) # prints 2 3

a_int,b_int = 1,2,3  Error

counts on lhs and rhs must match

40

traditional swap

• Initial values: a_int= 2, b_int = 3

• Behavior: swap values of X and Y

– Note: a_int = b_int

b_int = a_int doesn't work (why?)

– introduce extra variable temp

•temp = a_int # save a_int value in temp

•a_int = b_int # assign a_int value to b_int

•b_int = temp # assign temp value to b_int

41

Swap using multiple assignment

a_int, b_int = 2, 3

print(a_int, b_int) # prints 2 3

a_int, b_int = b_int, a_int

print(a_int, b_int) # prints 3 2

remember, evaluate all the values on the rhs

first, then assign to variables on the lhs

42

Chaining for assignment

Unlike other operations which chain left to

right, assignment chains right to left

a_int = b_int = 5

print(a_int, b_int) # prints 5 5

43

More Control: Selection

44

Compound Statements

• Compound statements involve a set of

statements being used as a group

• Most compound statements have:

– a header, ending with a : (colon)

– a suite of statements to be executed

• if, for, while are examples of

compound statements

45

General format, suites

46

Have seen 2 forms of selection

if boolean expression:

suite

if boolean expression:

suite

else:

suite

47

Python Selection, Round 3

if boolean expression1:

suite1

elif boolean expression2:

suite2

(as many elif's as you want)

else:

suite_last

48

if, elif, else, the process

• evaluate Boolean expressions until:

– the Boolean expression returns True

– none of the Boolean expressions return True

• if a boolean returns True, run the

corresponding suite. Skip the rest of the
if

• if no boolean returns True, run the else

suite, the default suite

49

Code Listing

L2-8.py

Grade determination

50

What happens if elif are replaced by if?

51

Perfect Number Example

52

a perfect number

• numbers and their factors were mysterious to

the Greeks and early mathematicians

• They were curious about the properties of

numbers as they held some significance

• A perfect number is a number whose sum of

factors (excluding the number) equals the

number

• First perfect number is: 6 (1+2+3)

53

abundant, deficient

• abundant numbers summed to more than

the number.

12: 1+2+3+4+6 =16

• deficient numbers summed to less than

the number.

13: 1

54

design

• prompt for a number

• for the number, collect all the factors

• once collected, sum up the factors

• compare the sum and the number and

respond accordingly

55

Code Listing

L2-9.py

Classify the number

56

Classify the number based on its divisor sum

if number_int == sum_of_divisors_int:

print (number_int, “is perfect”)

else:

print (number_int, “is not perfect”)

57

