
DET102 Data Structures 

and Algorithms
Lecture 8: Graph
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Outlines

▪ Terms & Definitions

▪ Representations of graphs

▪ Graph traversals

▪ BFS – Breath-first search

▪ DFS - Depth-first search
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Definition

 G=(V,E)

 Vertex: v,  |V|=n

 Edge: e,    |E|=m

Adjacency(鄰接):    u ~ v

Incidence (關聯):     u ~ e,     v ~ e 

u

v

e
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Undirected graphs  4



Directed graph

Discrete Mathematics

Porgramming

Introduction to Computing Data Structures and 

Algorithms

Artificial Intelligence

How to schedule your study plan？

u

v

e

(tail)

(head)
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Mixed Graph6



Weighted Undirected Graph7



Weighted Directed Graph8



Types of Graphs

Graph Features

Undirected graph Edges are undirected

Directed graph Edges are directed

Weighted undirected 

graph

Edges have weights but 

no directions

Unweighted directed

graph

Edges have weights and 

directions
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Terms and definitions

A graph G consists of:
A non-empty set of vertices (or nodes): V

A set of edges: E

E & V are related in a way that the 
vertices on both ends of an edge are 
members of V

Usually written as G = (V, E)

10

❖Usually Vertices are used to represent a position, an 
object or state meanwhile Edges are used to represent a 
transaction or relationship

|V|: number of vertices

|E|: number of edges



(a,b) and (b,a) represent the same 

edge. a and b are adjacent.

Edge

Ordered pair (u,v) Unordered pair 

{u,v}
a b

c

E={ (a, b), (c, b), (a, c)  }

a b

c

E={ (a, b),  (a, c) , (b, c) }

in the Directed Graph in the Undirected Graph
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Path

▪ A path is a sequence of alternating vertices and edges that 

starts at a vertex and ends at a vertex such that each edge is 

incident to its predecessor and successor vertex. 

▪ Simple path: each vertex in the path is distinct

▪ directed path: all edges are directed and are traversed 

along their direction

B D C

A Simple path: <C,A,D,B>

Path: <C,A,B,A,D>
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Cycle

▪ A cycle is a path that starts and ends at the same 

vertex, and that includes at least one edge.

▪ Simple cycle: each vertex in the cycle is distinct, 

except for the first and last one.

▪ directed cycle:  all edges are directed and are 

traversed along their direction

B D C

A
Simple Cycle: <C,A,B,C>

Cycle: <C, A, D, B, A, B, C>

Eulerian tour: <C,A,D, C, D, B,A,B,C>

Hamiltonian tour: <C, A, D, B, C>
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HKG

How to represent the two flights from HKG to SFO?

How to represent flycation in Hong Kong?

parallel edges or multiple edges

Self-loop
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Find a path and a cycle from the above graph.
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Weight
Graph can be un-weighted or weighted, in which a value is 

associated with each edge.

 In directed graph, the weights of edges going in opposite 

directions can be different.

 For example:

Whether a bus can go from TKO to Shatin: Unweighted (=1...)

The bus fee it takes from TKO to Shatin: Weighted
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Weighted graph Unweighted graph

3

5

12

6
7

16
w(u,v)=6

u

v



Directed Acyclic Graph (DAG)

Which is a DAG？

no cycle
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Degree

 Degree of a vertex is the number of edges connecting 

to it

 For directed graph, degree is further classified as in-

degree (to this vertex) & out-degree (from this vertex)
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AB

C

D

Node A is having a degree of 3

(connects B, C, and D)

W

X
Y

Z

Node W is having an in-degree of 2

(X, Y) and an out-degree of 1 (Z)



Exercise

Vertex In-degree Out-degree

0

1

2

3

4

5
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Simple Graph V.S. Complete graph

 Simple graph:

an un-weighted, undirected graph containing no graph loops or 

multiple edges

Complete graph:

A simple graph in which every pair of vertices are connected directly.

If number of vertices = V, number of edges = ？
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Connected Components

 Subgraph is a graph whose vertices and edges are subsets of 
another graph.

 A graph G'=(V', E') is a subgraph of another graph G=(V, E) iff

 V'⊆ V, and

 E'⊆ E ∧ ( (v1, v2)∈ E' → v1, v2∈ V').

 Note: In general, a subgraph need not have all possible 
edges. If a subgraph has every possible edge, it is an induced 
subgraph.

 A connected component or simply component of an 
undirected graph is a subgraph in which each pair of nodes is 
connected with each other via a path.
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Properties of graph

▪ If G is an undirected graph with m edges and vertex 

set V, then 

▪ If G is a directed graph with m edges and vertex set V, 

then

▪Let G be a simple graph with n vertices and m edges. If G 

is undirected, then m ≤ n(n−1)/2, and if G is directed, then 

m ≤ n(n−1).

