
CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Algorithm Analysis

Review

2

• Essential elements of an algorithm
• Input

• Processing unit

• Output

• Principles of algorithm design
• Readability

• Correctness

• Robustness

• Efficiency

• Efficiency
• Time factor

• Space factor

• Analysis after implementation

Algorithm analysis – After implementation

3

• Two programs for obtaining a Fibonacci number 𝐹𝑛

• Recursion

• Iteration

Algorithm 1
def get_fn_1(n):

if n < 2:
fn = n

else:
fn = get_fn_1(n-1) + get_fn_1(n-2)

return fn

Algorithm 2
def get_fn_2(n):

if n < 2:
fn = n

else:
first = 0
second = 1

for _ in range(n-1):
sum = first + second
first = second
second = sum

fn = second
return fn

Algorithm analysis – After implementation

4

• Two programs for obtaining a Fibonacci number 𝐹𝑛

• Execution times at 𝑛 = 30

Output:

The results of f_30 is 832040.
The Recursion algorithm takes 3.15065598487854 second to calculate!
The results of f_30 is 832040.
The Iteration algorithm takes 0.00010323524475097656 second to calculate!

import time
n = 30

start = time.time()
results = get_fn_1(n)
end = time.time()
print('The results of f_{} is {}.'.format(n, results))
print('The Recursion algorithm takes {} second to calculate!'.format(end - start))

start = time.time()
results = get_fn_2(n)
end = time.time()
print('The results of f_{} is {}.'.format(n, results))
print('The Iteration algorithm takes {} second to calculate!'.format(end - start))

Algorithm analysis – After implementation

5

• The execution time highly relies on
• The hardware configuration

• The programming language

• The quality of code

• Other environmental factors

• The execution time is useful for evaluating the empirical performance of
an algorithm; however, can we characterize the resource requirements
before implementing a program for the algorithm?

Algorithm analysis – Before implementation

6

• The computational complexity of an algorithm is a function describing the
algorithm’s efficiency in terms of the amount of (input) data.

• The computational complexity is calculated based on theoretical analysis.

• The resource to be consumed by carrying out an algorithm can be
estimated from the computational complexity of the algorithm

• Time complexity 𝑇(𝑛)
• A function that describes the amount of computer time an algorithm takes to run in

terms of the input size 𝑛

• Space complexity 𝑆(𝑛)
• A function that describes the amount of computer space (memory storage) an

algorithm requires to run in terms of the input size 𝑛

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

https://www.simplilearn.com/tutorials/data-structure-tutorial

Algorithm analysis – Before implementation

7

• Time complexity 𝑇(𝑛)
• An algorithm consists of elementary operations.

• The running time is estimated by

 σ 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

• Space complexity 𝑆(𝑛)
• Input space: the memory used by the input of the algorithm.

• Auxiliary space: any other memory the algorithm uses during execution, such as
the extra space used for constants, variables, data structures, and function calls

• The running space is estimated by
𝐼𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒 + 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑆𝑝𝑎𝑐𝑒

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

https://www.simplilearn.com/tutorials/data-structure-tutorial

Examples

8

def algorithm_1(n):
 a = 0
 b = 0
 a += n
 b -= n
 c = a * b
 return c

def algorithm_2(n):
 a = 0
 b = 0

if n < 1:
 a += n
 else:
 b -= n
 c = a * b
 return c

def algorithm_3(n):
 a = 0

for i in range(n):
 a += 1
 return a

Algorithm analysis – Asymptotic analysis

9

• The comparison of algorithm efficiency should be independent of any
particular dataset or programming language

• The order of growth of an algorithm matters, instead of the exact value.
• How quickly the resource requirement grows relative to the input size

• 𝑇 𝑛 and 𝑆(𝑛) versus 𝑛

• Asymptotic analysis is not perfect, but effective for analyzing algorithms

Algorithm analysis – Big-Oh notation

10

• The “Big-Oh notation” is commonly used for algorithm complexity.
• 𝑓 𝑛 = 𝑂(𝑔(𝑛)) if there exist positive constants 𝑐 and 𝑛0.

such that 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) when 𝑛 ≥ 𝑛0.

• In other words, 𝑐𝑔(𝑛) gives an upper bound for 𝑓(𝑛).

