
Chapter 8: User Defined Datatypes: Header and Class

Mr. Horence Chan

CIS 129
Advanced Computer Programming

Header File

• The C++ Standard Library offers its users a variety of functions, one of
which is header files.

• In C++, all the header files may or may not end with the .h extension.

• A header file in C++ contains:

• Function definitions

• Data type definitions

• Macros

Header File

• Header files offer these features by importing them into your
program with the help of a preprocessor directive called #include.

• These preprocessor directives are responsible for instructing the
C/C++ compiler that these files need to be processed before
compilation.

Header Files

• Instead of writing a large and complex code, you can create your own
header files and include it in the C++ library to use it whenever you
wish as frequently as you like. It enhances code functionality and
readability.

Header File

• Basically, header files are of 2 types:

1. ___________________ header files: These are the pre-existing
header files already available in the C++ compiler.

2. ___________________ header files: Header files designed by the
user.

Standard library header files

• Examples of standard library header files:

1. #inlcude<iostream> (Input Output Stream) – Used as a stream of
input and output.

Examples: _______________________________________

2. #include<iomanip> (Input-Output Manipulation) – Used to
manipulating the output

Examples: _______________________________________

3. #include<fstream> (File stream) – Used to control the data to
read from a file as an input and data to write into the file as an output.

Examples: _______________________________________

Syntax of Header File

• Standard library header files:
• #include<filename>

• The name of the header file is enclosed within angular brackets <>

• User-defined header files:
• #include "_______________"

• The name of the header file is enclosed within double quotes ""

• ___: Extension of header file

• Note: do not include the same header file in the same program twice

User-defined Header Files

int SumNNumbers (int number){

int sum=0;

for(int i=1; i<=number; i++){

sum+=i;

}

return sum;

}

• For example, we want to find the
sum of first n positive numbers.

• Since it not pre-defined in the
standard C++ library, we can
create a header file and named
it "__________"

User-defined Header Files

#include <iostream>

#include "_______________"

using namespace std;

int main(){

int num;

cout << "Enter the number of positive"

<< " integers to be added: ";

cin >> num;

cout <<endl;

cout << "The sum of the first " << num

<< " positive integers is "

<< _________________(num) <<

endl;

}

• In the source file (e.g. main.cpp), find
the sum of first n positive numbers
using a self-created header file

• Sample Output:

Enter the number of positive integers to
be added: 99

The sum of the first 99 positive integers
is 4950

Class and Object

• For example,

• A class is a template for objects, and an
object is an instance of a class.

• When the individual objects are created,
they inherit all the variables and functions
from the class.

Class Objects

Fruit Apple, Banana, Mango

Vehicle Car, Truck, Bus

Class

• Classes have Visibility Modes (Access Specifiers) for the data inside
them.

• The three main visibility modes of members of a class are:

• ____________: Members are accessible from outside the class.

• ____________: Members cannot be accessed (or viewed) from
outside the class

• ____________: Members cannot be accessed from outside the class,
however, they can be accessed in inherited classes.

• Note: Members of a class are ____________ by default

Class: Public
class Student{

public:

string Name;

char Grade;

int Mark;

};

int main(){

Student sudent1;

sudent1.Name = "Peter Parker";

sudent1.Grade = 'B';

sudent1.Mark = 80;

Student sudent2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudent1.Name <<" "<< sudent1.Grade <<" "<< sudent1.Mark <<endl;

cout<< sudent2.Name <<" "<< sudent2.Grade <<" "<< sudent2.Mark <<endl;

return 0;

}

• Name, Grade and Mark (data inside
the class) are known as data members/
attributes of the class.

• sudent1, and sudent2 (which were
earlier structure type variables) are
termed as objects.

