DET102 Data Structures and Algorithms

Lecture 8: Graph

Outlines

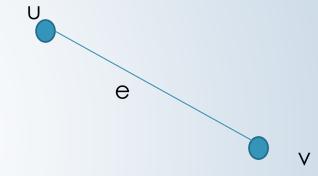
- Terms & Definitions
- Representations of graphs
- Graph traversals
 - BFS Breath-first search
 - DFS Depth-first search

Definition

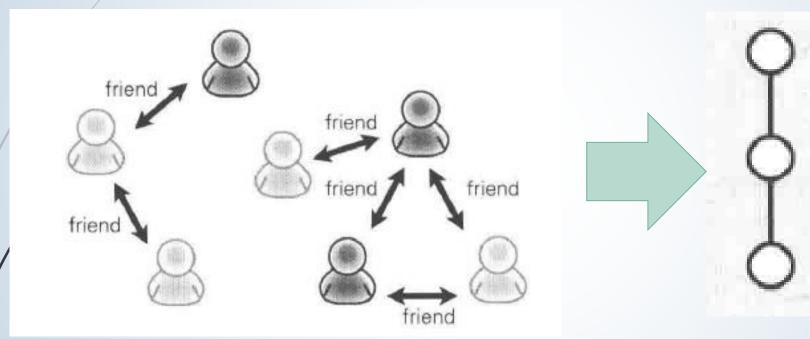
- **■** G=(V,E)
 - Vertex: v, |V|=n
 - Edge: e, |E|=m

