CIS 129
Advanced Computer Programming

Chapter 8: User Defined Datatypes: Header and Class

Mr. Horence Chan



Header File

* The C++ Standard Library offers its users a variety of functions, one of
which is header files.

* In C++, all the header files may or may not end with the .h extension.

* A header file in C++ contains:
* Function definitions
e Data type definitions
* Macros



Header File

* Header files offer these features by importing them into your

program with the help of a preprocessor directive called #include.

* These preprocessor directives are responsible for instructing the

C/C++ compiler that these files need to be processed before

compilation.

Source File

Source File

Preprocessor

Processed Code

Processed Code

Compiler

Compiler

Object File

>

Object File

) Executable
ibraries

Program in Memory




Header Files

* Instead of writing a large and complex code, you can create your own
header files and include it in the C++ library to use it whenever you
wish as frequently as you like. It enhances code functionality and

readability.

Source File

Source File

[ =
Preprocessor

Processed Code

Processed Code

Compiler >

Object File

Compiler >

Object File

' Executable
ibraries

Program in Memory




Header File

* Basically, header files are of 2 types:

1. header files: These are the pre-existing
header files already available in the C++ compiler.

2. header files: Header files designed by the
user.




Standard library header files

* Examples of standard library header files:

1. #inlcude<iostream> (Input Output Stream)— Used as a stream of
input and output.

Examples:

2. #include<iomanip> (Input-Output Manipulation)— Used to
manipulating the output

Examples:

3. #include<fstream> (File stream)— Used to control the data to
read from a file as an input and data to write into the file as an output.

Examples:




Syntax of Header File

e Standard library header files:
e #include<filename>
* The name of the header file is enclosed within angular brackets <>

* User-defined header files:
e #include " "
* The name of the header file is enclosed within double quotes " "
. . Extension of header file

* Note: do not include the same header file in the same program twice



User-defined Header Files

int SumNNumbers (int number) { * For example, we want to find the
int sum=0; sum of first n positive numbers.
for(int 1=1; 1<=number; i++){ e Sjnce it not pre-defined in the
sum+=1i; standard C++ library, we can
} create a header file and nhamed

t 11 11
return sum; I




User-defined Header Files

#include <iostream>

|#include " '1

* In the source file (e.g. main.cpp), find
the sum of first n positive numbers
using a self-created header file

using namespace std;
int main () {

int num;

e Sample Output:

cout << "Enter the number of positive"
<< " integers to befadded: ¥ Enter the number of positive integers to
cin >> num; be added:@

cout <<endl;

The sum of the first 99 positive integers
cout << "The sum of the first " << num is 4950

<< " positive integers 1is "

<< (num) | <<

endl;
}



Class and Object

* For example,

Class Objects

Fruit Apple, Banana, Mango

Vehicle Car, Truck, Bus

* A class is a template for objects, and an
object is an instance of a class.

* When the individual objects are created,
they inherit all the variables and functions
from the class.




Class

* Classes have Visibility Modes (Access Specifiers) for the data inside
them.

* The three main visibility modes of members of a class are:

. : Members are accessible from outside the class.

. : Members cannot be accessed (or viewed) from
outside the class

. : Members cannot be accessed from outside the class,

however, they can be accessed in inherited classes.

* Note: Members of a class are by default




C‘aSS: Pu b“C » Name, Grade and Mark (data inside

the class) are known as data members/

Student { .
oublic: attributes of the class.
string Name; * sudentl, and sudent?2 (WhICh were
char Grade; earlier structure type variables) are
int Mark; termed as objects.

b

int main () {

Output

Student sudentl;
Student information:

sudentl .Name = "Peter Parker";

sudentl.Grade = 'B'; Peter Parker B 80
dentl.Mark = 80;

SHeenEs e Mary Jane A 90

Student sudent?Z2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudentl.Name <<" "<< sudentl.Grade <<" "<< sudentl.Mark <<endl;
cout<< sudent2.Name <<" "<< sudentZ.Grade <<" "<< sudentZ.Mark <<endl;

return 0;

}



Class: Public

Student {
public:

string Name;

char Grade; Class: Student student1 student2
int Mark;
s Name Peter Parker Mary Jane
int main () { Grade
Student sudentl; Mark
sudentl .Name = "Peter Parker";
sudentl.Grade = 'B';

sudentl.Mark = 80;