• The function 𝑓 𝑛 growth is slower than 𝑐𝑔(𝑛).

• Example: 𝑛2 + 𝑛 = 𝑂(𝑛2).

• Example: 𝑛2 + 𝑛 = 𝑂 𝑛3 ???

• There are many upper bounds.

• Which one is better?

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Algorithm analysis – Big-Omega notation

11

• The “Big-Omega notation”
• 𝑓 𝑛 = Ω(𝑔(𝑛)) if there exist positive constants 𝑐 and 𝑛0.

such that 𝑓 𝑛 ≥ 𝑐𝑔(𝑛) when 𝑛 ≥ 𝑛0.

• In other words, 𝑐𝑔(𝑛) gives a lower bound for 𝑓(𝑛).

• The function 𝑓 𝑛 growth is faster than 𝑐𝑔(𝑛).

• Example: 𝑓 𝑛 = 𝑐𝑛 and 𝑔 𝑛 = 𝑛𝑐 give 𝑓 𝑛 = Ω(𝑔(𝑛)).

• Example: 𝑓 𝑛 = 𝑛3 + 2𝑛2 = Ω(𝑛3).

• Example: 𝑓 𝑛 = 𝑛3 + 2𝑛2 = Ω(𝑛2.5) ???

• There are many lower bounds.

• Which one is better?

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Algorithm analysis – Big-Theta notation

12

• The “Big-Theta notation”
• 𝑓 𝑛 = Θ(𝑔(𝑛)) if there exists positive constants 𝑐1, 𝑐2, and 𝑛1.

such that 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛) when 𝑛 ≥ 𝑛1.

• In other words, 𝑐1𝑔(𝑛) gives a lower bound for 𝑓 𝑛 ,

• And 𝑐2𝑔(𝑛) gives an upper bound for 𝑓 𝑛 ,

• The function 𝑔 𝑛 is an asymptotically tight bound on 𝑓 𝑛 .

• In other words, the function 𝑓 𝑛 grows at the same rate as 𝑔(𝑛).

• Example: 𝑓 𝑛 = 𝑛3 + 𝑛2 + 𝑛 = Θ(𝑛3).

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Main types of complexities

13

• Constant complexity 𝑂 1
• Independent of the input size 𝑛

• Logarithmic complexity 𝑂 log 𝑛

• Square root complexity 𝑂(√𝑛)

• Linear complexity 𝑂(𝑛)

• N-LogN complexity 𝑂 𝑛 log 𝑛

• Quadratic complexity 𝑂(𝑛2)

• Polynomial complexity 𝑂(𝑛𝑐)

• Exponential complexity 𝑂(𝑐𝑛)

• Factorial complexity 𝑂(𝑛!) or 𝑂(𝑛𝑛)

Note that 𝑐 > 1 is a constant.

[1] https://www.scholarhat.com/tutorial/datastructures

https://www.scholarhat.com/tutorial/datastructures

Some useful formulas

14

• Addition in asymptotic notation: 𝑓(𝑛) + 𝑔(𝑛) = 𝑂(max(𝑓 𝑛 , 𝑔(𝑛)))

• Multiplication in asymptotic notation: 𝑓 𝑛 ∗ 𝑔(𝑛) = 𝑂(𝑓 𝑛 ∗ 𝑔(𝑛))

• Exponents:
• 𝑥𝑎𝑥𝑏 = 𝑥𝑎+𝑏; 𝑥𝑎 𝑏 = 𝑥𝑎𝑏; 𝑥𝑛 + 𝑥𝑛 = 2𝑥𝑛 ≠ 𝑥2𝑛; 2𝑛 + 2𝑛 = 2𝑛+1;

• Logarithms: 𝑎, 𝑏, 𝑐 > 0

• log𝑎 𝑏 =
log𝑐 𝑏

log𝑐 𝑎
, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 1; log 𝑎𝑏 = log 𝑎 + log 𝑏 ; log 𝑎𝑏 = 𝑏 log 𝑎 ;

• Series

• σ𝑖=0
𝑛 𝑎𝑖 =

𝑎𝑛+1−1

𝑎−1
; σ𝑖=0

∞ 𝑎𝑖 =
1

1−𝑎
 𝑖𝑓 0 < 𝑎 < 1;

• σ𝑖=1
𝑛 𝑖

𝑘
≈

𝑛𝑘+1

𝑘+1
, 𝑤ℎ𝑒𝑟𝑒 𝑘 ≠ 1; σ𝑖=1

𝑛 1

𝑖
≈ log𝑒 𝑛 ;

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Constant time complexity 𝑂(1)

15

• The running time is independent of the input size 𝑛.
• Each statement is assumed to take a constant amount of time to run.

