
IERG 4210
Web Programming & Security

Tutorial 6

(Part of slides are modified from the former TA Fan YANG)

CHEN Lin

● Phase 4: Secure your website

○ Prevent XSS, CSRF, SQL attacks (Phase 4.1-4.3, 4.5)

○ Authentication for Admin Panel (Phase 4.4, 4.5)

■ Otherwise everyone can manipulate your database.

○ Apply SSL certificate (Phase 4.6)

Outline

Common Attacks on server side:
● Code injection attack

○ SQL Injection (Manipulate Database query input)
○ File or shell command injection
○ XSS can also be classified as one type of injection attack (used to inject

malicious payload)
● Exploit Session Management Weakness

○ Authorization
○ Cookie management, session hijacking, . . .

● Insecure configurations and components
○ Vulnerable software, like Web server

Server Side Security

SQL injection
• A SQL injection attack happens when a user injects malicious bits of SQL into

your database queries.

SQL injection
Normal SQL query:

SELECT * FROM users WHERE username=’alice’ and password=’secret’

SQL injection:

SELECT * FROM users WHERE username=’alice’ and password=‘ '; drop table

user;’

Delete sensitive data！

SQL injection
Normal SQL query:

SELECT * FROM users WHERE username=’alice’ and password=’secret’

SQL injection:

SELECT * FROM users WHERE username=’alice’--‘’ and password=’any’

SELECT * FROM users WHERE username=’ alice’ and password=’any’ or ‘1’=‘1’

The above two statements are equivalent to

SELECT * FROM users WHERE username=’alice’

Log in without password!

SQL injection - Defense
Use prepared statements and parameterized queries.

Advantages: parse once; auto-processing

- Prepared statements ensures that an application will be able to use the

same data access paradigm regardless of the capabilities of the

database.

- Use Placeholder or parametrized queries: the malicious SQL will be

escaped and treated as a raw string, not as actual SQL code.

SQL injection - Defense

The query only needs to be parsed (or prepared) once, but can be executed
multiple times with the same or different parameters.
The prepared statements use fewer resources and thus run faster.

All contents entered in the input field is considered as raw string.

SQL injection - Defense
Example: username alice password any’ or 1=1

SQL injection

SELECT * FROM users WHERE username=’alice’ and password=’any’ or 1=1;

Statement object uses part of the password as a query condition when

executing the sql statement

Use prepared statements and parameterized queries.

SELECT * FROM users WHERE username= ‘alice’ and passwd=’any’ ‘or 1=1’

All contents entered in the password field is treated as a raw string, not as

actual SQL code.

SQL injection - Defense
- Avoid the usage of dynamic SQL query

- Use strict input sanitization

e.g., replace or filter single quotes (’), double dashes (--), SELECT, UNION and

other query keywords

- Check input data type

e.g., only integer allowed, regular expression.

- Use security control interfaces.

- Reference: https://owasp.org/www-project-enterprise-security-api/

https://owasp.org/www-project-enterprise-security-api/

Client Side Security
● Cross-Site Request Forgery (CSRF)

● Cross-Site Scripting (XSS)

Cross-Site Request Forgery (CSRF)
CSRF is an attack that forces a user to execute unwanted actions on a web application in

which they're currently authenticated. It allows an attacker to partly circumvent the

same origin policy (SOP), which is designed to prevent different websites from

interfering with each other.

CSRF Example
- If the user is logged in to the

vulnerable website, their browser will

automatically include their session

cookie in the request .

- The attacker's page will trigger an HTTP

request to the vulnerable website.

- The vulnerable website will process the

request in the normal way, treat it as

having been made by the victim user

CSRF example
The attacker's page will trigger an HTTP request to the vulnerable website.

● Using GET request:

<img src=”https://bank.com/transfer?toAcct=024-666666-882&amt=100” width=”1”

height=”1”/>

● Using POST request

<form action=”https://bank.com/transfer” method=”POST”>

<input type=”hidden” name=”to” value=”024-666666-882”/>

<input type=”hidden” name=”amt” value=”100”/>

</form>

<script>document.forms[0].submit()</script>

The request is automatically attached with the victim’s authentication token.

CSRF - Defense
● Referer-based validation - verify that the request originated from the

application's own domain. e.g., when a user sends a request to the bank

through the hacker's website, the Referer of the request points to the

hacker's own website.
Not safe:
- The method of verifying
the Referer value relies on
the third party (i.e. the
browser) to ensure
security.
- Referer field is optional.
When the client sends a
request, it decides
whether to add this field.

CSRF - hidden nonce
● Why CSRF attacks are successful?

All user verification information in the request exists in cookies. Hackers can

completely forge the user's request.

● The key to resisting CSRF is to put information in the request that

hackers cannot forge, and that information does not exist in cookies.

● Submit a hidden nonce(i.e. number used only once) with every form

Nonce (token) is a unique, secret, and unpredictable value that is generated by the

server-side application and shared with the client.

CSRF - hidden nonce
● Very easy to implement

● Put it into all your forms

● Every time the form is submitted, the hidden nonce will be sent to the server

○ The hidden nonce is generated by the server

○ Unpredictable for attackers

● Two subroutines are needed

○ csrf_getNonce() ⇒ Generate the nonce at the server side and store it.

○ csrf_verifyNonce() ⇒ Verify the nonce sent by the client.

CSRF - hidden nonce

CSRF - hidden nonce

In auth-process.php and admin-process.php:

In all forms:

Cross-Site Scripting (XSS)
● Unauthorized cross-origin script access

An attacker “injects” a malicious script into an otherwise trusted website.

● Consequences: executing script in a victim’s origin

○ The injected script gets downloaded and executed by the end user’s

browser when the user interacts with the compromised website.

○ Since the script came from a trusted website, it cannot be

distinguished from a legitimate script.

Cross-Site Scripting (XSS)

● Reflected XSS: payload reflected from request to response

● Stored XSS: The server stores and echoes the payload every time

when a user visits it

● DOM-based XSS: modify the DOM nodes

XSS-- Example
● Reflected XSS attack

● The malicious input is used in the response HTML page.

● https://www.google.com/about/appsecurity/learning/xss/

● <script>alert("Hello\nHow are you?");</script>

https://www.google.com/about/appsecurity/learning/xss/

XSS - Defense
● Input Validation and sanitization

○ PHP filters

○ Reference:

https://www.php.net/manual/e

n/filter.filters.sanitize.php

https://www.php.net/manual/en/filter.filters.sanitize.php
https://www.php.net/manual/en/filter.filters.sanitize.php

XSS - Defense
● Context-dependent Output Sanitizations

○ Why do we still need output sanitization when input validation & sanitization has

been enforced?

■ There may be some unexpected input entrances

■ DO NOT regard contents of your databases as “right”

● They may have been modified

Thank you!

	IERG 4210
Web Programming & Security
Tutorial 6
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25