Student sudent2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudentl.Name <<" "<< sudentl.Grade <<" "<< sudentl.Mark <<endl;
cout<< sudentZ.Name <<" "<< sudent?.Grade <<" "<< sudentZ2.Mark <<endl;
return 0O;

}



Class: Private

Student{

string Name;

char Grade;

* Members of a class are

int Mark; by default
i * Members be accessed
int main () { (or viewed) from outside the class
Student sudentl;
sudentl.Name = "Peter Parker";
sudentl.Grade = 'B';

sudentl.Mark = 80;

Student sudent?Z2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudentl.Name <<" "<< sudentl.Grade <<" "<< sudentl.Mark <<endl;
cout<< sudentZ.Name <<" "<< sudent?.Grade <<" "<< sudentZ2.Mark <<endl;

return 0;

}

ONEDOES NOT SIMPLY,

o Loy
oo .

TOUCHHIS PRIVATES IN PUBLIC

MEMEFUL.COM|

=
>
©
=)
>
=
=
S
=



Class: Private

Student{

string Name; e To access private members outside the
char Grade: class, we may define some function in
| public and access the function inmain ()
int Mark;

public: * Classes have the ability to have functions
void Input () inside them to manipulate the data.
getline (cin, Name); * These are known as
cin >> Grade >> Mark; * These can be defined in public mode so
} that objects can directly access them.
vold Output () * Note: When we say ‘members’ of a class,
cout<< Name <<" "<< Grade<<" " << Mark;} We are referring to both data members
) and member functions.

int main () { Sample Output:

Student sudentl; PeterlDarker

sudentl.Input ()
B 80

Peter Parker B 80

sudentl.Output () ;

return 0;}



Class: Function

Student{

string Name; char Grade; int Mark;

public:
void Input();
void Output ()

i

int main () {
Student sudentl;
sudentl.Input ()
sudentl.Output () ;
return O;

}

void Student: :Input () {
getline(cin, Name);
cin >> Grade >> Mark;

}

void Student: :Output () {

cout<< Name <<" "<< Grade<<" " << Mark;

 Member functions is usually preferable to
define them outside the class, especially if
they have control structures such as
conditional constructs and loops.

* This is because some compilers tend to
give errors when functions containing
these are defined within the classes.

* To define functions outside the classes, we
have the function prototypes within the
classes, and the definition outside.

Sample Output:
B 80
Peter Parker B 80



Class: Function

Student{

string Name; char Grade; int Mark;
public:
void Input();
void Output ()

i

int main () {
Student sudentl;
sudentl.Input ()
sudentl.Output () ;
return 0;

}

void Student: :Input () {
getline(cin, Name);
cin >> Grade >> Mark;

}

void Student: :Output () {

cout<< Name <<" "<< Grade<<" " << Mark;

{

"is called ‘scope resolution
operator’, and is used to indicate that the
functions belong to a particular class.

For instance, Student: : Input ()
means function Input () belongsto
class

Had we only written void Input () and
defined it, it would have meant that this
function is not related to the class.

Member functions in a class are identical
to regular functions- they are defined
normally, have a return type, name and
arguments.



Passing Class Objects as Arguments to Functions

Student {
public: e Similar to other variables, class objects
int Marks; can also be passed as arguments to

vold adder (Student studentX) { funCtionS
Marks = Marks + studentX.Marks;}}; ]
int main () {

Student studentl, student2, average;

* When running Marks = Marks +
studentl.Marks = 80; .
udent? Marks — 90 .studentXO.Marks; ,.the expression
sverage.Marks = 0; in the function adder is changed to

cout << average.Marks << endla‘r—____——————

average.adder (studentl) ;

Output:

cout << average.Marks << endl;
average.adder (student?2) ;

cout << average.Marks << endl;
average.Marks /= 2;

cout << average.Marks << endl;

return 0;}



Having a class as return-type of a function

Student {
public: * We can return an object of the
int Marks; class Student when function
Student adder (Student studentX, Student studentY) { adder iS Ca”ed-

Student studentA;

studentA.Marks = studentX.Marks + studentY.Marks; .
* When running

return studentAh;

studentA.Marks =
} studentX.Marks +
b studentY.Marks;, the
ot main()f expression in the function adder
Student studentl, student?, average; iS Changed tO
studentl.Marks = 80;
student2.Marks = 90; “rﬂ”"""""
average = average.adder (studentl , student2);
cout << average.Marks <<endl; OUtpUt:

average.Marks /= 2;
cout << average.Marks <<endl;

return 0O;}



