INT3075 Programming and Problem
Solving for Mathematics

Control (Part Il):
Repetition

Repeating statements

* Besides selecting which statements to
execute, a fundamental need in a program
IS repetition
— repeat a set of statements under some

conditions

« With both selection and repetition, we
have the two most necessary
programming statements

While and For statements

 The while statement is the more general
repetition construct. It repeats a set of
statements while some condition is True.

 The for statement is useful for iteration,

moving through all the elements of data
structure, one at a time.

while loop

* Top-tested loop (pretest)
— test the boolean before running

— test the boolean before each iteration of
the loop

while boolean expression:

sulte

while loop.

* lDecision

while Boolean expression

True

Python statement

Python statement

Suite

Python statement

False

Y

Python statement
Python statement

Python statement

repeat while the boolean Is true

* while loop will repeat the statements in the
suite while the boolean iIs True (or its

Python equivalent)

* |f the Boolean expression never changes
during the course of the loop, the loop will
continue forever.

Code Listing
L3-1.py

Simple while

10

11

simple while

x_int = 0 # initialize loop—control variable

test loop—control variable at beginning of loop

while x int < 10:

print (x_int, end=' ') # print the value of x_int each time through the
while loop
x_int = x_int + 1 # change loop—control variable
print ()

print ("Final value of x_1int:

", x_int)

bigger than value printed in loop!

General approach to a while

 outside the loop, Initialize the boolean

« somewhere inside the loop you perform
some operation which changes the state
of the program, eventually leading to a
False boolean and exiting the loop

« Have to have both!

for and I1teration

* One of Python's strength's is it's rich set of
built-in data structures

 The for statement iterates through each
element of a collection (list, etc.)

for element in collection:

sulte

Operation of a for loop.

P

For element in collection:

Next element

Python statement
Python statement

Python statement

Done

Y

Python statement
Python statement

Python statement

Code Listing
L3-2.py

Sum of divisors

13

Calculate Sum of Divisors

divisor = 1
sum_of_divisors = 0
while divisor < number:
if number % divisor == 0: # divisor evenly divides theNum
sum_of_divisors = sum_of_divisors + divisor
divisor = divisor + 1

14

Improving the Perfect
Number Program

Work with a range of numbers
For each number in the range of numbers:
 collect all the factors

* once collected, sum up the factors

* compare the sum and the number and
respond accordingly

Print a summary

Code Listing
L3-3.py

Examine range of numbers

16

Examine a range of numbers

top_num_str = input ("What is the upper number for the range:")
top_num = int(top_num_str)
number=2
while number <= top_num:
sum the divisors of number
classify the number based on its divisor sum

number += 1

17

Code Listing
L3-4.py

Classify range of numbers

18

Classify range of numbers

classify a range of numbers with respect to perfect, adundant or deficient
unless otherwise stated, variables are assumed to be of type int. Rule 4

top_num_str = input ("What is the upper number for the range:")
top_num = int(top_num_str)
number=2
while number <= top_num:
sum up the divisors
divigor = 1
sum_of _divisors = 0
while divisor < number:
if number % divisor == 0:
classify the number based on its divisor sum
if number == sum_of_divisors:
print (number, "is perfect")
if number < sum_of_divisors:
print (number, "is abundant")
if number > sum_of divisors:
print (number, "is deficient")
number += 1

19

Developing a while loop

Working with the loop control variable:

*Initialize the variable, typically outside of the
loop and before the loop begins.

*The condition statement of the while loop
Involves a Boolean using the variable.

*Modify the value of the control variable
during the course of the loop

|ssues

Loop never starts:

the control variable is not initialized as you
thought (or perhaps you don't always want it
to start)

Loop never ends:

the control variable is not modified during

the loop (or not modified in a way to make
the Boolean come out False)

while loop, round two

» while loop, oddly, can have an associated
else suite

« else suite is executed when the loop
finishes under normal conditions

— basically the last thing the loop does as it
exits

while with else

while booleanExpression:
sulte
sulte
else:
sulte
sulte
rest of the program

.

Decision

while Boolean expression

Suite

\/

True

Python statement

Python statement

Python statement

else suite

False

) \/

Python statement

A

| Python statement

Y

Python statement

Python statement

while-else.

