
DET102 Data Structures

and Algorithms
Lecture 8: Graph

1

Outlines

▪ Terms & Definitions

▪ Representations of graphs

▪ Graph traversals

▪ BFS – Breath-first search

▪ DFS - Depth-first search

2

Definition

 G=(V,E)

 Vertex: v, |V|=n

 Edge: e, |E|=m

Adjacency(鄰接): u ~ v

Incidence (關聯): u ~ e, v ~ e

u

v

e

3

Undirected graphs 4

Directed graph

Discrete Mathematics

Porgramming

Introduction to Computing Data Structures and

Algorithms

Artificial Intelligence

How to schedule your study plan？

u

v

e

(tail)

(head)

5

Mixed Graph6

Weighted Undirected Graph7

Weighted Directed Graph8

Types of Graphs

Graph Features

Undirected graph Edges are undirected

Directed graph Edges are directed

Weighted undirected

graph

Edges have weights but

no directions

Unweighted directed

graph

Edges have weights and

directions

9

Terms and definitions

A graph G consists of:
A non-empty set of vertices (or nodes): V

A set of edges: E

E & V are related in a way that the
vertices on both ends of an edge are
members of V

Usually written as G = (V, E)

10

❖Usually Vertices are used to represent a position, an
object or state meanwhile Edges are used to represent a
transaction or relationship

|V|: number of vertices

|E|: number of edges

(a,b) and (b,a) represent the same

edge. a and b are adjacent.

Edge

Ordered pair (u,v) Unordered pair

{u,v}
a b

c

E={ (a, b), (c, b), (a, c) }

a b

c

E={ (a, b), (a, c) , (b, c) }

in the Directed Graph in the Undirected Graph

11

Path

▪ A path is a sequence of alternating vertices and edges that

starts at a vertex and ends at a vertex such that each edge is

incident to its predecessor and successor vertex.

▪ Simple path: each vertex in the path is distinct

▪ directed path: all edges are directed and are traversed

along their direction

B D C

A Simple path: <C,A,D,B>

Path: <C,A,B,A,D>

12

Cycle

▪ A cycle is a path that starts and ends at the same

vertex, and that includes at least one edge.

▪ Simple cycle: each vertex in the cycle is distinct,

except for the first and last one.

▪ directed cycle: all edges are directed and are

traversed along their direction

B D C

A
Simple Cycle: <C,A,B,C>

Cycle: <C, A, D, B, A, B, C>

Eulerian tour: <C,A,D, C, D, B,A,B,C>

Hamiltonian tour: <C, A, D, B, C>

13

HKG

How to represent the two flights from HKG to SFO?

How to represent flycation in Hong Kong?

parallel edges or multiple edges

Self-loop

14

Find a path and a cycle from the above graph.

15

Weight
Graph can be un-weighted or weighted, in which a value is

associated with each edge.

 In directed graph, the weights of edges going in opposite

directions can be different.

 For example:

Whether a bus can go from TKO to Shatin: Unweighted (=1...)

The bus fee it takes from TKO to Shatin: Weighted

16

Weighted graph Unweighted graph

3

5

12

6
7

16
w(u,v)=6

u

v

Directed Acyclic Graph (DAG)

Which is a DAG？

no cycle

17

Degree

 Degree of a vertex is the number of edges connecting

to it

 For directed graph, degree is further classified as in-

degree (to this vertex) & out-degree (from this vertex)

18

AB

C

D

Node A is having a degree of 3

(connects B, C, and D)

W

X
Y

Z

Node W is having an in-degree of 2

(X, Y) and an out-degree of 1 (Z)

Exercise

Vertex In-degree Out-degree

0

1

2

3

4

5

19

Simple Graph V.S. Complete graph

 Simple graph:

an un-weighted, undirected graph containing no graph loops or

multiple edges

Complete graph:

A simple graph in which every pair of vertices are connected directly.

