LECTURE 6 MONTE CARLO SIMULATION BY EXCEL (PART 2)

AGENDA

- Random number generation by Excel: other distributions
- What-if analysis

MONTE CARLO SIMULATION REVISIT WITH EXCEL

- Higgins Plumbing Demand follows a general discrete distribution (table on right)
- Art's Newsstand Demand follows uniform distribution, U[30,150]
- What if demand follows the normal distribution, or other distributions that you might have heard of?

Heater Sales	Probability		
4	0.12		
5	0.10		
6	0.18		
7	0.24		
8	0.16		
9	0.14 0.06 1.00		
10			
Total			

CONTINUOUS UNIFORM DISTRIBUTION

- See "a+(b-a)Rand()" worksheet.
- If a random variable follows a continuous uniform distribution U[a, b], then all the values (real numbers, i.e. numbers with decimals) that lie between the lower limit a and the upper limit b are equally likely to be selected. To simulate such a random variable, we can use the formula

$$= a + (b - a) \times RAND()$$

• E.g. If you want real numbers between 3 and 9 inclusively, use

$$= 3 + (9 - 3) * RAND().$$

DISCRETE UNIFORM DISTRIBUTION

- See "RANDBETWEEN()" worksheet.
- If a random variable follows a discrete uniform distribution U[a, b], then all the integers that lie between the lower limit a and the upper limit b are equally likely to be selected. To simulate such a random variable uses the formula:

$$= RANDBETWEEN(a, b)$$
 or $= INT(a + (b - a + 1) * RAND())$

• E.g. If you want whole numbers (or called integers) between 0 and 99, use

$$= RANDBETWEEN(0.99) \text{ or } = INT(100 * RAND())$$

BERNOUILLI DISTRIBUTION

- See "Bernoulli" worksheet
- Bernoulli distribution 2 outcomes, A and B: Bern(p)
 - A occurs with probability p, and B with probability 1 p.
 - Use the IF function: =IF(RAND() < p, A, B)
- **Binomial distribution -** The result of n independent Bernouilli random variables.
 - Count the number of times outcome A occurs (versus B).
- E.g. A customer purchases a chocolate ice cream with 55% probability, and strawberry ice cream with probability 45%
 - Customer purchases a chocolate ice cream: =IF(RAND()<0.55, "chocolate", "strawberry")</p>
 - If 10 customers arrive, then the # of customers purchasing a chocolate ice cream follows a Binomial distribution: Bin(n, p)

NORMAL DISTRIBUTION

- See "Normal" worksheet
- Normal Distribution: To generate random numbers from a normal distribution with mean μ and standard deviation σ , use the NORM.INV function:

$$= NORM.INV(RAND(), \mu, \sigma)$$

- Grades, height, weight, etc.
- E.g. To generate a random number from the normal distribution with mean = 10
 and standard deviation = 5, use

SIMULATING PROBABILITY DISTRIBUTIONS IN EXCEL

To SIMULATE	USE BULT-IN EXCEL FORMULA	
Random number between 0 and 0.9999	=RAND()	
Continuous uniform distribution between a and \emph{b}	=a+(b-a)*RAND()	
Discrete uniform distribution between a and b	=INT(a +(b - a +1)*RAND ()) or =RANDBETWEEN(a , b)	
Normal distribution: Mean = μ ;	=NORM.INV(RAND(), μ , σ)	
Standard deviation = σ		
Bernoulli distribution Two outcomes: A and B, probability of $A = p$	=IF(RAND()< p ,A,B)	
Discrete general distribution Range I = Cell range containing lower limits of the random number intervals	=LOOKUP(RAND(), Range I, Range 2)	
Range 2 = Cell range containing the variable values		

- ABC Airline provides a daily six-passenger flight to Myrtle Beach. The fare of a one-way ticket is \$79, which is not refundable under no-show. The probability distribution of daily demand for such a flight and the probability distribution of no-shows (who forfeit their fares) are given in the tables on the next slide.
- The current booking policy of ABC is to oversell by three tickets. If more than 6 customers show up, then ABC must refund the fares of the extra tickets and compensate each of them \$100 in cash.
- The fixed cost of each flight is \$350, regardless of the number of passengers (= 0, 1, ..., or 6).
- Question:
 - a. Simulate ABC's profit.
 - b. Investigate the outcomes where ABC oversells by 0, 1, 2, 3, 4, or 5 tickets. What are your recommendations?

See "ABC Airline" worksheet.

