
Chapter 2: Basic elements of C++ and Input / Output

Mr. Horence Chan

CIS 129
Advanced Computer Programming

Why use a language like C++?

The advantages:
1. Conciseness: programming languages allow us to express common

sequences of commands more concisely. C++ provides some especially
powerful shorthand.

2. Maintainability: modifying code is easier when it entails just a few text
edits, instead of rearranging hundreds of processor instructions. C++ is
object oriented, which further improves maintainability.

3. Portability: different processors make different instructions available.
Programs written as text can be translated into instructions for many
different processors; one of C++’s strengths is that it can be used to write
programs for nearly any processor.

C++ is a high-level language: when you write a program in it, the shorthand
are sufficiently expressive that you don’t need to worry about the details of
processor instructions. C++ does give access to some lower-level
functionality than other languages (e.g. memory addresses).

The Compilation Process

• A program goes from text files (or source files) to processor
instructions as follows:

The Compilation Process

• Object file: intermediate file that represent an incomplete copy of the
program, each source file only expresses a piece of the program, so
when it is compiled into an object file, the object file has some
markers indicating which missing pieces it depends on.

The Compilation Process

• Linker: take those object files and the compiled libraries of
predefined code that they rely on, fills in all the gaps, and spits out
the final program, which can then be run by the operating system
(OS).

• The compiler and linker are just regular programs. The step in the
compilation process in which the compiler reads the file is called
parsing.

The Compilation Process

• In C++, all these steps are performed ahead of time, before you start
running a program. In some languages, they are done during the
execution process, which takes time. This is one of the reasons C++
code runs far faster than code in many more recent languages.

• C++ actually adds an extra step to the compilation process: the code
is run through a preprocessor, which applies some modifications to
the source code, before being fed to the compiler.

General Notes on C++

• C++ is immensely popular, particularly for applications that require
speed and/or access to some low-level features. C++ is a set of
extensions to the C programming language. C++ extends C.

• C++ is strong in writing console programs (text-based programs).
Though you can write graphical programs in C++, it is much hairier
and less portable than console programs.

• Everything in C++ is case sensitive: someName is not the same as
SomeName.

“Hello World” in C++

#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{

cout << "hello world!" << endl;

return 0;

}

• Lines beginning with “#” are
preprocessor commands, which
usually change what code is actually
being compiled.

• #include tells the preprocessor to
dump in the contents of another file

• iostream file, which defines the
procedures for _______ and _______.

“Hello World” in C++
#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{

cout << "hello world!" << endl;

return 0;

}

• In C++, identifiers can be defined within a context –
sort of a directory of names – called a __________.

• This line tells the compiler that it should look in the
std namespace for any identifier we haven’t
defined.

• In this example, we’re telling the compiler to look for
cout in the std namespace, in which many
__________ C++ identifiers are defined.

“Hello World” in C++

#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{

cout << "hello world!" << endl;

return 0;

}

• “//” indicates that everything following
it until the end of the line is a
__________, it is ignored by the
compiler.

• Another way to write a comment is to
put it between /* and */
• e.g. x = 1 + /*sneaky comment here*/ 1;
• A comment of this form may span multiple

lines.

• Comments exist to explain non-obvious
things going on in the code. Please use
them in your code well!

“Hello World” in C++

#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{

cout << "hello world!" << endl;

return 0;

}

• int main() {...} defines the
code that should execute when the
program starts up.

• void is function in C++

• The _______________ represent
grouping of multiple commands into
a block.

“Hello World” in C++
#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{
cout << "hello world!" << endl;
return 0;

}

• cout << : This is the syntax for
__________ some piece of text to the
screen.

• endl: _______________, if there is
anything need to output afterwards, it
will start a new line.

• Strings: A sequence of characters such
as hello world is known as a string.
A string that is specified explicitly in a
program is a string literal.

• Every statement ends with a
_______________ (except preprocessor
commands and blocks using {}).

• Forgetting these semicolons is a
common mistake among new C++
programmers.

“Hello World” in C++

#include <iostream>

using namespace std;

// My first C++ program!

int main(void)

{

cout << "hello world!" << endl;

return 0;

}

• return 0 indicates that the
program should tell the operating
system it has ___________________.

• This syntax will be explained in the
chapter of functions; for now, just
include it as the last line in the main
block.

Tokens

Token type Description/Purpose Examples

Keywords Words with special meaning to the compiler

Identifiers Names of things that are not built into the language

Literals Basic constant values whose value is specified directly in the
source code

"Hello, world!",

24.3, 0, ’c’

Operators Mathematical or logical operations

Punctuation/
Separators

Punctuation defining the structure of a program

Whitespace Spaces of various sorts; ignored by the compiler Spaces, tabs, newlines,
comments

Tokens are the minimal chunk of program that have meaning to the compiler
– the smallest meaningful symbols in the language.

Values and Statements

• A statement is a unit of code that does something – a basic building
block of a program.

• An expression is a statement that has a value – for instance, a
number, a string, the sum of two numbers, etc.
• 4 + 2, x - 1, and "Hello, world!\n" are all expressions.

• Not every statement is an expression. It makes no sense to talk about
the value of an #include statement, for instance.

Operators

• We can perform arithmetic calculations with operators. Operators act
on expressions to form a new expression. For example, we could
replace "Hello, world!\n" with (4 + 2) / 3, which would
cause the program to print the number 2. In this case, the “+”
operator acts on the expressions “4” and “2” (its operands).