If number of vertices = V, number of edges = ？

20

Connected Components

 Subgraph is a graph whose vertices and edges are subsets of
another graph.

 A graph G'=(V', E') is a subgraph of another graph G=(V, E) iff

 V'⊆ V, and

 E'⊆ E ∧ ((v1, v2)∈ E' → v1, v2∈ V').

 Note: In general, a subgraph need not have all possible
edges. If a subgraph has every possible edge, it is an induced
subgraph.

 A connected component or simply component of an
undirected graph is a subgraph in which each pair of nodes is
connected with each other via a path.

21

Properties of graph

▪ If G is an undirected graph with m edges and vertex

set V, then

▪ If G is a directed graph with m edges and vertex set V,

then

▪Let G be a simple graph with n vertices and m edges. If G

is undirected, then m ≤ n(n−1)/2, and if G is directed, then

m ≤ n(n−1).

▪Let G be an undirected graph with n vertices and m

edges.

▪ If G is connected, then m ≥ n−1.

▪If G is a tree, then m = n−1.

▪If G is a forest, then m < n−1.

22

Graph Representation
23

Vertex ADT

▪ A graph is a collection of vertices and edges.

▪ We model the abstraction as a combination of

three data types: Vertex, Edge, and Graph.

▪ Vertex: stores an arbitrary element provided by

the user (e.g., an airport code);

▪ we assume it supports a method, element(), to

retrieve the stored element.

24

Edge ADT

▪ Edge: stores an associated object (e.g., a flight number,
travel distance, cost),

▪ retrieved with the element() method.

▪ In addition, we assume that an Edge supports the
following methods:

▪ endpoints(): Return a tuple (u,v) such that vertex u is the origin
of the edge and vertex v is the destination; for an undirected
graph, the orientation is arbitrary.

▪ opposite(v): Assuming vertex v is one endpoint of the
edge (either origin or destination), return the other
endpoint.

25

Representations of graphs

When working with graph, we always

perform one of the following operation:

Get the list of vertices connecting a given

vertex.

Are vertices A and B connected?

What is the weight of edge from A to B?

What is the in/out degree of a vertex?

26

Graph ADT

▪ Methods:

▪ vertex count(): Return the number of vertices of the graph.

▪ vertices(): Return an iteration of all the vertices of the graph.

▪ edge count(): Return the number of edges of the graph.

▪ edges(): Return an iteration of all the edges of the graph.

▪ get edge(u,v): Return the edge from vertex u to vertex v, if

one exists;

▪ degree(v, out=True): For an undirected graph, return the

number of edges incident to vertex v. For a directed graph,

return the number of outgoing (resp. incoming) edges

incident to vertex v, as designated by the optional parameter.

27

Graph ADT

▪ incident edges(v, out=True): Return an iteration of all edges

incident to vertex v. In the case of a directed graph, report

outgoing edges by default; report incoming edges if the

optional parameter is set to False.

▪ insert vertex(x=None): Create and return a new Vertex storing

element x.

▪ insert edge(u, v, x=None): Create and return a new Edge

from vertex u to vertex v, storing element x (None by default).

▪ remove vertex(v): Remove vertex v and all its incident edges

from the graph.

▪ remove edge(e): Remove edge e from the graph.

28

Representations of graphs

2 standard representations:

Adjacency Matrix

Adjacency List

3 more representations:

 Edge list

 Adjacency map

 Incidence matrix

In each representation, we

maintain a collection to

store the vertices of a

graph.

However, the four

representations differ

greatly in the way they

organize the edges.

29

Adjacency Matrix

Use N*N 2D array to represent the weight (or T/F)

of one vertex to another

30

An undirected graph

A

B

D

F
G

E

C

ABCD E FG

A

B

C

D

E

F

G

0 0 1 0 0 0 0

0 0 1 1 0 0 0

1 1 0 1 1 0 0

0 1 1 0 0 1 0

0 0 1 0 0 1 1

0 0 0 1 1 0 0

0 0 0 0 1 0 0

If M is the adjacency matrix, M[i][j]=M[j][i] for undirected graph.