• Examples
• Assigning a value to a variable

• Determining a number is odd or even

• Printing out a phase like “Hello World”

• Accessing 𝑛𝑡ℎ element of an array

• A push or pop operation of a stack

• …

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

a = 5
print(a % 2 == 1)
print("Hello World!")
b = [0, 2, 1]
x = b[1]
b.append(a)
print(a)

https://www.simplilearn.com/tutorials/data-structure-tutorial

Linear time complexity 𝑂(𝑛)

16

• The running time is proportional to the input size

• When a function checks all values in an input data set or traverses all the
nodes of a data structure, the complexity is no less than 𝑂(𝑛).

• Examples
• Array operations like searching element, finding min, finding max, and so on

• Linked list operations like traversal, finding min, finding max, and so on

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

def main(n):
for i in range(n):

print(i)

https://www.simplilearn.com/tutorials/data-structure-tutorial

Linear time complexity 𝑂(𝑛)

17

• Examples

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

def main(n):
for i in range(n):

print(i)

def sum_n(inputs):
result = 0
for i in inputs:

result += i
return result

factorial with Recursion
def factorial_Recur(n):

if n == 0:
return 1

return n * factorial_Recur(n-1)

https://www.simplilearn.com/tutorials/data-structure-tutorial

Logarithmic time complexity 𝑂(log 𝑛)

18

• The running time is proportional to the logarithm of the input size.

• An example
• 1, 2, 4, 8, 16, …, 2𝑘,…

• 2𝑘 ≤ 𝑛 ⇒ 𝑘 ≤ log2 𝑛

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def log_print(n):
i = 1
while i <= n:

print("Hello World !!!")
i = 2 * i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

N-LogN time complexity 𝑂(𝑛 log 𝑛)

19

• An example
• Inner loop: log2 𝑛 iterations

• Outer loop : 𝑛 iterations

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def nlog_print(n):
for j in range(n):

i = 1
while i <= n:

print("Hello World !!!")
i = 2 * i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

Double logarithmic time complexity 𝑂(log log 𝑛)

20

• An example
• 𝑗 = 1, 𝑖 = 3 → 9 = 32

• 𝑗 = 2, 𝑖 = 9 → 81 = 34 = 322

• 𝑗 = 3, 𝑖 = 81 → 38 = 323

• … 𝑗 = 𝑘, 𝑖 = 3 → 32𝑘
…

• 32𝑘
≤ 𝑛 ⇒ log 2𝑘 ≤ log 𝑛

• ⇒ 𝑘 ≤ log log 𝑛

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def loglog_print(n):
i = 3
for j in range(2,n+1):

if(i >= n):
break

print("Hello World !!!")
i *= i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

	Slide 1
	Slide 2: Review
	Slide 3: Algorithm analysis – After implementation
	Slide 4: Algorithm analysis – After implementation
	Slide 5: Algorithm analysis – After implementation
	Slide 6: Algorithm analysis – Before implementation
	Slide 7: Algorithm analysis – Before implementation
	Slide 8: Examples
	Slide 9: Algorithm analysis – Asymptotic analysis
	Slide 10: Algorithm analysis – Big-Oh notation
	Slide 11: Algorithm analysis – Big-Omega notation
	Slide 12: Algorithm analysis – Big-Theta notation
	Slide 13: Main types of complexities
	Slide 14: Some useful formulas
	Slide 15: Constant time complexity O 1
	Slide 16: Linear time complexity O n
	Slide 17: Linear time complexity O n
	Slide 18: Logarithmic time complexity O log n
	Slide 19: N-LogN time complexity O n log n
	Slide 20: Double logarithmic time complexity O log log n

