Course Project Tutorial 3

CS4185 Multimedia Technologies and Applications

Image Features / Distance Measures

N

‘ @ Distance Measure

X X

v

X

Feature Feature Space

Extraction

How to improve the performance?

e Possible solutions:
— Utilize color information.

— Utilize edge and shape information.
— Using different layout.
— Features fusion.

Color Layout

Color Layout (or gridded color) distance is the sum of the color
distances in each of the corresponding grid squares.

Color Layout

* Need for Color Layout
— Global color features give too many false positives.

e How it works:
— Divide the whole image into sub-blocks.
— Extract features from each sub-block.

* Can we go one step further?

— Divide the image into regions based on color
feature concentration.

— This process is called segmentation.

More Info: http://en.wikipedia.org/wiki/Color layout descriptor

Edge and shape:

* An edge is where change occurs. So most edge
operators are based on gradient.

e Sobel: o NENEAR
gl-2102 glolo]o
1001 10211

Sr Sy

* Canny (size =5)

~

Il
NSO N
0 3 -~

—h

37

N
N ARG RN

Edge and shape:

* A soccer is always a circle in image space. So we
can claim that a circular object is more likely to
be a soccer than, say a rectangular object.

* Circle Hough transform:

— https://en.wikipedia.org/wiki/Circle Hough Transform

— http://docs.opencv.org/doc/tutorials/imgproc/imgtrans
/hough circle/hough circle.html

Introduction to segmentation

The main purpose is to find meaningful regions with respect to
a particular application.

— To detect homogeneous regions

— To detect edges (boundaries, contours)

Segmentation of non-trivial images is one of the difficult tasks
in image processing. Still under research.

Applications of image segmentation include:
— Objects in a scene (for object-based retrieval)
— Objects in a moving scene (MPEG4)

— Spatial layout of objects (Path planning for a mobile robots)

Introduction to segmentation

Local descriptors

Features for local regions in the image
— Regions obtained by segmentation
— Regions of interest (ROI) — around interest points (keypoints)

Interest points: corners, edges and others

Keypoints: points in images, which are invariant to image
translation, scale and rotation, and are minimally affected by
noise and small distortions

Scale-invariant feature transform (SIFT) by David Lowe

ldea of SIFT

* Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

\SIFT Eeaturey

Claimed Advantages of SIFT

* Locality: features are local, so robust to occlusion and
clutter (no prior segmentation)

* Distinctiveness: individual features can be matched
to a large database of objects

* Quantity: many features can be generated for even
small objects

 Efficiency: close to real-time performance

* Extensibility: can easily be extended to wide range of
differing feature types, with each adding robustness

SIFT Program

* Detect keypoints using the SIFT detector

def SIFT():
imgl = cv.imread("flower.jpg")
img2 = cv.imread("image.orig/685.jpg")
if imgl is None or img2 is None:
print('Error loading images!'')
exit(0)

minHessian = 400

detector = cv.SIFT create()

keypointsl, descriptorsl = detector.detectAndCompute(imgl, None)
keypoints2, descriptors2 = detector.detectAndCompute(img2, None)

SIFT Program

 Match descriptor vectors with a brute force
matcher
matcher = cv.Descriptorfatcher_create(cv.DescriptorHatcher BRUTEFORCE)
matches = matcher.match(descriptorsl, descriptors2)

img_matches = np.empty((max(imgl.shape[0], img2.shape[@]), imgl.shape[1]+img2.shape[1], 3), dtype=np.uint8)

cv.drawMatches(imgl, keypointsl, img2, keypoints2, matches, img_matches)
#-- Show detected matches

cv. imshow('Matches: SIFT (Python)', img_matches)

cv.waitKey()

SIFT Program

SIFT Program

* Only show “good” matches

matches = sorted(matches, key = lambda x:x.distance)
min_dist = matches[0].distance
good_matches = tuple(filter(lambda xix.distance <= 2 % min_dist, matches))

img_matches = np.empty((max(imgl.shape[0], img2.shape[0]), imgl.shape(1]+img2.shapell], 3), dtype=np.uint8)
cv.drawMatches(imgl, keypointsl, img2, keypoints2, good_matches, img_matches)

cv. imshow('Good Matches: SIFT (Python)', img_matches)
cv.waitKey()

SIFT Program

Good Matches: SIFT (Python)

* Not showing single keypoints

— cv.drawMatches(imgl, keypointsl, img2, keypoints2,
good matches, img_matches,
flags=cv.DrawMatchesFlags NOT _DRAW SINGLE_POI
NTS)

Problem of high dimensions

Mean Color = RGB = 3 dimensional vector
Color Histogram = 256 dimensions

Effective storage and speedy retrieval
needed

Traditional data-structures not sufficient

R-trees, SR-Trees etc...

2-dimensional space

Point A

D2

D1

3-dimensional space

Now, imagine...

* An N-dimensional box!!
R3 [Re [R5 | Re [z | |
* We want to conduct a _

I 1 14] Ri8[R10]
nearest neighbor Be B olgnee] skl Rkl iSRS
query_ To Data Tuples -

* R-trees are designed AT R
for speedy retrieval of e L
results for such Eiaﬁﬁm@ [
purposes. el

* Designed by Guttmann SR =
in 1984. i

Feature fusion:

* We need multiple characters to identify an

object. For example, first it is a ball, but not
head, not basketball. So only using shape or
edge feature is not enough. We need
additional information, such as color, texture
to further check the object.

Feature fusion is significant to performance!

Last but not least...

Feature fusion is significant to
performance!