M[i][j]=1 or true if there is an edge (i,j)

M[i][j]=0 or false if there is no edge between i and j.

31

Adjacency Matrix for Directed Graph32

For undirected graph, only half of the array is used

Fast query on edge weight and connection: O(1)

Total memory used: N2 (what if the number of vertices

= 10K？)

Waste memory if the graph is sparse i.e. #Edge is

much smaller than half of (#Vertex)2 a large

proportion of the array will be zero

Slow when querying the list of neighboring vertices if

the graph is sparse

33 Adjacency Matrix

Adjacency List

▪ The adjacency list structure groups the edges of a graph
by storing them in smaller, secondary containers that are

associated with each individual vertex.

▪ For each vertex v, we maintain a collection I(v), called

the incidence collection of v, whose entries are edges

incident to v.

▪ In the case of a directed graph, outgoing and incoming

edges can be respectively stored in two separate

collections, Iout(v) and Iin(v).

▪ Traditionally, the incidence collection I(v) for a vertex v is

a list, which is why we call this way of representing a

graph the adjacency list structure.

34

35

36

For each vertex v, store u’s neighbors; if in directed

graph, just outgoing edges.

Space:

O(V+E)

Adjacency List

Adjacency List37

Use link list (or equivalent) to store the list of

neighboring vertex (or edge).

Save memory if the graph is sparse: O(V+E)

Query on edge weight / connection can be slow

Graph update is slow (especially if one have to

maintain order of neighbors)

Enumeration of all neighbors is fast.

38 Adjacency List

Representations of graph

 If memory is sufficient and graph update is in-
frequent, can represent the graph in both
methods at the same time…

If you need fast enumeration of neighbors
together with fast query of weight/connection

e.g. List out all the neighbors of vertex A which
do not connect to vertex B or vertex C…

Link-list can be replaced by 1D array with count
(enumeration of neighbor and query on degree
will be fast)

39

40

Edge List

▪ All vertex objects are stored in an unordered list V, and

all edge objects are stored in an unordered list E.

Collections V and E are represented with doubly linked

lists

▪ Performance:

▪ Space: O(m+n)

▪ Advantages: insert_edge, insert_vertex, remove_edge,

vertex_count, edge_count O(1)

▪ Limitation: degree(v), incident_edge(v),

remove_vertex(v) O(m)

41

an edge object refers to the two vertex

objects that correspond to its

endpoints, but that vertices do not refer

to incident edges.

42

https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-

adjacency-matrix

In the graph above, we have three nodes: 1, 2, and 3. Each edge is

given an index and represents a reference from one node to

another.

43

https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-adjacency-matrix
https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-adjacency-matrix

Adjacency Map

▪ Using adjacency list, it is not easy to check

whether there is an edge from u to v because

we have to search through either I(u) or I(v)

(incidence collection of u or v).

▪ We can improve the performance by using a

hash-based map to implement I(v) for each

vertex v.

44

Get_edge(u,v) method can be implemented in

expected O(1) time by searching for vertex u as a

key in I(v), or vice versa.

https://graphie.readthedocs.io/en/latest/Implementations/adjacencymap.html

45

https://graphie.readthedocs.io/en/latest/Implementations/adjacencymap.html

Incidence Matrix

0 e g f h

u 1 1

v 1 1

w 1 1 1

z 1

edge

v
e

rt
e

x

46

Graph Traversals
47

Graph Searching

▪ To determine whether two vertices are connected
(indirectly via some intermediate)

▪ A is a relative of B, B is a relative of C, are A & C relative?