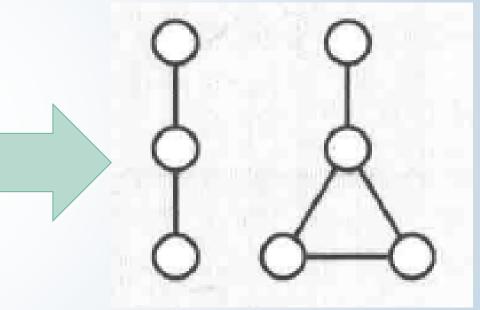
Adjacency(鄰接): u~v

Incidence (關聯): u~e, v~e

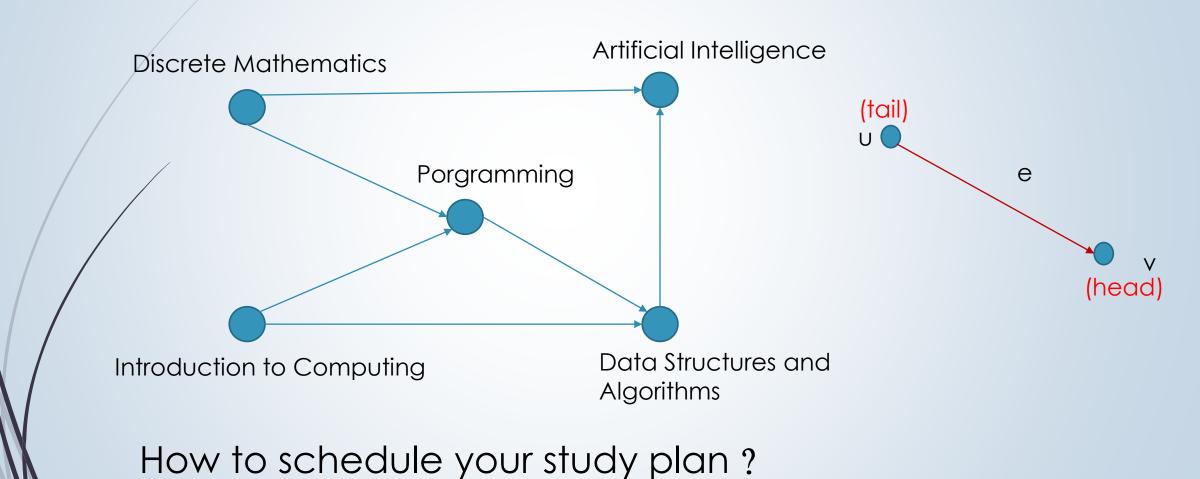


Undirected graphs

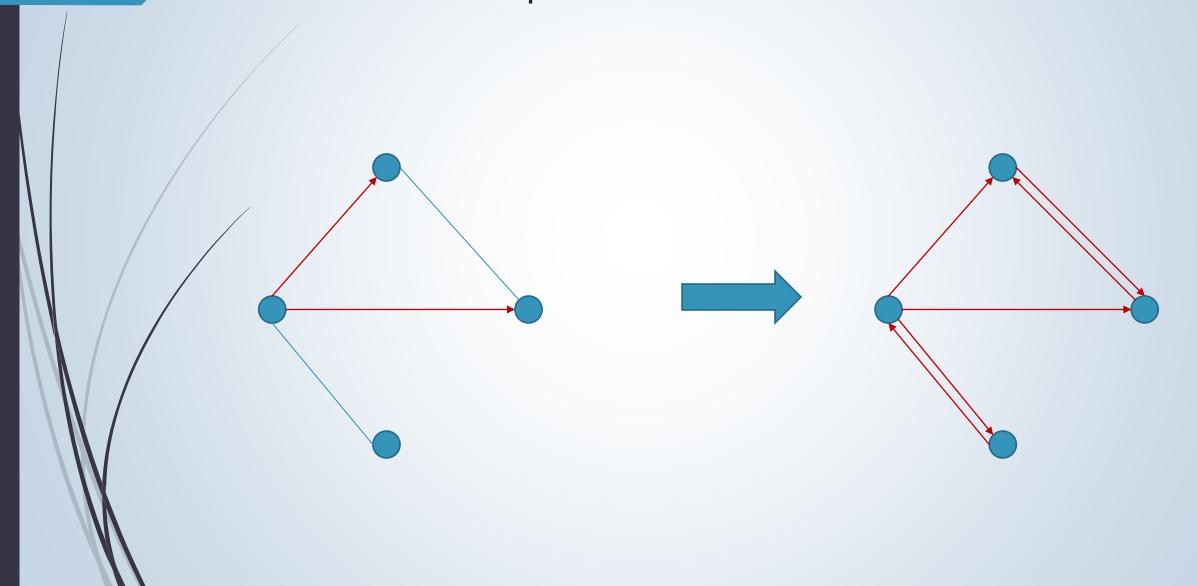




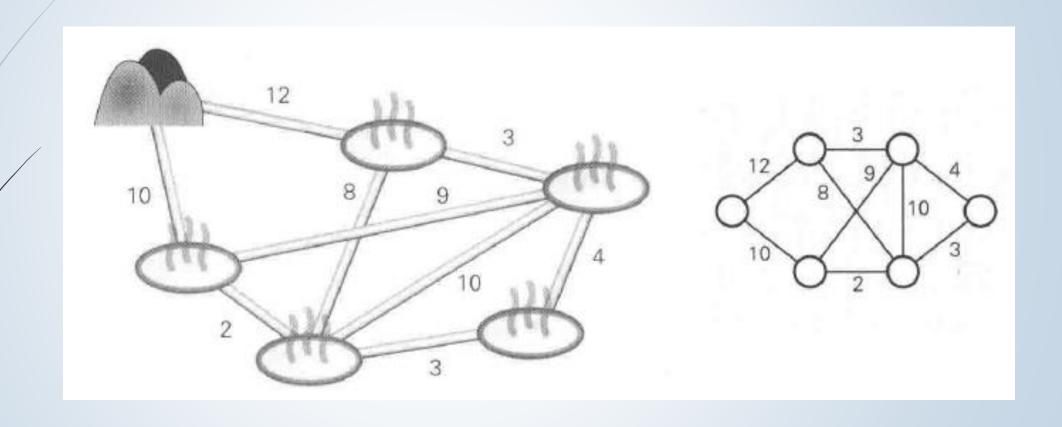
Directed graph



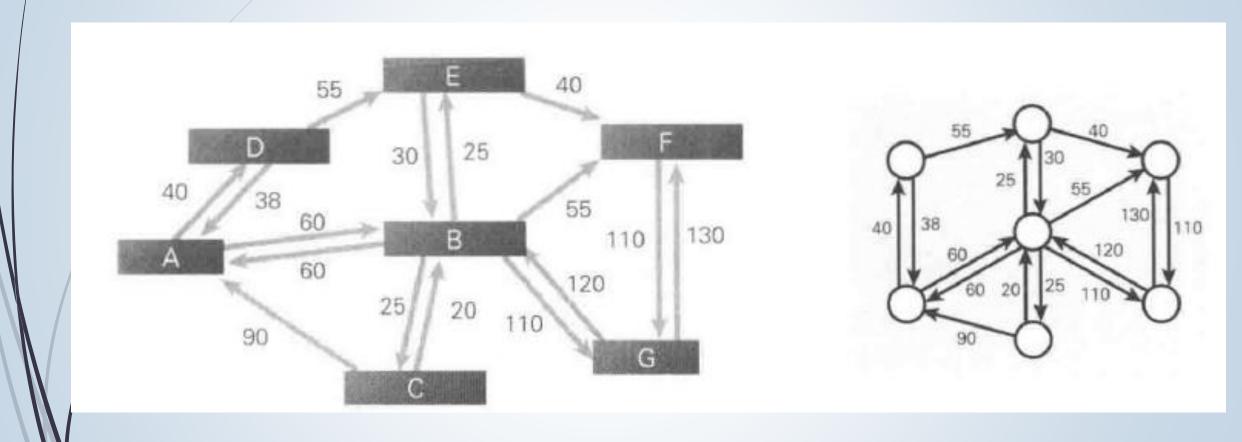
Mixed Graph



Weighted Undirected Graph



Weighted Directed Graph



Types of Graphs

Graph	Features		
Undirected graph	Edges are undirected		
Directed graph	Edges are directed		
Weighted undirected graph	Edges have weights but no directions		
Unweighted directed graph	Edges have weights and directions		

|V|: number of vertices

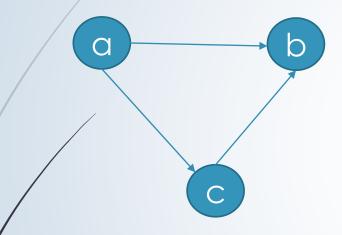
|E|: number of edges

Terms and definitions

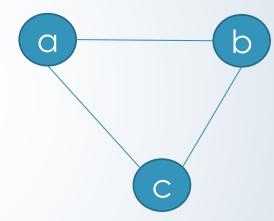
- A graph G consists of:
 - A non-empty set of vertices (or nodes): V
 - A set of edges: E
 - E & V are related in a way that the vertices on both ends of an edge are members of V
 - Usually written as G = (V, E)
- Usually Vertices are used to represent a position, an object or state meanwhile Edges are used to represent a transaction or relationship

Edge

Ordered pair (u,v)



E={ (a, b), (c, b), (a, c) } in the Directed Graph Unordered pair {u,v}

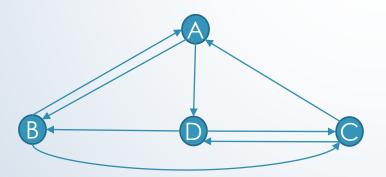


E={ (a, b), (a, c), (b, c) } in the Undirected Graph

(a,b) and (b,a) represent the same edge. a and b are adjacent.

