Project Tutorial 1

CS4185 Multimedia Technologies and Applications

Outline

- Introduction to OpenCV
- How to Install OpenCV

- Read & Write images & other related Functions
- The Assignment
- One Simple Comparison Example

Introduction of OpenCV

- ✓ The OpenCV (open computer vision) library is a library of programming functions mainly aimed for real time computer vision applications.
- ✓ It was developed by Intel and is now supported by Willow Garage.
- ✓ It's free for use under the open source BSD License.
- ✓ OS Support:
 - Windows, Android, Blackberry, Linux Distribution such as puppy, Ubuntu, ..., Maemo, Free BSD, ...
- ✓ Programming language
 - OpenCV is written in C++ and its primary interface is in C++. There are full interfacing to Python, Java, MATLAB.
- ✓ OpenCV can be used in Embedded Systems.

Introduction of OpenCV

OpenCV has a modular structure, which means that the package includes several shared or static libraries. The following modules are available:

- core a compact module defining basic data structures, including the dense multi-dimensional array Mat and basic functions used by all other modules.
- **imgproc** an image processing module that includes linear and nonlinear image filtering, geometrical image transformations (resize, affine and perspective warping, generic table-based remapping), color space conversion, histograms, and so on.
- video a video analysis module that includes motion estimation, background subtraction, and object tracking algorithms.

Introduction to OpenCV

- calib3d basic multiple-view geometry algorithms, single and stereo camera calibration, object pose estimation, stereo correspondence algorithms, and elements of 3D reconstruction.
- features2d salient feature detectors, descriptors, and descriptor matchers.
- objdetect detection of objects and instances of the predefined classes (for example, faces, eyes, mugs, people, cars, and so on).
- highgui an easy-to-use interface to video capturing, image and video codecs, as well as simple UI capabilities.
- gpu GPU-accelerated algorithms from different OpenCV modules.
- ... some other helper modules, such as FLANN and Google test wrappers,
 Python bindings, and others.

Introduction to OpenCV

OpenCV documentation:

http://docs.opencv.org/index.html

OpenCV tutorials:

https://docs.opencv.org/4.6.0/d6/d00/tutorial_py_root.html

OpenCV books: https://opencv.org/books/

Programming interfaces

- C++ (native)
 - Hard for beginners (programming, environments ...)
 - Debugging C++ code is suffering
- Python
 - Easy
 - Widely used
- Java and MATLAB interfaces
 - Rarely used

- In this year's project tutorials, we will use Python as our teaching programming interfaces.
 - We also provide the C++ code for reference

Using OpenCV with Python3

1. Install python3 from Miniconda. Select the platform you used.

https://docs.conda.io/en/latest/miniconda.html

Latest Miniconda Installer Links

Latest - Conda

(base) garry@JYs-MacBook-Air ~ \$ python
Python 3.9.12 (main, Apr 5 2022, 01:52:34)
[Clang 12.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Platform	Name
Windows	Miniconda3 Windows 64-bit
	Miniconda3 Windows 32-bit
macOS	Miniconda3 macOS Intel x86 64-bit bash
	Miniconda3 macOS Intel x86 64-bit pkg
	Miniconda3 macOS Apple M1 64-bit bash
	Miniconda3 macOS Apple M1 64-bit pkg
Linux	Miniconda3 Linux 64-bit
	Miniconda3 Linux-aarch64 64-bit
	Miniconda3 Linux-ppc64le 64-bit
	Miniconda3 Linux-s390x 64-bit

Using OpenCV with Python3

The anaconda terminal (prompt) in windows

Using OpenCV with Python3

2. Install opency from terminal by pip.

pip install opency-python

That is it!

- Check if it is installed successfully:

```
(CS4185) garry@JYs-MacBook-Air ~ $ python
Python 3.10.4 (main, Mar 31 2022, 03:37:37)
Type "help", "copyright", "credits" or "lice
>>> import cv2 as cv
>>> ■
```

Basic Structure

> Read from an image file

```
img = cv.imread(filename)
```

➤ If you read a jpg file, a 3-channel image is created by default. If you need a grayscale image, use:

```
img = cv.imread(filename, cv.IMREAD_GRAYSCALE)
```

OpenCV Color

Figure (A) is the original RGB image, while
 Figure (B) is the same picture saved using BGR format

OpenCV Color

 We can also use the cvtColor function to convert the image in different color spaces

img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)

Save an image to a file: imwrite(filename, img);

Display an image: imshow(windowname, img);

- Image Resize: resize(img, (weight, height))
 - resized_img = cv.resize(img, (320, 240))

OpenCV treats images as "arrays"

a numpy array that stores the image (each value of the array is a pixel)

img.shape returns

- (height, width, channel)

- OpenCV default format: BGR
 - To obtain components from blue, green and red channel:

```
_blue = img[y,x,0]
_green = img[y,x,1]
_red = img[y,x,2]
```


- Element access
 - You can access a pixel value by its row and column coordinates. For a BGR image, it returns an array of Blue, Green, Red values. For a grayscale image, just the corresponding intensity value is returned.

```
>>> px = img[100,100]
>>> print( px )
[157 166 200]

# accessing only blue pixel
>>> blue = img[100,100,0]
>>> print( blue )
157
```

- Find the per-element absolute difference between two images
 - cv2.absdiff(img1, img2)
 - Useful for comparing two images

- Lots of operations are available in OpenCV, such as Image Filtering (smooth, blur etc.),

 Geometric Image Transformations (resize etc.).
- Detailed information can be found in https://docs.opencv.org/master/d7/da8/tutorial table of content-">ent imgproc.html

 A database of 1000 images, divided into 10 types, is given. Each type contains 100 images.

- A database of 1000 images, divided into 10 types, is given. Each type contains 100 images.
 - African: 0 99.jpg
 - Beach: 100 199.jpg
 - Building: 200 299.jpg
 - Bus: 300 399.jpg
 - Dinosaur: 400 499.jpg

- Elephant: 500 599.jpg
- Flower: 600 699.jpg
- Horse: 700 799.jpg
- Mountain: 800 899.jpg
- Dish: 900 999.jpg

 Given 7 example images, students are asked to retrieve relevant images from the database, i.e., retrieving images that belong to the same type as the example image.

• With the given program, only 3 of the 7 example images can find correct best matching images.

- Students are asked to extend the program and improve retrieval algorithms.
- This assignment can be carried out as individual or group projects. The maximum number of members in each group is 3.
- There are two levels of requirements for the project, basic and advanced, to cater for students of different backgrounds and interests.

Basic Requirements (80%)

Students are required to finish the following four tasks in the basic requirements:

- 1. Improve the number of correctly matched images (20%)
- 2. Modify the above program to retrieve similar images (20%)
- 3. Improve on the Precision (20%)
- 4. Improve on the Recall (20%)

Precision and Recall

- Precision: The percentage of retrieved images that are matched.
- Recall: the percentage of matched images that are retrieved.

$$precision = \frac{\text{No. relevant documents retrieved}}{\text{Total No. documents retrieved}}$$

$$recall = \frac{\text{No. relevant documents retrieved}}{\text{Total No. relevant documents in the collection}}$$

49 images retrieved, all belong to the Africa category.
So the precision is 100%, and the

recall is 49%.

Precision and Recall

- Note: you should use the same set of configurations for all 7 test images, instead of setting different thresholds for different test images like the following:
 - e.g., if input_name == flower.jpg: do something.
- Automatically changing some setting according to the extracted features is allowed.

Advanced Requirements (25%)

The extension includes two parts, <u>technical improvement</u> and <u>UI design</u>. The technical improvement may include <u>new retrieval</u> algorithms (e.g., 80+% of precision and 55+% of recall), <u>high dimensional data indexing</u> (efficiently storing and managing the features extracted from the database, modifying the program so that it does not need to compute the features every time), <u>retrieval algorithms for particular types of images</u> (e.g., sunset images, images containing human faces), <u>a crawler to obtain images from the internet</u>, <u>or adding semantic information</u> to help improve the retrieval performance. Here, <u>15% of marks will be given based on the UI design</u>.

- Submission Details
 - Due date: *Nov. 17, 2024*
 - Program
 - Demo
 - Report
- Refer to the document for details

What does this program do?

- Loads an *input image* and 1000 *database images* to be compared with it.
 - Converts the images to grayscale
 - Compares the base image with the database image using pixel-by-pixel difference.
 - Displays the numerical matching parameters obtained.
 - Displays the input image and the best match result.

 Load and show the input example image, and then convert it to the grayscale.

```
src_input = cv.imread("man.jpg")
cv.imshow("Input", src_input)
# change the image to gray scale
src_gray = cv.cvtColor(src_input, cv.COLOR_BGR2GRAY)
```

 Load the database image, and convert it to grayscale.

```
for img in database:
    # read image
    img_rgb = cv.imread(img)
    # convert to gray scale
    img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
```

 Compare these two images, get the pixel difference score, and check if it is better than all checked ones.

```
# find the minimum difference
if diff <= min_diff:
    # update the minimum difference
    min_diff = diff
    # update the most similar image
    closest_img = img_rgb
    result = img</pre>
```

Pixel-by-pixel difference function.

```
# Compute pixel-by-pixel difference and return the sum
def compareImgs(img1, img2):
    # resize img2 to img1
    img2 = cv.resize(img2, (img1.shape[1], img1.shape[0]))
    diff = cv.absdiff(img1, img2)
    return diff.sum()
```

 Display the best match image, and wait for "ESC" to close the program.

```
print("the most similar image is %s, the pixel-by-pixel difference is %f " % (result, min_diff))
print("\n")

cv.imshow("Result", max_img)
cv.waitKey(0)
cv.destroyAllWindows()
```