▪ To list out all members of a connected-component

▪ List out all the direct/indirect family members of A…

▪ To find the shortest path (of un-weighted graph) from one
vertex to another

▪ Travel from Shatin to Central with minimum number of changes of
transportation…

▪ TWO algorithms:

▪ DFS (Depth First Search)

▪ BFS (Breadth First Search)

48

49
Go as deep as you can

 Example DFS order (starting from 1):

 1,2,4,6,8,5,3,7

 1,5,7,3,2,8,4,6

 Using Stack to store nodes

 Put the starting node into the stack

 Repeat checking the top

 If top is unvisited

 Print this element, mark as visited

 If top has unvisited neighbors

 Push one of the neighbors on stack

else //top has no unvisited neighbors

 Pop one element from the stack

DFS on Graphs

1

2

3

6

7

5

8

4

50 Example

1

2

3

6

7

5

8

4

1 1 1 1 1 1 1 1

2 2 2

4 4

6

If Top has no unvisited neighbor,

pop()

2

4

2 2

8

2

1 1 1 1 1 1 1

5 5 5 5

3 3 3

7

5

Depth first search (DFS)

DFS (v) { //Starts with vertex v:

visited[v] = true;

for each vertex w adjacent to v {

if (! visited[w])

DFS (w); //Recursion

}

}

51

DFS(A) = A, C, B, D, F, E, G

A

B

D

F

E

C

G

BFS on Graphs

Go as broad as you can

 Example BFS order (starting from 1):

 1,2,5,4,8,3,7,6

 1,5,2,7,3,8,4,6

 Using Queue to store nodes

 Put the starting node into queue

 Repeat the following “Remove”

 Remove:

 Remove a node from the queue

 Print this element

 Insert all his unvisited (haven’t been in the queue) neighbors into

the queue

52

1

2

3

6

7

5

8

4

53
BFS(v) {

visited[v] = true;

Enqueue(v);

While queue not empty {

x = Dequeue();

for each vertex w adjacent to x {

if (! visited[w]) {

Enqueue (w);

visited[w] = true;

}

}

}

}

A

B

D

F

E

C

G

BFS(A) = A, C, B, D, E, G, F

54
Example

1

2

3

6

7

5

8

4

1

2 5

45 8

84 3 7

68 3 7

63 7

67

6

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Outlines
	投影片 3: Definition
	投影片 4: Undirected graphs
	投影片 5: Directed graph
	投影片 6: Mixed Graph
	投影片 7: Weighted Undirected Graph
	投影片 8: Weighted Directed Graph
	投影片 9: Types of Graphs
	投影片 10: Terms and definitions
	投影片 11: Edge
	投影片 12: Path
	投影片 13: Cycle
	投影片 14
	投影片 15
	投影片 16: Weight
	投影片 17: Directed Acyclic Graph (DAG)
	投影片 18: Degree
	投影片 19: Exercise
	投影片 20: Simple Graph V.S. Complete graph
	投影片 21: Connected Components
	投影片 22: Properties of graph
	投影片 23: Graph Representation
	投影片 24: Vertex ADT
	投影片 25: Edge ADT
	投影片 26: Representations of graphs
	投影片 27: Graph ADT
	投影片 28: Graph ADT
	投影片 29: Representations of graphs
	投影片 30: Adjacency Matrix
	投影片 31
	投影片 32: Adjacency Matrix for Directed Graph
	投影片 33: Adjacency Matrix
	投影片 34: Adjacency List
	投影片 35
	投影片 36: Adjacency List
	投影片 37: Adjacency List
	投影片 38: Adjacency List
	投影片 39: Representations of graph
	投影片 40
	投影片 41: Edge List
	投影片 42
	投影片 43
	投影片 44: Adjacency Map
	投影片 45
	投影片 46: Incidence Matrix
	投影片 47: Graph Traversals
	投影片 48: Graph Searching
	投影片 49
	投影片 50: Example
	投影片 51: Depth first search (DFS)
	投影片 52: BFS on Graphs
	投影片 53
	投影片 54: Example