Path

- A path is a sequence of alternating vertices and edges that starts at a vertex and ends at a vertex such that each edge is incident to its predecessor and successor vertex.
 - Simple path: each vertex in the path is distinct
 - directed path: all edges are directed and are traversed along their direction

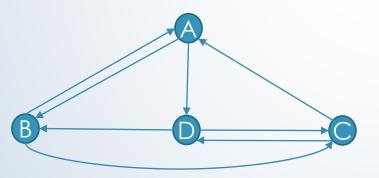


Simple path: <C,A,D,B>

Path: $\langle C, A, B, A, D \rangle$

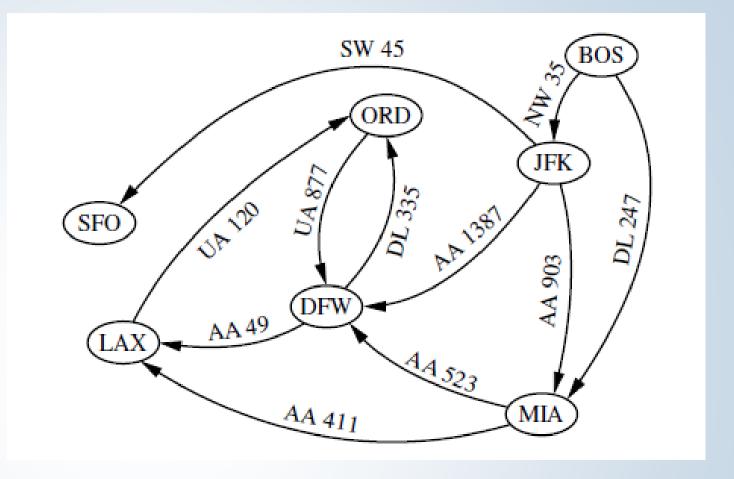
Cycle

- A cycle is a path that starts and ends at the same vertex, and that includes at least one edge.
 - Simple cycle: each vertex in the cycle is distinct, except for the first and last one.
 - directed cycle: all edges are directed and are traversed along their direction



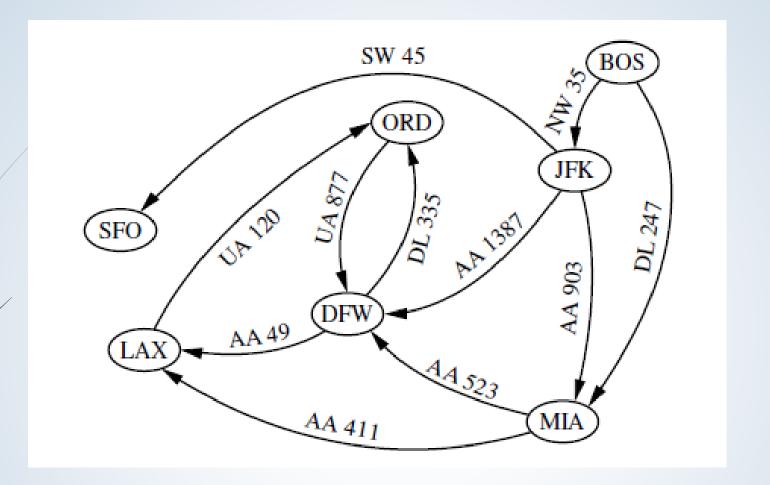
Simple Cycle: <C,A,B,C> Cycle: <C, A, D, B, A, B, C>

Eulerian tour: <C,A,D, C, D, B,A,B,C> Hamiltonian tour: <C, A, D, B, C>



How to represent the two flights from HKG to SFO? parallel edges or multiple edges

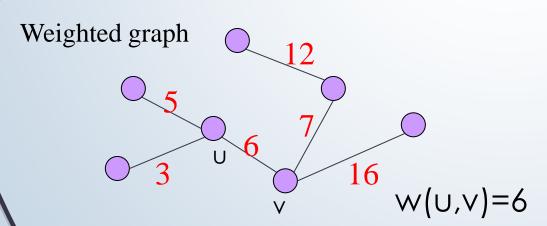
How to represent flycation in Hong Kong? Self-loop

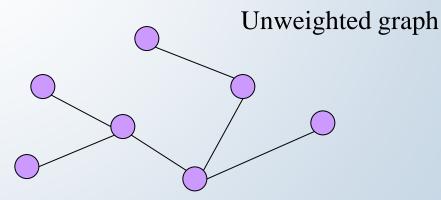


Find a path and a cycle from the above graph.

Weight

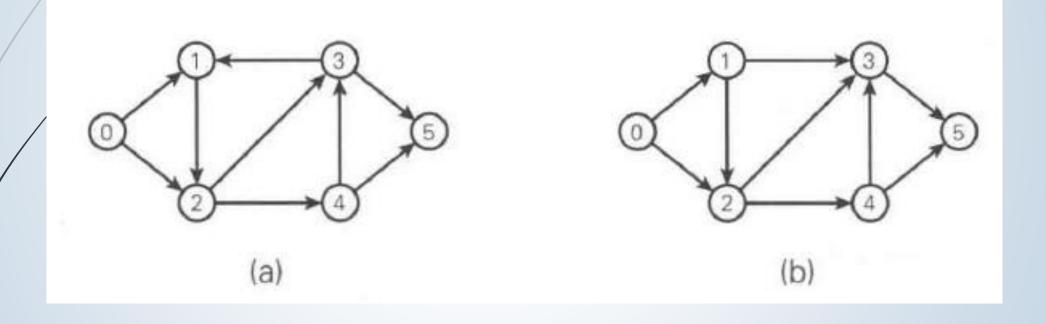
- Graph can be un-weighted or weighted, in which a value is associated with each edge.
- In directed graph, the weights of edges going in opposite directions can be different.
- For example:
 - Whether a bus can go from TKO to Shatin: Unweighted (=1...)
 - The bus fee it takes from TKO to Shatin: Weighted





Directed Acyclic Graph (DAG)

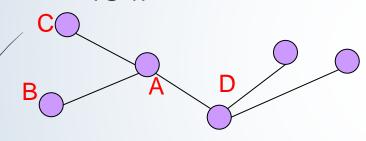
no cycle



Which is a DAG?

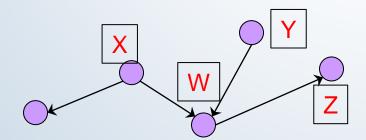
Degree

Degree of a vertex is the number of edges connecting to it



Node A is having a degree of 3 (connects B, C, and D)

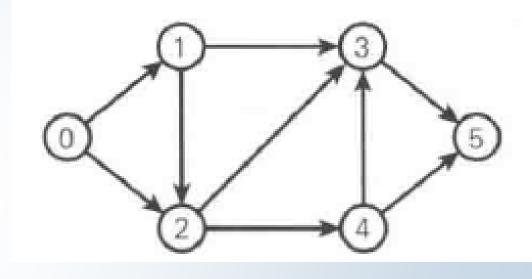
For directed graph, degree is further classified as indegree (to this vertex) & out-degree (from this vertex)



Node W is having an in-degree of 2 (X, Y) and an out-degree of 1 (Z)

Exercise

Vertex	In-degree	Out-degree
0		
1		
2		
3		
4		
5		

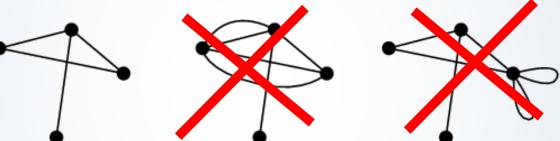


Simple Graph V.S. Complete graph

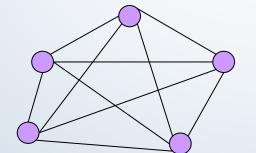
Simple graph:

an un-weighted, undirected graph containing no graph loops or

multiple edges



- Complete graph:
 - A simple graph in which every pair of vertices are connected directly.
 - If number of vertices = V, number of edges = ?



Connected Components

- Subgraph is a graph whose vertices and edges are subsets of another graph.
- A graph G'=(V', E') is a subgraph of another graph G=(V, E) iff
 - V'⊆ V, and
 - \blacksquare E' \subseteq E \land ($(\lor_1, \lor_2) \in$ E' $\rightarrow \lor_1, \lor_2 \in \lor$ ').
- Note: In general, a subgraph need not have all possible edges. If a subgraph has every possible edge, it is an <u>induced</u> <u>subgraph</u>.
- A connected component or simply component of an undirected graph is a subgraph in which each pair of nodes is connected with each other via a path.

Properties of graph

- If G is an undirected graph with m edges and vertex set V, then $\sum_{v \in V} deg(v) = 2m$
- If G is a directed graph with m edges and vertex set V, then $\sum_{v \text{ in } V} indeg(v) = \sum_{v \text{ in } V} outdeg(v) = m.$
 - ■Let G be a simple graph with n vertices and m edges. If G is undirected, then $m \le n(n-1)/2$, and if G is directed, then $m \le n(n-1)$.
 - ■Let G be an undirected graph with n vertices and m edges.
 - If G is connected, then $m \ge n-1$.
 - ■If G is a tree, then m = n-1.
 - ■If G is a forest, then m < n-1.

Vertex ADT

- A graph is a collection of vertices and edges.
- We model the abstraction as a combination of three data types: Vertex, Edge, and Graph.

- Vertex: stores an arbitrary element provided by the user (e.g., an airport code);
 - we assume it supports a method, element(), to retrieve the stored element.

Edge ADT

- Edge: stores an associated object (e.g., a flight number, travel distance, cost),
 - retrieved with the element() method.
- In addition, we assume that an Edge supports the following methods:
 - endpoints(): Return a tuple (u,v) such that vertex u is the origin of the edge and vertex v is the destination; for an undirected graph, the orientation is arbitrary.
 - opposite(v): Assuming vertex v is one endpoint of the edge (either origin or destination), return the other endpoint.

Representations of graphs

- When working with graph, we always perform one of the following operation:
 - Get the list of vertices connecting a given vertex.
 - Are vertices A and B connected?
 - What is the weight of edge from A to B?
 - What is the in/out degree of a vertex?

Graph ADT

- Methods:
 - vertex count(): Return the number of vertices of the graph.
 - vertices(): Return an iteration of all the vertices of the graph.
 - edge count(): Return the number of edges of the graph.
 - edges(): Return an iteration of all the edges of the graph.
 - get edge(u,v): Return the edge from vertex u to vertex v, if one exists;
 - degree(v, out=True): For an undirected graph, return the number of edges incident to vertex v. For a directed graph, return the number of outgoing (resp. incoming) edges incident to vertex v, as designated by the optional parameter.

Graph ADT

- incident edges(v, out=True): Return an iteration of all edges incident to vertex v. In the case of a directed graph, report outgoing edges by default; report incoming edges if the optional parameter is set to False.
- insert vertex(x=None): Create and return a new Vertex storing element x.
- insert edge(u, v, x=None): Create and return a new Edge from vertex u to vertex v, storing element x (None by default).
- remove vertex(v): Remove vertex v and all its incident edges from the graph.
- remove edge(e): Remove edge e from the graph.

Representations of graphs

- 2 standard representations:
 - Adjacency Matrix
 - Adjacency List
- 3 more representations:
 - Edge list
 - Adjacency map
 - Incidence matrix

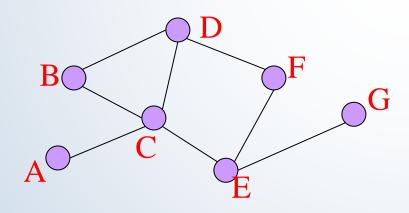
In each representation, we maintain a collection to store the vertices of a graph.