• Operator types examples:
• Mathematical: +, -, *, /, and () have their usual mathematical meanings,

including using - for negation. % (the modulus operator) takes the remainder
of two numbers: 6 % 5 evaluates to 1.

• Logical: used for “and,” “or,” and so on.

Data Types

Type Names Description Size Range

char Single text character or small integer.
Indicated with single quotes ('a', '3').

1 byte signed: -128 to 127 unsigned: 0 to 255

int Larger integer. 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool Boolean (true/false). Indicated with the
keywords true and false.

1 byte Just true (1) or false (0).

float Floating point number. 4 bytes +/- 3.4e +/- 38 (6 digits)

• Every expression has a type – a formal description of what kind of data its value is.
• For instance:

• 0 is an integer
• 3.142 is a floating-point (decimal) number
• "Hello, world!\n" is a string value (a sequence of characters).

• Data of different types take a different amounts of memory to store.
• Examples of data types:

Data Types

• An operation can only be performed on compatible types. You can
add 34 and 3, but you can’t take the remainder of an integer and a
________________________.

• An operator also normally produces a value of the same type as its
operands; thus, 1 / 4 evaluates to _____ because with two integer
operands, / truncates the result to an __________. To get 0.25, you’d
need to write something like ____________________.

Data Types

• What is the output of the
statements?

int x = 2147483647;

cout << x + 1;

Variables

• We might want to give a value a name so we can refer to it later.

• We do this using variables. A variable is a named location in memory.

• The name of a variable is an identifier token. Identifiers may contain
numbers, letters, and underscores (_), and may not start with a
____________.

• For example, say we wanted to use the value 4 + 2 multiple times.
We might call it x, num, number_1, etc.

Variables

• Line 4 is the ____________ of the variable
x. We must tell the compiler what type x
will be so that it knows how much memory
to reserve for it and what kinds of
operations may be performed on it.

• Line 5 is the ____________ of x, where we
specify an initial value for it. This introduces
a new operator: =, the assignment
operator. We can also change the value of x
later on in the code using this operator.

• A single statement can be replaced that
does both ____________ and
____________:

int x = 4 + 2;

• Note how we can print a sequence of
values by “chaining” the << symbol. (line 6)

1 # include <iostream>

2 using namespace std ;

3 int main () {

4 int x;

5 x = 4 + 2;

6 cout << x / 3 << ' ' << x * 2;

7 return 0;

8 }

Input and output

1 # include <iostream>

2 using namespace std ;

3 int main () {

4 int x;

5 cin >> x;

6 cout << x / 3 << ’ ’ << x * 2;

7 return 0;

8 }

• cout << (line 6) is the syntax
for ____________ values.

• cin >> (line 5) is the syntax
for ____________ values.

Input and output

1 #include <iostream>

2 #include <string>

3 using namespace std;

4 int main()

5 {

6 string str;

7 cout << "Please enter some words: ";

8 getline(cin, str);

9 cout << "The words enter are: ";

10 cout << str<< endl;

11 return 0;

12}

• # include <string> is used to
declare ____________ variable

• getline() is used when we need
to received
________________________ in the
same line and put them into _______
variable

Debugging

• There are two kinds of errors you’ll run into when writing C++
programs

• ________________________ : problem raised by the compiler,
generally resulting from violations of the syntax rules or misuse of
types. These are often caused by typos and the like.

Debugging

• ________________________ :
problem that you only spot when
you run the program, you did
specify a legal program, but it
doesn’t do what you wanted it to.
These are usually more tricky to
catch, since the compiler won’t tell
you about them.

Manipulators

• When using manipulators, we need to type #include <iomanip> in
the beginning

• setprecision(): sets the ________________________ to be used to format
floating-point values on output operations.

• fixed: write floating-point values in ___________________ notation.

• showpoint: outputs floating-point numbers with a
________________________ and ________________________.

Manipulators
1 # include <iostream>

2 # include <iomanip>

3 using namespace std ;

4 int main () {

5 float x = 12.3456;

6 cout << fixed << showpoint;

7 cout << setprecision(1) << x << endl;

8 cout << setprecision(3) << x << endl;

9 }

Output:
12.3
12.346

• This is a method to round off a
number to decimal places

• The output should be a fixed
decimal format with decimal point

• Round off to 1 decimal places
• Round off to 3 decimal places

Manipulators

• setw(): formats the output of an expression in a specific number of
______________; the default output is right-justified.

• setfill(): fill the ______________ columns on an output device with
character.

• left: ______________ the output

• right: ______________ the output

Manipulators

• For example, here is a price list of a
restaurant

• All the food are align to the left

• All the prices (numbers) are align to the right

• In order to align the above items probably, a
certain number of dots “.” and blanks “ ” are
placed between the food, “$” sign and
numbers

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << "Price list of a restaurant"<<endl;

cout << setw(20)

<< setfill('.')

<< left

<< "Cheese burger: "

<< " $"

<< setw(4)

<< setfill(' ')

<< right

<< "14"

<< endl;

}

//set the _____ of the output "Cheese burger: " be 20

//fill the ________________ of the output with ____

//align "Cheese burger: " to the ______

//set the _____ of the output price (14) be 4

//fill the ______________ of the output with ______

//align (14) to the ______

Try to type the remaining parts with similar fashion!

Location of .cpp file in Visual Studio

• Right click the project file

• Click “Open Folder in File Explorer”

• .cpp file is shown in the directory

