
INT3075 Programming and Problem

Solving for Mathematics

Files and Exceptions

What is a file?

• A file is a collection of data that is stored

on secondary storage like a disk or a

thumb drive

• accessing a file means establishing a

connection between the file and the

program and moving data between the two

2

Two types of files

Files come in two general types:

•text files. Files where control characters
such as ”\n" are translated. This are

generally human readable

•binary files. All the information is taken

directly without translation. Not readable and

contains non-readable information

3

File Objects or stream

• When opening a file, you create a file

object or file stream that is a connection

between the file information on disk and

the program.

• The stream contains a buffer of the

information from the file, and provides the

information to the program

4

5

Buffering

• Reading from a disk is very slow. Thus the

computer will read a lot of data from a file

in the hopes that, if you need the data in

the future, it will be buffered in the file

object.

• This means that the file object contains a

copy of information from the file called a

cache.

6

Making a file object
my_file = open("my_file.txt", "r")

• my_file is the file object. It contains the

buffer of information. The open function

creates the connection between the disk file

and the file object. The first quoted string is

the file name on disk, the second is the mode
to open it (here,"r" means to read)

7

Where is the disk file?

• When opened, the name of the file can

come in one of two forms:

• "file.txt" assumes the file name is

file.txt and it is located in the current

program directory

• "c:\gary\file.txt" is the fully

qualified file name and includes the

directory information

8

Different modes

9

Careful with write modes

• Be careful if you open a file with the 'w'

mode. It sets an existing file’s content to

be empty, destroying any existing data.

• The 'a' mode is nicer, allowing you to

write to the end of an existing file without

changing the existing content

10

Text files use strings

• If you are interacting with text files (which

is all we will do in this course), remember

that everything is a string

– everything read is a string

– if you write to a file, you can only write a string

11

Getting File Contents

• Once you have a file object:

• fileObject.read() - reads the entire

content of the file as a string and returns it.

It can take an optional argument integer to

limit the read to N bytes, that is
fileObject.read(N)

• fileObject.readline() - delivers the

next line as a string

12

More File Reads

• fileObject.readLines() - returns a

single list of all the lines from the file

• for line in fileObject: - iterator

to go through the lines of a file

13

writing to a file

Once you have created a file object, opened

for writing, you can use the print command

•you add file=temp_file to the print

command

14

close

When the program is finished with a file, we
close the file

•flush the buffer contents from the computer

to the file

•tear down the connection to the file

•close is a method of a file object

file_obj.close()

•All files should be closed!

15

Code Listing

L6-1.py

Reverse file lines

16

17

Exceptions

First Cut

18

How to deal with problems

• Most modern languages provide methods

to deal with ‘exceptional’ situations

• Gives the programmer the option to keep

the user from having the program stop

without warning

• Again, this is about doing a better job as a

programmer

19

What counts as exceptional

• errors. indexing past the end of a list,

trying to open a nonexistent file, fetching a

nonexistent key from a dictionary, etc.

• events. search algorithm doesn’t find a

value (not really an error), mail message

arrives, queue event occurs

20

exceptions (2)

• ending conditions. File should be closed

at the end of processing, list should be

sorted after being filled

• weird stuff. For rare events, keep from

clogging your code with lots of if

statements.

21

Error Names
Errors have specific names, and Python

shows them to us all the time.

You can recreate an error to find the

correct name. Spelling counts!
22

a kind of non-local control
Basic idea:

• keep watch on a particular section of code

• if we get an exception, raise/throw that

exception (let it be known)

• look for a catcher that can handle that kind

of exception

• if found, handle it, otherwise let Python

handle it (which usually halts the program)

23

Doing better with input

• In general, we have assumed that the

input we receive is correct (from a file,

from the user).

• This is almost never true. There is always

the chance that the input could be wrong

• Our programs should be able to handle

this.

24

Worse yet, input is evil

• Most security holes in programs are based

on assumptions programmers make about

input

• Secure programs protect themselves from

evil input

25

General form, version 1

try:

suite

except a_particular_error:

suite

26

try suite
• the try suite contains code that we want

to monitor for errors during its execution.

• if an error occurs anywhere in that try

suite, Python looks for a handler that can

deal with the error.

• if no special handler exists, Python

handles it, meaning the program halts and

with an error message as we have seen

so many times 

27

except suite

• an except suite (perhaps multiple

except suites) is associated with a try

suite.

• each exception names a type of exception

it is monitoring for.

• if the error that occurs in the try suite

matches the type of exception, then that
except suite is activated.

28

try/except group
• if no exception in the try suite, skip all

the try/except to the next line of code

• if an error occurs in a try suite, look for

the right exception

• if found, run that except suite and then

skip past the try/except group to the

next line of code

• if no exception handling found, give the

error to Python

29

Code Listing

L6-2.py

Find a line in a file

30

31