However, the four representations differ greatly in the way they organize the edges.

Adjacency Matrix

 Use N*N 2D array to represent the weight (or T/F) of one vertex to another

An undirected graph



ABCD E FG

A 001000

B 0011000

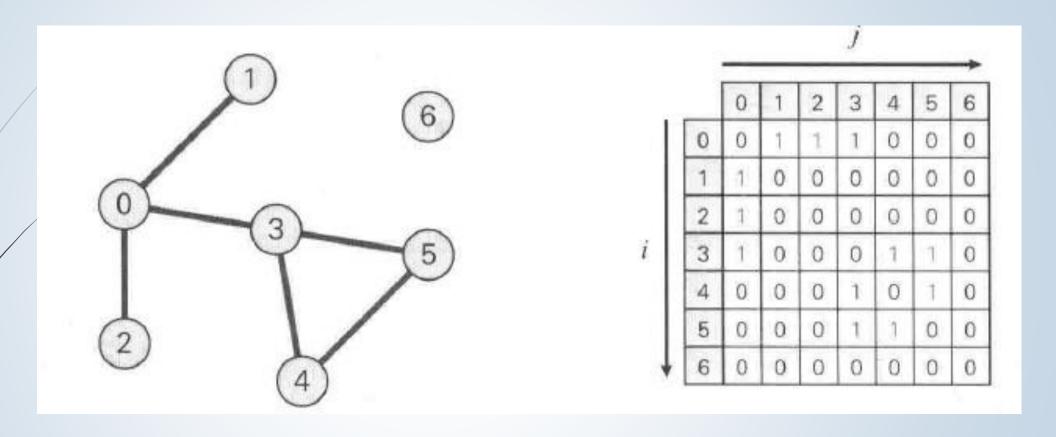
C 1101100

D 0110010

E 0010011

F 0001100

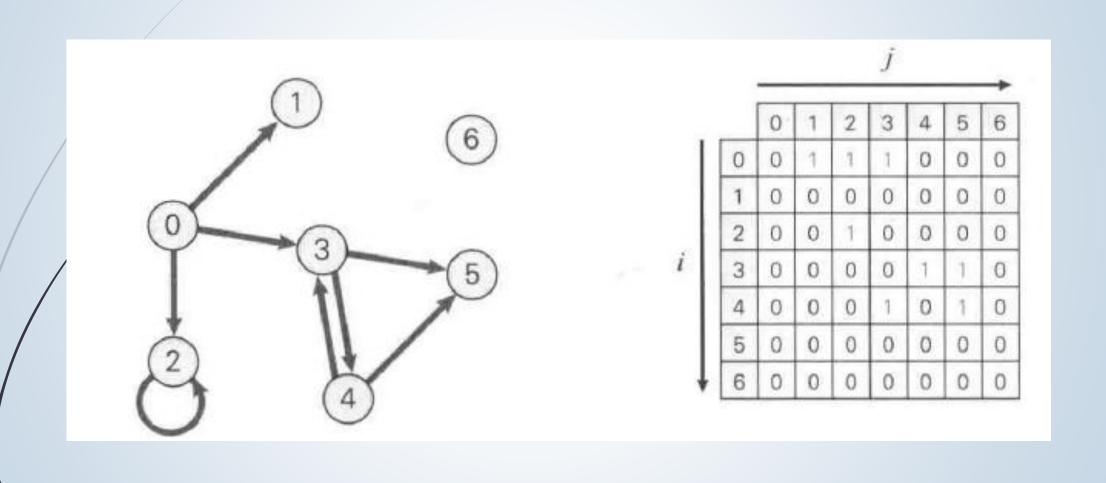
G 0000100



If M is the adjacency matrix, M[i][j]=M[j][i] for undirected graph.

M[i][j]=1 or true if there is an edge (i,j)
M[i][j]=0 or false if there is no edge between i and j.

Adjacency Matrix for Directed Graph

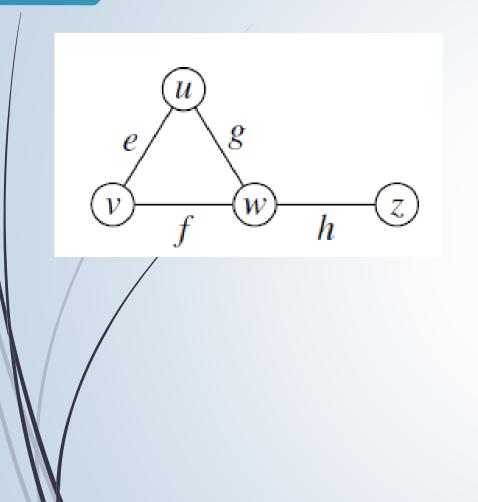


Adjacency Matrix

- For undirected graph, only half of the array is used
- Fast query on edge weight and connection: O(1)
- Total memory used: N^2 (what if the number of vertices = 10K?)
- Waste memory if the graph is sparse i.e. #Edge is much smaller than half of (#Vertex)² a large proportion of the array will be zero
- Slow when querying the list of neighboring vertices if the graph is sparse

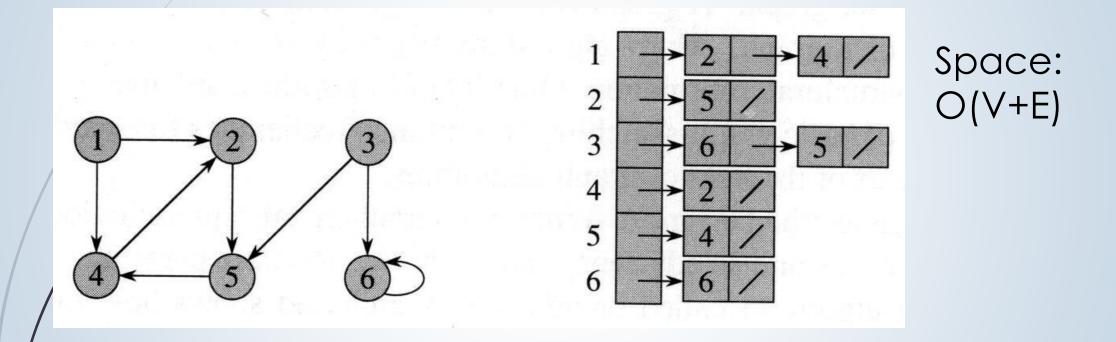
Adjacency List

- The adjacency list structure groups the edges of a graph by storing them in smaller, secondary containers that are associated with each individual vertex.
- For each vertex v, we maintain a collection I(v), called the *incidence collection* of v, whose entries are edges incident to v.
- In the case of a directed graph, outgoing and incoming edges can be respectively stored in two separate collections, lout(v) and lin(v).
- Traditionally, the incidence collection I(v) for a vertex v is a list, which is why we call this way of representing a graph the adjacency list structure.



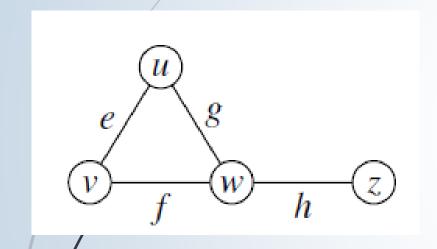
		0	1	2	3
и	 0		e	g	
v	 1	e		f	
w	 2	g	f		h
Z	 3			h	

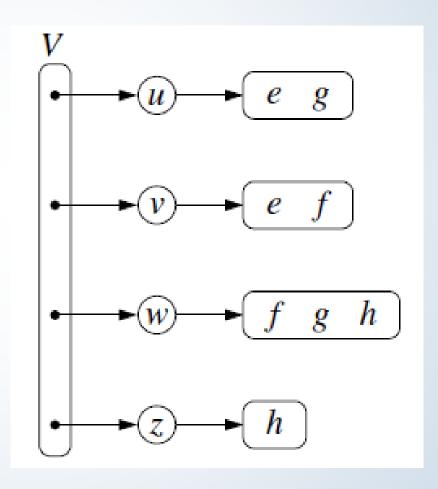
Adjacency List



For each vertex v, store u's neighbors; if in directed graph, just outgoing edges.

Adjacency List



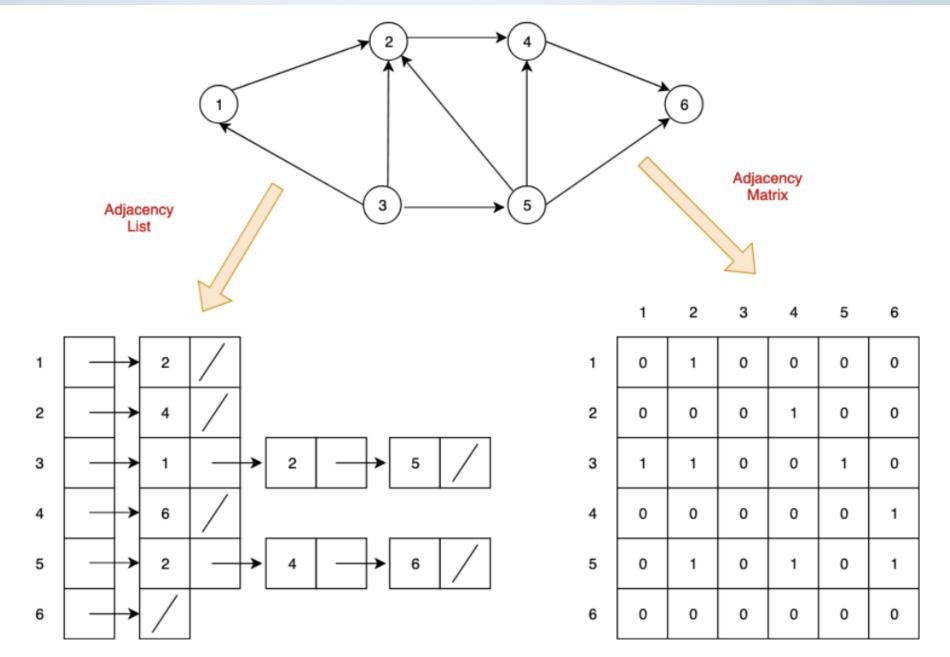


Adjacency List

- Use link list (or equivalent) to store the list of neighboring vertex (or edge).
- Saye memory if the graph is sparse: O(V+E)
- Query on edge weight / connection can be slow
- Graph update is slow (especially if one have to maintain order of neighbors)
- Enumeration of all neighbors is fast.

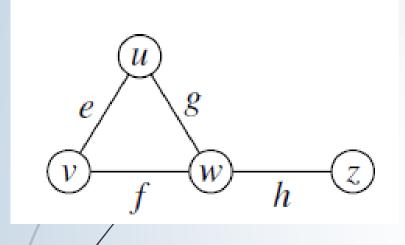
Representations of graph

- If memory is sufficient and graph update is infrequent, can represent the graph in both methods at the same time...
 - If you need fast enumeration of neighbors together with fast query of weight/connection
 - e.g. List out all the neighbors of vertex A which do not connect to vertex B or vertex C...
- Link-list can be replaced by 1D array with count (enumeration of neighbor and query on degree will be fast)

