Course Project Tutorial 3

CS4185 Multimedia Technologies and Applications

Image Features / Distance Measures

How to improve the performance?

- Possible solutions:
 - Utilize color information.
 - Utilize edge and shape information.
 - Using different layout.
 - Features fusion.

Color Layout

Color Layout (or gridded color) distance is the sum of the color distances in each of the corresponding grid squares.

Color Layout

- Need for Color Layout
 - Global color features give too many false positives.
- How it works:
 - Divide the whole image into sub-blocks.
 - Extract features from each sub-block.
- Can we go one step further?
 - Divide the image into regions based on color feature concentration.
 - This process is called segmentation.

More Info: http://en.wikipedia.org/wiki/Color layout descriptor

Edge and shape:

 An edge is where change occurs. So most edge operators are based on gradient.

• Sobel:

• Canny (size = 5)

$$K = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix}$$

Edge and shape:

- A soccer is always a circle in image space. So we can claim that a circular object is more likely to be a soccer than, say a rectangular object.
- Circle Hough transform:
 - https://en.wikipedia.org/wiki/Circle Hough Transform
 - http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html

Introduction to segmentation

- The main purpose is to find meaningful regions with respect to a particular application.
 - To detect homogeneous regions
 - To detect edges (boundaries, contours)
- Segmentation of non-trivial images is one of the difficult tasks in image processing. Still under research.
- Applications of image segmentation include:
 - Objects in a scene (for object-based retrieval)
 - Objects in a moving scene (MPEG4)
 - Spatial layout of objects (Path planning for a mobile robots)

Introduction to segmentation

Local descriptors

- Features for local regions in the image
 - Regions obtained by segmentation
 - Regions of interest (ROI) around interest points (keypoints)
- Interest points: corners, edges and others
- Keypoints: points in images, which are invariant to image translation, scale and rotation, and are minimally affected by noise and small distortions
- Scale-invariant feature transform (SIFT) by David Lowe

Idea of SIFT

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Claimed Advantages of SIFT

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Detect keypoints using the SIFT detector

```
def SIFT():
    img1 = cv.imread("flower.jpg")
    img2 = cv.imread("image.orig/685.jpg")
    if img1 is None or img2 is None:
        print('Error loading images!')
        exit(0)

#-- Step 1: Detect the keypoints using SIFT Detector, compute the descriptors
    minHessian = 400
    detector = cv.SIFT_create()
    keypoints1, descriptors1 = detector.detectAndCompute(img1, None)
    keypoints2, descriptors2 = detector.detectAndCompute(img2, None)
```

Match descriptor vectors with a brute force matcher

```
#-- Step 2: Matching descriptor vectors with a brute force matcher
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE)
matches = matcher.match(descriptors1, descriptors2)
#-- Draw matches
img_matches = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches)
#-- Show detected matches
cv.imshow('Matches: SIFT (Python)', img_matches)
cv.waitKey()
```


Only show "good" matches

```
# draw good matches
matches = sorted(matches, key = lambda x:x.distance)
min_dist = matches[0].distance
good_matches = tuple(filter(lambda x:x.distance <= 2 * min_dist, matches))

img_matches = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, img_matches)
#-- Show detected matches
cv.imshow('Good Matches: SIFT (Python)', img_matches)
cv.waitKey()</pre>
```


- Not showing single keypoints
 - cv.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, img_matches, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

Problem of high dimensions

- Mean Color = RGB = 3 dimensional vector
- Color Histogram = 256 dimensions
- Effective storage and speedy retrieval needed
- Traditional data-structures not sufficient
- R-trees, SR-Trees etc...

2-dimensional space

3-dimensional space

Now, imagine...

- An N-dimensional box!!
- We want to conduct a nearest neighbor query.
- R-trees are designed for speedy retrieval of results for such purposes.
- Designed by Guttmann in 1984.

Feature fusion:

- We need multiple characters to identify an object. For example, first it is a ball, but not head, not basketball. So only using shape or edge feature is not enough. We need additional information, such as color, texture to further check the object.
- Feature fusion is significant to performance!

Last but not least...

Feature fusion is significant to performance!