Demand	Probability		
5	0.05		
6	0.11		
7	0.20 0.18 0.16		
8			
9			
10	0.12		
11	0.10		
12	0.08		

No-shows	Probability	
0	0.15	
I	0.25	
2	0.26	
3	0.23	
4	0.11	

- Step I: # of tickets sold → REVENUE
 - = minimum(demand, flight capacity + overbooking policy)
- Step 2: # of unhappy customers → COSTS
 - = maximum(0, **# of customers who show up** flight capacity)
 - # of customers who show up = # of tickets sold # of no-shows
- Step 3: Profit
 - Revenue = \$79 x # of tickets sold
 - Overbooking cost = $(\$100+\$79) \times \#$ of unhappy customers
 - Profit = revenue overbooking cost fixed cost

- B3: number of accepted reservations = capacity (6)+ number of overbooking (3)
- B4: actual demand =LOOKUP(RAND(),F6:F13,D6:D13)
- B5: number of reservations taken =MIN(B3,B4)
- B6: number of no shows =LOOKUP(RAND(),F16:F20,D16:D20)
- B7: number of passengers that show up =B5-B6
- B8: number of seats short =MAX(B7-F27,0)
- B9: revenue = 79 × actual reservation accepted (B5)
- B10: overbooking cost =B8*(100+79)
- BII: profit = revenue overbooking cost fixed cost

USE DATA TABLE TO REPLICATE MULTIPLE RUNS

- One idea: "Press F9" (run the base model) many times, and track the results (metric).
- A better way to do this is via the Data Table function.
- **Step I:** Create a table with two columns.
 - Ist column: Simulation runs "1, 2, 3," (number of run).
 - 2nd column: Name the metric and reference to the cell containing the metric.

6	Number of no-shows =	0	
7	Number of customers show up =	9	
8	Seats short =	3	
9	Revenue =	711.00	
10	Overbooking cost =	537.00	
11	Profit for flight =	(176.00)	
12			
13	Based on 1 replication:		
14	Average profit =	(176.00)	 Description of
15			Description of
16	Based on 500 replications:		metric
17	Average profit =	145.13	
18	P(Profit>=\$200)=	42%	
19			
20	Simulation runs	Profit	Reference to
		(470.00)	
21	1	(176.00)	metric cell B14

USE DATA TABLE TO REPLICATE MULTIPLE RUNS

- **Step 2:** Highlight the table with the metric reference as the top line. If we wanted to have 500 runs in the previous example, you would select cells A21:B520.
- **Step 3:** Ask Excel to fill in the table.

USE DATA TABLE TO REPLICATE MULTIPLE RUNS

Step 3 (cont'd): In the Data Table options, specify a reference to an empty cell! Then, click "OK."

- Analysing the result
 - What is the probability that profit will be \$200 or more?
 - Use of COUNTIF()
- What is the optimal overbooking policy?
 - Scenario Manager

 We use "Scenario Manager" to decide the optimal "overbooking level" to maximize the expected profit

Step 1: Add Scenario.

Step 2: Give "Scenario name" & specify "Changing cells".

Step 3a: Enter value for each "Change cells".

Step 3b: Add more scenarios if needed.

Step 4: Click "Summary to run the defined scenarios

Step 5: Specify "Result cells" to report. In this case, our "average" profit cell.

THEORY: THE ANALYTICAL APPROACH

- Profit is a function of overbooking decision n, uncertain demand d, and no-shows s.
- $\Pi(n, d, s) = \text{profit for a fixed } n$, realized observation of demand d, and no-shows s.
- Maximizing expected profit for different overbooking decisions, assuming independence of d, s:

$$\max_{n} \mathbb{E}_{d,s}[\Pi(n,d,s)|n] = \max_{n} \sum_{d} \sum_{s} \Pi(n,d,s) \times Prob(d) \times Prob(s).$$

Scenario manager: Compute $E[\Pi(n,d,s)|n]$ over different values of n so that we can find the optimal n.

Data table: Fix n and compute $E[\Pi(n, d, s)|n]$ by running many simulation runs

Prob(profit $\geq \$200 \mid n$) is found by summing the joint probability, $Prob(d) \cdot Prob(s)$, over all pairs of (d, s) that satisfies $\Pi(n, d, s) \geq \$200$.

DEVELOPING THE SPREADSHEET MODEL SUMMARY OF BASIC STEPS

- Use a random number to simulate a single run (or trial).
- Use the copy command or a data table (with blank column input cell) to simulate multiple runs in a single simulation (or replication).
- Calculate summary measures based on the outcomes of runs and create relevant graphs.

MORE ON RANDOM NUMBER IN EXCEL

- How to generate random numbers associated with a given distribution?
 - See "RN Generation Tool" worksheet.
 - Data → Data Analysis → Random Number Generation.

SUMMARY

- Generating random numbers from different probability distributions.
- Using simulation to identify decision which optimizes some expected value function.