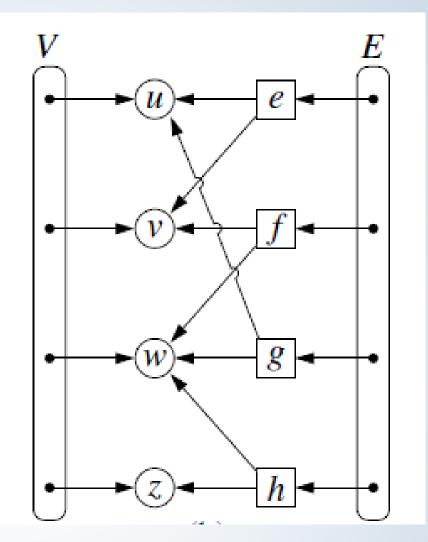


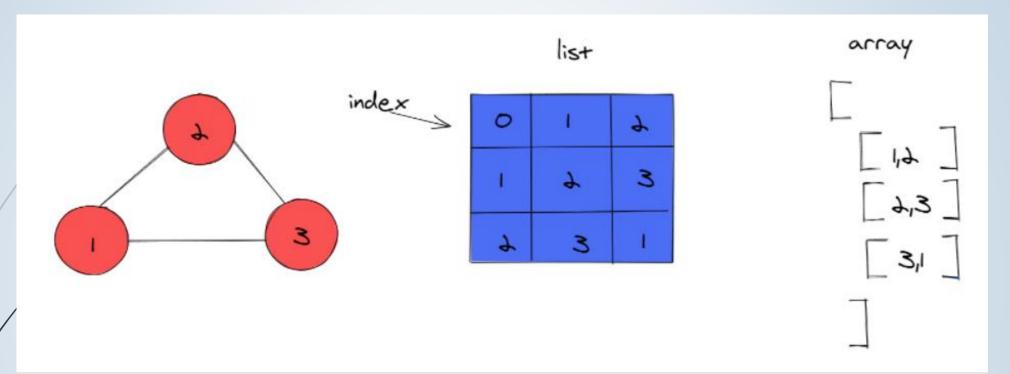
Edge List

- All vertex objects are stored in an unordered list V, and all edge objects are stored in an unordered list E.
 Collections V and E are represented with doubly linked lists
- Performance:
 - Space: O(m+n)
 - Advantages: insert_edge, insert_vertex, remove_edge, vertex_count, edge_count O(1)
 - Limitation: degree(v), incident_edge(v), remove_vertex(v) O(m)



an edge object refers to the two vertex objects that correspond to its endpoints, but that vertices do not refer to incident edges.



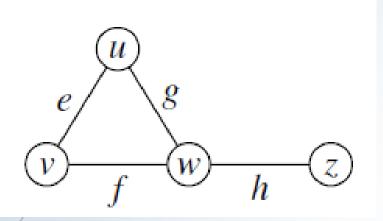


In the graph above, we have three nodes: 1, 2, and 3. Each edge is given an index and represents a reference from one node to another.

https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-adjacency-matrix

Adjacency Map

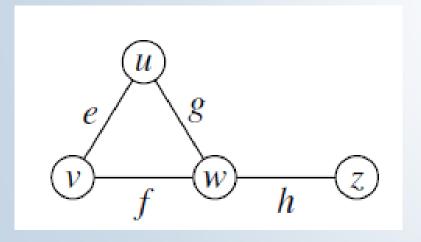
- Using adjacency list, it is not easy to check whether there is an edge from u to v because we have to search through either I(u) or I(v) (incidence collection of u or v).
- We can improve the performance by using a hash-based map to implement I(v) for each vertex v.



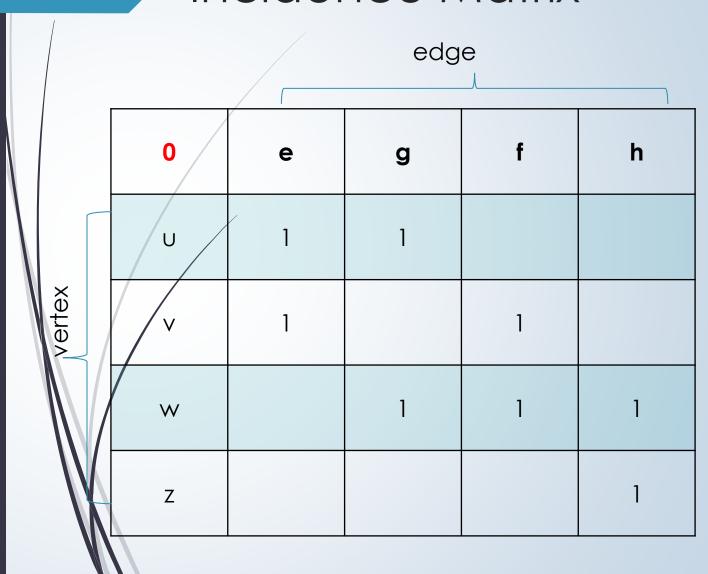
Get_edge(u,v) method can be implemented in *expected* O(1) time by searching for vertex u as a key in I(v), or vice versa.

