
INT3075 Programming and Problem 

Solving for Mathematics

Control (Part II):

Repetition



Repetition, quick overview

2



Repeating statements

• Besides selecting which statements to 

execute, a fundamental need in a program 

is repetition

– repeat a set of statements under some 

conditions

• With both selection and repetition, we 

have the two most necessary 

programming statements

3



While and For statements

• The while statement is the more general 

repetition construct. It repeats a set of 

statements while some condition is True.

• The for statement is useful for iteration, 

moving through all the elements of data 

structure, one at a time.

4



while loop

• Top-tested loop (pretest)

– test the boolean before running

– test the boolean before each iteration of 

the loop

while boolean expression:

suite

5



6



repeat while the boolean is true

• while loop will repeat the statements in the 
suite while the boolean is True (or its 

Python equivalent)

• If the Boolean expression never changes 

during the course of the loop, the loop will 

continue forever.

7



Code Listing 

L3-1.py

Simple while

8



9



General approach to a while

• outside the loop, initialize the boolean

• somewhere inside the loop you perform 

some operation which changes the state 

of the program, eventually leading to a 

False boolean and exiting the loop

• Have to have both!

10



for and iteration

• One of Python's strength's is it's rich set of 

built-in data structures

• The for statement iterates through each 

element of a collection (list, etc.)

for element in collection:

suite

11



12



Code Listing 

L3-2.py

Sum of divisors

13



14

Calculate Sum of Divisors



Improving the Perfect 

Number Program

Work with a range of numbers

For each number in the range of numbers:

• collect all the factors

• once collected, sum up the factors

• compare the sum and the number and 

respond accordingly

Print a summary

15



Code Listing 

L3-3.py

Examine range of numbers

16



17

Examine a range of numbers



Code Listing 

L3-4.py

Classify range of numbers

18



19

Classify range of numbers



More Control: Repetition

20



Developing a while loop

Working with the loop control variable:

•Initialize the variable, typically outside of the 

loop and before the loop begins.

•The condition statement of the while loop 

involves a Boolean using the variable.

•Modify the value of the control variable 

during the course of the loop

21



Issues

Loop never starts:

•the control variable is not initialized as you 

thought (or perhaps you don't always want it 

to start)

Loop never ends:

•the control variable is not modified during 

the loop (or not modified in a way to make 
the Boolean come out False)

22



while loop, round two

• while loop, oddly, can have an associated 
else suite

• else suite is executed when the loop 

finishes under normal conditions

– basically the last thing the loop does as it 

exits

23



while with else

while booleanExpression:

suite

suite

else:

suite

suite

rest of the program

24



25



Break statement

• A break statement in a loop, if executed, 

exits the loop

• It exists immediately, skipping whatever 

remains of the loop as well as the else 

statement (if it exists) of the loop

26



Code Listing 

L3-5.py

Hi lo game

27



28

Hi Lo Game



Continue statement

• A continue statement, if executed in a 

loop, means to immediately jump back to 

the top of the loop and re-evaluate the 

conditional

• Any remaining parts of the loop are 

skipped for the one iteration when the 

continue was executed

29



Code Listing 

L3-6.py

Guessing number

30



31

Part of the guessing numbers program



change in control: Break and 

Continue

• while loops are easiest read when the 

conditions of exit are clear

• Excessive use of continue and break 

within a loop suite make it more difficult to 

decide when the loop will exit and what 

parts of the suite will be executed each 

loop.

32



While overview

while test1:

statement_list_1

if test2:  break         # Exit loop now; skip else

if test3:  continue     # Go to top of loop now

# more statements

else:

statement_list_2      # If we didn't hit a 'break'

# 'break' or 'continue' lines can appear anywhere

33



Range and for loop

34



Range function
• The range function represents a sequence 

of integers

• the range function takes 3 arguments:

– the beginning of the range. Assumed to be 0 if 

not provided

– the end of the range, but not inclusive (up to 

but not including the number). Required

– the step of the range. Assumed to be 1 if not 

provided

• if only one argument is provided, it is 

assumed to be the end value 35



Iterating through the sequence

for num in range(1,5):

print(num) 

• range represents the sequence 1, 2, 3, 4

• for loop assigns num to each of the values 

in the sequence, one at a time, in 

sequence

• prints each number (one number per line)

36



range generates on demand

Range generates its values on demand

37



Hailstone example

38



Hailstone sequence

• The Hailstone sequence is a simple 

algorithm applied to any positive integer

• In general, by applying this algorithm to 

your starting number you generate a 

sequence of other positive numbers, 

ending at 1

• Sequences go up and down just like a 

hailstone in a cloud

39



Algorithm

while the number does not equal one

• If the number is odd, multiply by 3 and add 

1

• If the number is even, divide by 2

• Use the new number and reapply the 

algorithm

40



Even and Odd

Use the remainder operator

• if num % 2 == 0:   # even

• if num % 2 == 1:   # odd

• if num %2:         # odd (why???)

41



Code Listing 

L3-8.py

Generate sequence

42



43