Output

Student information:

Peter Parker B 80

Mary Jane A 90

Class: Public
class Student{

public:

string Name;

char Grade;

int Mark;

};

int main(){

Student sudent1;

sudent1.Name = "Peter Parker";

sudent1.Grade = 'B';

sudent1.Mark = 80;

Student sudent2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudent1.Name <<" "<< sudent1.Grade <<" "<< sudent1.Mark <<endl;

cout<< sudent2.Name <<" "<< sudent2.Grade <<" "<< sudent2.Mark <<endl;

return 0;

}

Class: Student student1 student2

Name Peter Parker Mary Jane

Grade

Mark

Class: Private
class Student{

string Name;

char Grade;

int Mark;

};

int main(){

Student sudent1;

sudent1.Name = "Peter Parker";

sudent1.Grade = 'B';

sudent1.Mark = 80;

Student sudent2 ={"Mary Jane", 'A', 90};

cout<<"Student information: "<<endl;

cout<< sudent1.Name <<" "<< sudent1.Grade <<" "<< sudent1.Mark <<endl;

cout<< sudent2.Name <<" "<< sudent2.Grade <<" "<< sudent2.Mark <<endl;

return 0;

}

• Members of a class are ____________
by default

• Members ____________ be accessed
(or viewed) from outside the class

Class: Private
class Student{

string Name;

char Grade;

int Mark;

public:

void Input(){

getline(cin, Name);

cin >> Grade >> Mark;

}

void Output(){

cout<< Name <<" "<< Grade<<" " << Mark;}

};

int main(){

Student sudent1;

sudent1.Input();

sudent1.Output();

return 0;}

• To access private members outside the
class, we may define some function in
public and access the function in main()

• Classes have the ability to have functions
inside them to manipulate the data.

• These are known as __________________.

• These can be defined in public mode so
that objects can directly access them.

• Note: When we say ‘members’ of a class,
we are referring to both data members
and member functions.

Sample Output:

Peter Parker

B 80

Peter Parker B 80

Class: Function
class Student{

string Name; char Grade; int Mark;

public:

void Input();

void Output();

};

int main(){

Student sudent1;

sudent1.Input();

sudent1.Output();

return 0;

}

void Student::Input(){

getline(cin, Name);

cin >> Grade >> Mark;

}

void Student::Output(){

cout<< Name <<" "<< Grade<<" " << Mark;

}

• Member functions is usually preferable to
define them outside the class, especially if
they have control structures such as
conditional constructs and loops.

• This is because some compilers tend to
give errors when functions containing
these are defined within the classes.

• To define functions outside the classes, we
have the function prototypes within the
classes, and the definition outside.

Sample Output:

Peter Parker

B 80

Peter Parker B 80

Class: Function

• ‘_____’ is called ‘scope resolution
operator’, and is used to indicate that the
functions belong to a particular class.

• For instance, Student::Input()
means function Input() belongs to
class __________.

• Had we only written void Input() and
defined it, it would have meant that this
function is not related to the class.

• Member functions in a class are identical
to regular functions- they are defined
normally, have a return type, name and
arguments.

class Student{

string Name; char Grade; int Mark;

public:

void Input();

void Output();

};

int main(){

Student sudent1;

sudent1.Input();

sudent1.Output();

return 0;

}

void Student::Input(){

getline(cin, Name);

cin >> Grade >> Mark;

}

void Student::Output(){

cout<< Name <<" "<< Grade<<" " << Mark;

}

class Student{

public:

int Marks;

void adder(Student studentX){

Marks = Marks + studentX.Marks;}};

int main(){

Student student1, student2, average;

student1.Marks = 80;

student2.Marks = 90;

average.Marks = 0;

cout << average.Marks << endl;

average.adder(student1);

cout << average.Marks << endl;

average.adder(student2);

cout << average.Marks << endl;

average.Marks /= 2;

cout << average.Marks << endl;

return 0;}

• Similar to other variables, class objects
can also be passed as arguments to
functions.

• When running Marks = Marks +

studentX.Marks;,the expression
in the function adder is changed to

Output:

Passing Class Objects as Arguments to Functions

Having a class as return-type of a function
class Student{

public:

int Marks;

Student adder(Student studentX, Student studentY){

Student studentA;

studentA.Marks = studentX.Marks + studentY.Marks;

return studentA;

}

};

int main(){

Student student1, student2, average;

student1.Marks = 80;

student2.Marks = 90;

average = average.adder(student1 , student2);

cout << average.Marks <<endl;

average.Marks /= 2;

cout << average.Marks <<endl;

return 0;}

• We can return an object of the
class Student when function
adder is called.

• When running
studentA.Marks =
studentX.Marks +
studentY.Marks;, the
expression in the function adder
is changed to

Output:

