INT3075 Programming and Problem
Solving for Mathematics

Working with Strings

Seqguence of characters

We've talked about strings being a
seguence of characters.

A string Is indicated between ' ' or" "

The exact sequence of characters Is
maintained

It IS also a collection

Create the object with assignment or str
constructor

And then there is "™ ™"

* triple quotes preserve both the vertical and
horizontal formatting of the string

+ allows you to type tables, paragraphs,
whatever and preserve the formatting

"""this 1s

a test

today"""

e Also used for multi-line comments

non-printing characters

If iInserted directly, are preceded by a
backslash (the \ character)

* hew line AN
e tab AN

String Representation

* every character is "mapped" (associated)
with an integer

 UTF-8, subset of Unicode, Is such a
mapping

 the function ord () takes a character and
returns its UTF-8 integer value, chr ()
takes an integer and returns the UTF-8
character.

Char
SP

o0 & FH

=

BN W N R O~

Dec
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
477
48
49
50
51
52

@)
my
Q
H

H n ©”WIO Yoz =6 "OgH DT Q@H4YHMEUOQoWmP ®

Dec
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Q)
iy
Q
H

 m 8 O g 0 B 8 P /U - 5O tHhO O Q O O

Dec
96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Subset of
UTF-8

Strings

Can use single or double guotes:

e S = "spam"

e s = 'spam'

Just don't mix them

my str = 'hi mom" = ERROR

Inserting an apostrophe:
« A = "knight's" # mix up the quotes
« B = 'knight\'s' # escape single quote

The Index

* Because the elements of a string are a
seguence, we can associate each element
with an index, a location in the sequence:

— positive values count up from the left,
beginning with index O

— negative values count down from the right,
starting with index -1

characters

index

| | d

1 2 3 4 5 6

7

8

9 10

—2 -1

The index values for the string 'Hello World'.

Accessing an element

A particular element of the string is
accessed by the index of the element
surrounded by square brackets | |

hello str = '"Hello World'

print (hello str[1l]) => printse
print (hello str[-1]) => printsd
print (hello str[11]) => ERROR

Slicing, the rules

* slicing Is the abillity to select a subsequence of
the overall sequence

e uses the syntax [start : finish], where:

— start IS the index of where we start the
subsequence

— finish Is the index of one after where we end the
subsequence
 If either start or finish are not provided, it

defaults to the beginning of the sequence for
start and the end of the sequence for finish

helloString[6:10]

characters | H | e | | 0 W | o r | d

ndiex | O 1 2 3 4 5 6 7 8 9 10

! T

first last

Indexing subsequences with slicing.

half open range for slices

* slicing uses what is called a half-open
range

* the first index Is included in the sequence
* the last iIndex Is one after what is included

helloString|b: |

helloString[:5]

characters | H | e | | o) W| o r d
index | O 1 2 3 4 5 o6 7 8 10
first
characters | H | e | | 0 W | o d
index | O 1 2 3 4 5 o6 7 10

Two default slice examples.

helloString[-1]

Characters

Index

H

e

O

W

O

r

d

0

1

2

3

4

3}

6

/

8

9

10

~-11-10 -9 -8 -7 -6 -5 —4 -3 -2 —1

Negative indices.

Last

helloString[3:-2]

Characters | H | e |

I 0 W | o | | d
Index | O 1 2 3 4 5 6 7 9 10
First Last

Another slice example.

Extended Slicing

* also takes three arguments:
— [start:finish:countBy]

» defaults are:
- start IS beginning, finish Is end,
countBy IS1

my str = 'hello world'
my str[0:11:2] = 'hlowrd'
* every other letter

helloString/|[: :2]

Characters | H | e | | o) WI| o r | d

Index

NI AN AN AN A

Slicing with a step.

Some python idioms

 Idioms are python “phrases” that are used for a
common task that might be less obvious to non-
python folk

* how to make a copy of a string:
my str = 'hi mom'
new str = my str[:]

* how to reverse a string
my str = "madam I'm adam"

reverseStr = my str[::-1]

Seqguences are Iterable

The for loop Iiterates through each element
of a sequence In order. For a string, this
means character by character:

>>> for char in 'Hi mom':
print (char, type(char))

<class 'str'>
<class 'str'>
<class 'str'>
<class 'str'>
<class 'str'>
m <class 'str'>

>>>

e I

o 3

Basic String Operations

s = 'spam'

* length operator len()

len(s) = 4

e +|S concatenate

new str = 'spam' + '-' + 'spam-'
print (new str) = spam-spam-

* *|s repeat, the number is how many times
new str * 3 =
'sSpam—-spam-spam-spam-spam-spam-"'

some detalls

* pboth + and * on strings makes a new
string, does not modify the arguments

 order of operation Is important for
concatenation, irrelevant for repetition

* the types required are specific. For
concatenation you need two strings, for
repetition a string and an integer

what does a + b mean?

* what operation does the above represent?
It depends on the types!

— two strings =» concatenation
— two Iintegers =» addition
 the operator + is overloaded.

— The operation + performs depends on the
types it is working on

The type function

* You can check the type of the value
assoclated with a variable using type

my str = 'hello world'
type (my str) = <type 'str'>
my str = 245

type (my str) = <type 'int'>

String comparisons, single char

* Python 3 uses the Unicode mapping for
characters.

— Allows for representing non-English
characters

 UTF-8, subset of Unicode, takes the
English letters, numbers and punctuation
marks and maps them to an integer.

» Single character comparisons are based
on that number

comparisons within seguence

* |t makes sense to compare within a
seqguence (lower case, upper case, digits).

- 'a' < 'b’ - True
—'A'" < 'B' -2 True
- '1" < "9 - True
» Can be weird outside of the sequence
—'a' < 'A" - False

—'a' < 'O - False

Whole strings

« Compare the first element of each string

— If they are equal, move on to the next
character in each

— If they are not equal, the relationship between
those to characters are the relationship
between the string

— If one ends up being shorter (but equal), the
shorter is smaller

examples

e '3' < D! - True
e '"gaab' < 'Taaac'

— first difference Is at the last char. 'b'<'c' SO
'aaab' Islessthan 'aaac’ =2 True

e '33"'" < 'Taaz

— The first string is the same but shorter. Thus it
IS smaller -2 True

Membership operations

* can check to see If a substring exists Iin
the string, the in operator. Returns True

or False
my str = 'aabbccdd'

'a' 1n my str = True
'abb' 1n my str = True

'x' 1n my str = False

Strings are immutable

* strings are immutable, that Is you cannot
change one once you make lIt:
—a str = 'spam'

—a str[l] = 'l' = ERROR

 However, you can use it to make another
string (copy It, slice it, etc.)

- new str = a strf[:1] + '"1l' + a str[2:]
- a str 2 'spam'
- new str 2>'slam'

Functions, first cut

 a function Is a program that performs
some operation. Its details are hidden
(encapsulated), only it's interface provided.

A function takes some number of inputs
(arguments) and returns a value based on
the arguments and the function's
operation.

String function: 1en

 The 1en function takes as an argument a

string and returns an integer, the length of
a string.

my str = 'Hello World'

len(my str) = 11 # space counts!

String method

 a method Is a variation on a function
— like a function, it represents a program

— like a function, it has input arguments and an
output

* Unlike a function, it is applied in the
context of a particular object.

* This Is indicated by the dot notation
Invocation

Example

« upper IS the name of a method. It

generates a new string that has all upper
case characters of the string it was called
with.

my str = 'Python Rules!'

my str.upper() = 'PYTHON RULES!'

 The upper () method was called in the
context of my str, indicated by the dot
between them.

more dot notation

* In general, dot notation looks like:
— object.method(...)

* |t means that the object in front of the dot
IS calling a method that is associated with

t

t

nat object's type.
"he method's that can be called are tied to

ne type of the object calling it. Each type

has different methods.

Find

my str = 'hello'
my str.find('1l') #find index of I"in my_str
= 2

Note how the method 'find' operates on the string
object my_str and the two are associated by using

the “dot” notation: my_str.find('l').

Terminology: the thing(s) in parenthesis, i.e. the 'I'
In this case, Is called an argument.

Chaining methods

Methods can be chained together.
* Perform first operation, yielding an object

* Use the yielded object for the next method
my str = 'Python Rules!'

my str.upper () = 'PYTHON RULES!'

my str.upper().find('0")

= 4

Optional Arguments
Some methods have optional arguments:

* If the user doesn't provide one of these, a
default Is assumed

* find has a default second argument of O,
where the search begins

a str = 'He had the bat'

a str.find('t') = 7 # 18t 't',start at O

a str.find('t',8) = 13 # 2 "¢

Nesting Methods

* You can "nest’” methods, that is the result
of one method as an argument to another

* remember that parenthetical expressions
are done “inside out™. do the inner
parenthetical expression first, then the
next, using the result as an argument

a str.find('t', a str.find('t')+1)

 translation: find the second ‘t" in a_str

How to know?

* You can use IDLE to find available

methods for any type. You enter a variable
of the type, followed by the '.' (dot) and

then a tab.

 Remember, methods match with a type.
Different types have different methods

* If you type a method name, IDLE will
remind you of the needed and optional
arguments.

capitalize() lstrip([chars])

center (width [, fillchar]) partition(sep)

count (sub [, start[, end]]) replace (old, newl, count])
decode ([encoding [, errors]]) rfind (sub [,start[,end] 1)
encode ([encoding [,errors] 1) rindex (subl, start|, end] 1)
endswith (suffix[, start[, end]1) @ rjust (widthl, fillchar])
expandtabs ([tabsize]) rpartition (sep)

find (subl, start[, end] 1) rsplit ([sep [,maxsplit]])
index (subl, start[, end] 1) rstrip([chars])

isalnum() split ([sep [,maxsplit]])
isalpha() splitlines ([keepends])
isdigit () startswith (prefix [, start[, end] 1)
islower () strip ([chars])

isspace() swapcase ()

istitle() title()

isupper () translate (tablel, deletechars])
join (seq) upper ()

lower () z£111 (width)

ljust (widthl, fillchar])

Python String Methods

String formatting, better printing

« So far, we have just used the defaults of
the print function

* We can do many more complicated things
to make that output “prettier’ and more
pleasing.

« We will use it in our display function

Basic form

* To understand string formatting, It IS
probably better to start with an example.

print ("Sorry, 1s this the {} minute
{}?".format (5, 'ARGUMENT'))

prints Sorry, is this the 5 minute
ARGUMENT?

format method

e format IS a method that creates a new

string where certain elements of the string
are re-organized I.e., formatted

* The elements to be re-organized are the
curly bracket elements Iin the string.

* Formatting is complicated, this Is just
some of the easy stuff (see the docs)

map args to {}

* The string Is modified so that the {}
elements In the string are replaced by the
format method arguments

* The replacement is in order: first {} IS
replaced by the first argument, second { }
by the second argument and so forth.

string indicated by quotes

"4 N

print('Sorry, is this the { } minute { }?' .format(5,’ARGUMENT"))

NN

(Sorry, is this the 5 minute ARGUMENT?)

String formatting example.

Format string

 the content of the curly bracket elements
are the format string, descriptors of how to
organize that particular substitution.

—types are the kind of thing to substitute,
numbers indicate total spaces.

floatine-point exponential
oating-point exponentia center

s | string

cél gecn‘nal 1nt‘egel(‘1 - T Ik
oating-point decima | e

e N

floating-point as percent

Width alignments.
Most commonly used types.

Each format string

« Each bracket looks like

{:align width .precision descriptor}

—align Is optional (default left for strings, right
for numbers)

—width IS how many spaces (default just
enough)

— .precision Is for floating point rounding
(default no rounding)

— descriptor Is the expected type (error If the
arg is the wrong type)

print('{:>10s} is {:<10d} years old.' format('Bill’, 25))

T

String 10 spaces wide Decimal 10 spaces wide

including the object, including the object,

right justified (>). left justified (<).
OUTPUT:

Bill is 25 years old.
| || |

10 spaces 10 spaces

String formatting with width descriptors and alignment.

Nice table

>>> for 1 in range(5) :
print ("{:10d} --> {:4d}".format (i,i**2))

0 --> 0)
1 --> 1
2 == 4

--> 9

> W
|
|

Vv

16

Floating Point Precision

Can round floating point to specific number
of decimal places

>>> import math

>>> print (math.pi)

3.141592653589793

>>> print ("Pi is {:.4f}".format (math.pi))
Pi is 3.1416

>>> print ("Pi is {:8.4f}".format (math.pi))
Pi is 3.1416

>>> print ("Pi is {:8.2f}".format (math.pi))
Pi is 3.14

iteration through a sequence

* To date we have seen the while loop as a
way to iterate over a suite (a group of
python statements)

* We briefly touched on the for statement

for iteration, such as the elements of a list
or a string

for statement

We use the for statement to process each
element of a list, one element at a time

for 1tem 1n sequence:

sulte

What for means

my str='abc'
for char i1in 'abc':

print (char)
e first time through, char ='a' (my_str[0])
 second time through, char='b' (my_str[1])
* third time through, char='c' (my_str[2])
* N0 more sequence left, for ends

Power of the for statement

« Seqguence iteration as provided by the for

statement is very powerful and very useful
In python.

 Allows you to write some very “short”
programs that do powerful things.

Code Listing
L5-1.py

Find a letter

60

find a letter

1 # Our implementation of the find function. Prints the index where
» # the target is found; a failure message, if it isn't found.
s # This version only searches for a single character.

s river = 'Mississippi'

¢ target = input ('Input a character to find: ')

7 for index in range(len(river)) : #.fbr each index

8 if river[index] == target: # check if the target is found

9 print ("Letter found at index: ", index) # if so, print the index
10 break # stop searching

1 else:

12 print ('Letter',6 target, 'not found in',river)

61

enumerate function

* The enumerate function prints out two
values: the index of an element and the
element itself

« Can use It to iterate through both the index
and element simultaneously, doing dual
assignment

Code Listings
Lo-2.py

Find with enumerate

63

find with enumerate

Our implementation of the find function. Prints the index where
the target is found; a failure message, if it isn 't found.
This version only searches for a single character.

river = 'Mississippi'
target = input ('Input a character to find: ')
for index,letter in enumerate (river) : # for each index
if letter == target: # check if the target is found
print ("Letter found at index: ", index) # if so, print the index
break # stop searching
else:

print ('Letter',6 target, 'not found in',river)

64

split function

 The split function will take a string and

break it into multiple new string parts
depending on the argument character.

* by default, if no argument is provided, split is
on any whitespace character (tab, blank,
etc.)

* you can assign the pieces with multiple
assignment if you know how many pieces
are yielded.

reorder a nhame

>>> name = 'John Marwood Cleese'
>>> first, middle, last = name.split()
>>> transformed = last + ', ' + first + ' ' + middle

>>> print (transformed)
Cleese, John Marwood
>>> print (name)

John Marwood Cleese
>>> print (first)

John

>>> print (middle)
Marwood

Palindromes and the rules

* A palindrome is a string that prints the
same forward and backwards

« same implies that:
— case does not matter
— punctuation is ignored

« "Madam I'm Adam" is thus a palindrome

lower case and punctuation

* every letter Is converted using the lower
method

« import string, brings in a series of
predefined sequences (string.digits,
string.punctuation,
string.whitespace)

 we remove all non-wanted characters with
the replace method. First argument is what

to replace, the second the replacement.

Code Listing
Lo-3.py

Palindrome tester

69

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Palindrome tester
import string

original_str = input('Input a string:')
modified str original_str.lower ()

bad_chars = string.whitespace + string.punctuation

for char in modified str:
if char in bad chars: # remove bad characters
modified_str = modified_str.replace(char,'')

if modified_str == modified_strl[::-1]1: # it is a palindrome
print (\
'The original string is: {}\n\
the modified string is: {}\n\

the reversal is: {}\n\
String is a palindrome'.format (original_str, modified_ str, modified str[::-1
1))
else:
print (\

'The original string is: {}\n\
the modified string is: {}\n\
the reversal is: {}\n\

String is not a palindrome'.format (original_ str,modified_str,modified_str[::-

11))