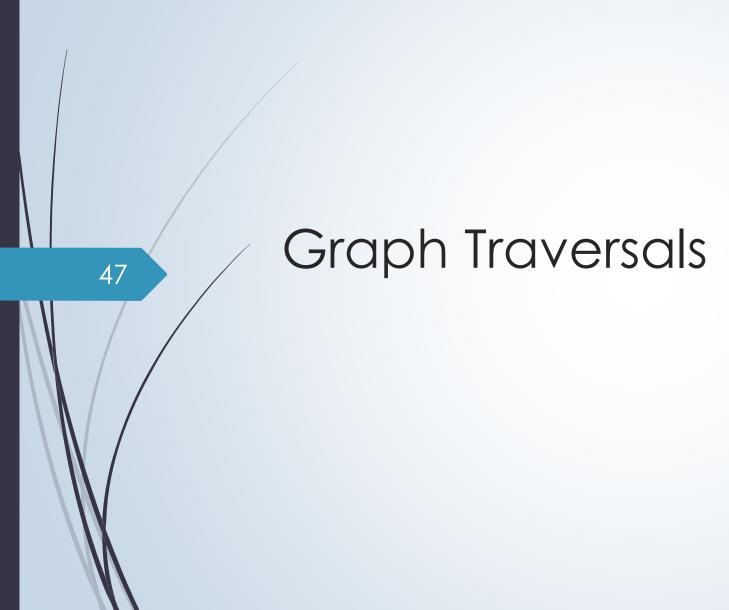


https://graphie.readthedocs.io/en/latest/Implementations/adjacencymap.html



Incidence Matrix





Graph Searching

- To determine whether two vertices are connected (indirectly via some intermediate)
 - A is a relative of B, B is a relative of C, are A & C relative?
- To list out all members of a connected-component
 - List out all the direct/indirect family members of A...
- To find the shortest path (of un-weighted graph) from one vertex to another
 - Travel from Shatin to Central with minimum <u>number of changes</u> of transportation...
- TWO algorithms:
 - DFS (Depth First Search)
 - BFS (Breadth First Search)

DFS on Graphs

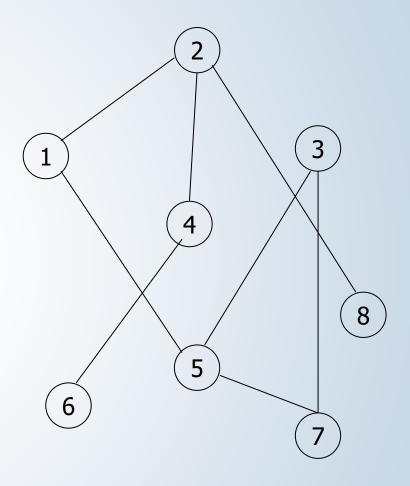
49

Go as deep as you can

- Example DFS order (starting from 1):
 - **1**,2,4,6,8,5,3,7
 - **1**,5,7,3,2,8,4,6
- Using Stack to store nodes
 - Put the starting node into the stack
 - Repeat checking the top
- If top is unvisited
 - Print this element, mark as visited
- If top has unvisited neighbors
 - Push one of the neighbors on stack

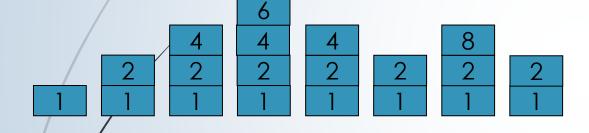
else //top has no unvisited neighbors

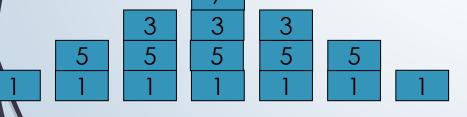
Pop one element from the stack

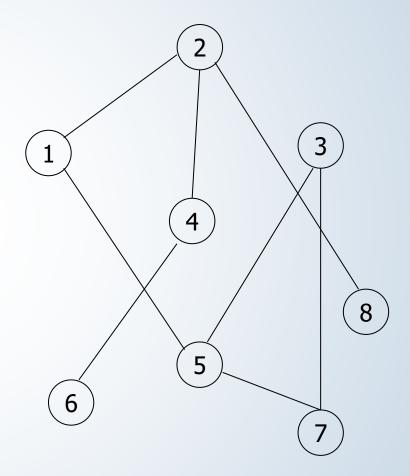


Example

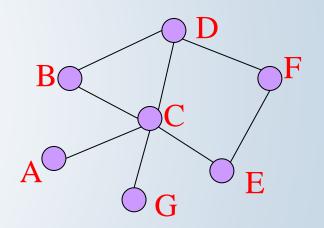
If Top has no unvisited neighbor, pop()







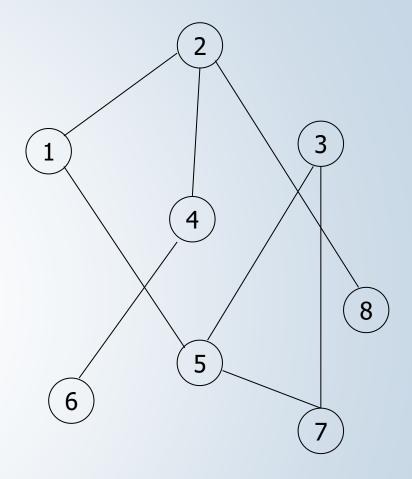
Depth first search (DFS)



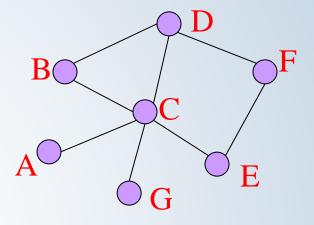
$$DFS(A) = A, C, B, D, F, E, G$$

BFS on Graphs

- Go as broad as you can
- Example BFS order (starting from 1):
 - **1**,2,5,4,8,3,7,6
 - **1**,5,2,7,3,8,4,6
- Using Queue to store nodes
 - Put the starting node into queue
 - Repeat the following "Remove"
- Remove:
 - Remove a node from the queue
 - Print this element
 - Insert all his unvisited (haven't been in the queue) neighbors into the queue



```
BFS(v) {
   visited[v] = true;
   Enqueue(v);
   While queue not empty {
         x = Dequeue();
  for each vertex w adjacent to x {
       if (! visited[w]) {
      Enqueue (w);
      visited[w] = true;
```



$$BFS(A) = A, C, B, D, E, G, F$$

Example

54

1							
	2	5					
		5	4	8			
			4	8	3	7	
				8	3	7	6
					3	7	6
						7	6
							6