Break statement

 Abreak statement in a loop, If executed,
exits the loop

* |t exists immediately, skipping whatever
remains of the loop as well as the else
statement (if it exists) of the loop

Code Listing
L3-5.py

Hi lo game

27

Hi Lo Game

u # get an initial guess

15 guess_str = input ("Guess a number: ")

16 guess = int(guess_str) # convert string to number
17

s # while guess is range, keep asking

19 while 0 <= guess <= 100:

20 if guess > number:

21 print ("Guessed Too High.")

22 elif guess < number:

23 print ("Guessed Too Low.")

2 else: # correct guess, exit with break
25 print ("You guessed it. The number was:",number)
26 break

27 # keep going, get the mext guess

28 guess_str = 1nput ("Guess a number: ")

29 guess = int(guess_str)

30 else:

31 print ("You quit early, the number was:",number)
28

Continue statement

e A continue Statement, If executed In a

loop, means to immediately jump back to
the top of the loop and re-evaluate the
conditional

* Any remaining parts of the loop are
skipped for the one iteration when the
continue was executed

Code Listing
L3-6.py

Guessing number

30

Part of the guessing numbers program

7 # initialize the input number and the sum

s number_str = input ("Number: ")

9 the sum = 0

10

n # Stop if a period (.) is entered.

w # remember, number_str is a string until we convert it
13 while number str != "."

14 number = int (number_str)

s if number % 2 == 1: # number is not even (it is odd)

16 print ("Error, only even numbers please.")

17 number_str = input ("Number: ")

18 continue # if the number is not even, ignore it
19 the_sum += number

20 number_str = input ("Number: ")

21

2 print ("The sum is:",the sum)

31

change In control: Break and
Continue

* while loops are easiest read when the
conditions of exit are clear

* Excessive use of continue and break
within a loop suite make it more difficult to
decide when the loop will exit and what

parts of the suite will be executed each
loop.

While overview

while test1.:
statement_list 1
If test2: break # EXxit loop now; skip else

If test3: continue # Go to top of loop how
more statements

else:
statement_list 2 # If we didn't hit a 'break’

'break’ or 'continue' lines can appear anywhere

Range function

* The range function represents a seguence
of integers

 the range function takes 3 arguments:

— the beginning of the range. Assumed to be O If
not provided

— the end of the range, but not inclusive (up to
but not including the number). Required

— the step of the range. Assumed to be 1 if not
provided

* If only one argument is provided, It Is
assumed to be the end value

lterating through the seguence

for num in range(l,5):
print (num)
* range represents the sequence 1, 2, 3, 4

» for loop assigns num to each of the values

In the sequence, one at a time, In
sequence

 prints each number (one number per line)

range generates on demand

Range generates its values on demand

>>> range(l,10)

range(1l, 10)

>>> my_range=range(1l,10)

>>> type (my_range)

<class 'range'>

>>> len (my_range)

9

>>> for 1 in my_range:
print (i, end=' ')

12345672829
>>>

Hailstone sequence

* The Hallstone segquence is a simple
algorithm applied to any positive integer

* In general, by applying this algorithm to
your starting number you generate a
seqguence of other positive numbers,
ending at 1

* Sequences go up and down just like a
hailstone in a cloud

Algorithm

while the number does not equal one

* |f the number Is odd, multiply by 3 and add
1

* |f the number Is even, divide by 2

» Use the new number and reapply the
algorithm

Even and Odd

Use the remainder operator

e if num % 2 == O0: # even

e if num % 2 == 1: # odd

e if num %2: # odd (why?7??)

Code Listing
L3-8.py

Generate sequence

42

1

2

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

Generate a hailstone sequence

number_str = input ("Enter a positive integer:")
number = int (number_str)

count = 0

print ("Starting with number:" ,number)
print ("Sequence is: ", end=' ')

while number > 1: # stop when the sequence reaches 1

if number%2: # number is odd
number = number*3 + 1
else: # number is even
number = number/2
print (number,",", end=' ') # add number to sequence
count +=1 # add to the count
else:
print () # blank line for nicer output

print ("Sequence is ",count," numbers long")

43