▪Let G be an undirected graph with n vertices and m 

edges.

▪ If G is connected, then m ≥ n−1.

▪If G is a tree, then m = n−1.

▪If G is a forest, then m < n−1.
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Graph Representation
23



Vertex ADT

▪ A graph is a collection of vertices and edges. 

▪ We model the abstraction as a combination of 

three data types: Vertex, Edge, and Graph.

▪ Vertex: stores an arbitrary element provided by 

the user (e.g., an airport code); 

▪ we assume it supports a method, element(), to 

retrieve the stored element. 
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Edge ADT

▪ Edge: stores an associated object (e.g., a flight number, 
travel distance, cost), 

▪ retrieved with the element() method. 

▪ In addition, we assume that an Edge supports the 
following methods:

▪ endpoints( ): Return a tuple (u,v) such that vertex u is the origin 
of the edge and vertex v is the destination; for an undirected 
graph, the orientation is arbitrary.

▪ opposite(v): Assuming vertex v is one endpoint of the 
edge (either origin or destination), return the other 
endpoint.
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Representations of graphs

When working with graph, we always 

perform one of the following operation:

Get the list of vertices connecting a given 

vertex.

Are vertices A  and B connected?

What is the weight of edge from A to B?

What is the in/out degree of a vertex? 
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Graph ADT

▪ Methods:

▪ vertex count(): Return the number of vertices of the graph.

▪ vertices( ): Return an iteration of all the vertices of the graph.

▪ edge count(): Return the number of edges of the graph.

▪ edges( ): Return an iteration of all the edges of the graph.

▪ get edge(u,v): Return the edge from vertex u to vertex v, if 

one exists; 

▪ degree(v, out=True): For an undirected graph, return the 

number of edges incident to vertex v. For a directed graph, 

return the number of outgoing (resp. incoming) edges 

incident to vertex v, as designated by the optional parameter.
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Graph ADT

▪ incident edges(v, out=True): Return an iteration of all edges

incident to vertex v. In the case of a directed graph, report 

outgoing edges by default; report incoming edges if the 

optional parameter is set to False.

▪ insert vertex(x=None): Create and return a new Vertex storing 

element x.

▪ insert edge(u, v, x=None): Create and return a new Edge 

from vertex u to vertex v, storing element x (None by default).

▪ remove vertex(v): Remove vertex v and all its incident edges 

from the graph.

▪ remove edge(e): Remove edge e from the graph.
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Representations of graphs

2 standard representations: 

Adjacency Matrix

Adjacency List

3 more representations:

 Edge list

 Adjacency map

 Incidence matrix

In each representation, we 

maintain a collection to 

store the vertices of a 

graph. 

However, the four 

representations differ 

greatly in the way they 

organize the edges.
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Adjacency Matrix

Use N*N 2D array to represent the weight (or T/F) 

of one vertex to another 
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An undirected graph

A

B

D

F
G

E

C

ABCD E FG

A

B

C

D

E

F

G

0 0 1 0 0 0 0 

0 0 1 1 0 0 0

1 1 0 1 1 0 0

0 1 1 0 0 1 0

0 0 1 0 0 1 1

0 0 0 1 1 0 0

0 0 0 0 1 0 0



If M is the adjacency matrix, M[i][j]=M[j][i] for undirected graph.

M[i][j]=1 or true if there is an edge (i,j)

M[i][j]=0 or false if there is no edge between i and j. 
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Adjacency Matrix for Directed Graph32



For undirected graph, only half of the array is used

Fast query on edge weight and connection: O(1)

Total memory used: N2 (what if the number of vertices 

= 10K？)

Waste memory if the graph is sparse  i.e. #Edge is 

much smaller than half of (#Vertex)2  a large 

proportion of the array will be zero

Slow when querying the list of neighboring vertices if 

the graph is sparse

33 Adjacency Matrix



Adjacency List

▪ The adjacency list structure groups the edges of a graph 
by storing them in smaller, secondary containers that are 

associated with each individual vertex. 

▪ For each vertex v, we maintain a collection I(v), called 

the incidence collection of v, whose entries are edges 

incident to v. 

▪ In the case of a directed graph, outgoing and incoming 

edges can be respectively stored in two separate 

collections, Iout(v) and Iin(v).

▪ Traditionally, the incidence collection I(v) for a vertex v is 

a list, which is why we call this way of representing a 

graph the adjacency list structure.

34



35



36

For each vertex v, store u’s neighbors; if in directed 

graph, just outgoing edges.

Space: 

O(V+E)

Adjacency List



Adjacency List37



Use link list (or equivalent) to store the list of 

neighboring vertex (or edge). 

Save memory if the graph is sparse:  O(V+E)

Query on edge weight / connection can be slow

Graph update is slow (especially if one have to

maintain order of neighbors)

Enumeration of all neighbors is fast.

38 Adjacency List



Representations of graph

 If memory is sufficient and graph update is in-
frequent, can represent the graph in both 
methods at the same time…

If you need fast enumeration of neighbors 
together with fast query of weight/connection

e.g. List out all the neighbors of vertex A which 
do not connect to vertex B or vertex C…

Link-list can be replaced by 1D array with count
(enumeration of neighbor and query on degree 
will be fast)
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Edge List

▪ All vertex objects are stored in an unordered list V, and 

all edge objects are stored in an unordered list E. 

Collections V and E are represented with doubly linked 

lists

▪ Performance:

▪ Space: O(m+n)

▪ Advantages: insert_edge, insert_vertex, remove_edge, 

vertex_count, edge_count O(1)

▪ Limitation: degree(v), incident_edge(v), 

remove_vertex(v) O(m)
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an edge object refers to the two vertex 

objects that correspond to its 

endpoints, but that vertices do not refer 

to incident edges.
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https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-

adjacency-matrix

In the graph above, we have three nodes: 1, 2, and 3. Each edge is 

given an index and represents a reference from one node to 

another.

43

https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-adjacency-matrix
https://algodaily.com/lessons/implementing-graphs-edge-list-adjacency-list-adjacency-matrix


Adjacency Map

▪ Using adjacency list, it is not easy to check 

whether there is an edge from u to v because 

we have to search through either I(u) or I(v)  

(incidence collection of u or v).

▪ We can improve the performance by using a 

hash-based map to implement I(v) for each 

vertex v.
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Get_edge(u,v) method can be implemented in 

expected O(1) time by searching for vertex u as a 

key in I(v), or vice versa.

https://graphie.readthedocs.io/en/latest/Implementations/adjacencymap.html
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https://graphie.readthedocs.io/en/latest/Implementations/adjacencymap.html


Incidence Matrix

0 e g f h

u 1 1

v 1 1

w 1 1 1

z 1

edge

v
e

rt
e

x
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Graph Traversals
47



Graph Searching

▪ To determine whether two vertices are connected 
(indirectly via some intermediate)

▪ A is a relative of B, B is a relative of C, are A & C relative?

▪ To list out all members of a connected-component

▪ List out all the direct/indirect family members of A…

▪ To find the shortest path (of un-weighted graph) from one 
vertex to another

▪ Travel from Shatin to Central with minimum number of changes of 
transportation…

▪ TWO algorithms:

▪ DFS (Depth First Search)

▪ BFS (Breadth First Search)
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49
Go as deep as you can

 Example DFS order (starting from 1):

 1,2,4,6,8,5,3,7 

 1,5,7,3,2,8,4,6

 Using Stack to store nodes

 Put the starting node into the stack

 Repeat checking the top

 If top is unvisited

 Print this element, mark as visited

 If top has unvisited neighbors

 Push one of the neighbors on stack

else //top has no unvisited neighbors

 Pop one element from the stack

DFS on Graphs

1

2

3

6

7

5

8

4



50 Example

1

2

3

6

7

5

8

4

1 1 1 1 1 1 1 1

2 2 2

4 4

6

If Top has no unvisited neighbor, 

pop()

2

4

2 2

8

2

1 1 1 1 1 1 1

5 5 5 5

3 3 3

7

5



Depth first search (DFS)

DFS (v) {                     //Starts with vertex v: 

visited[v] = true;

for each vertex w adjacent to v {

if (! visited[w]) 

DFS (w);                       //Recursion

}

}
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DFS(A) = A, C, B, D, F, E, G

A

B

D

F

E

C

G



BFS on Graphs

Go as broad as you can

 Example BFS order (starting from 1):

 1,2,5,4,8,3,7,6 

 1,5,2,7,3,8,4,6

 Using Queue to store nodes

 Put the starting node into queue

 Repeat the following “Remove”

 Remove:

 Remove a node from the queue

 Print this element

 Insert all his unvisited (haven’t been in the queue) neighbors into 

the queue

52

1

2

3

6

7
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8
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53
BFS(v) {

visited[v] = true;

Enqueue(v);

While queue not empty {

x = Dequeue();

for each vertex w adjacent to x { 

if (! visited[w]) {

Enqueue (w);

visited[w] = true;

}

}

}

}

A

B

D

F

E

C

G

BFS(A) = A, C, B, D, E, G, F



54
Example

1

2

3

6

7

5

8

4

1

2 5

45 8

84 3 7

68 3 7

63 7

67
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