CDS2003: Data Structures and Object-Oriented Programming

Lecture: Algorithm Analysis

Review

- Essential elements of an algorithm
 - Input
 - Processing unit
 - Output
- Principles of algorithm design
 - Readability
 - Correctness
 - Robustness
 - Efficiency

- Efficiency
 - Time factor
 - Space factor
- Analysis after implementation

Algorithm analysis – After implementation

• Two programs for obtaining a Fibonacci number F_n

Recursion

```
# Algorithm 1

def get_fn_1(n):
    if n < 2:
        fn = n
    else:
        fn = get_fn_1(n-1) + get_fn_1(n-2)
    return fn
```

Iteration

```
# Algorithm 2
def get_fn_2(n):
    if n < 2:
        fn = n
    else:
        first = 0
        second = 1
    for _ in range(n-1):
        sum = first + second
        first = second
        second = sum
    fn = second
    return fn</pre>
```

Algorithm analysis – After implementation

- Two programs for obtaining a Fibonacci number F_n
 - Execution times at n = 30

```
import time
n = 30
start = time.time()
results = get_fn_1(n)
end = time.time()
print('The results of f {} is {}.'.format(n, results))
print('The Recursion algorithm takes {} second to calculate!'.format(end - start))
start = time.time()
results = get_fn_2(n)
end = time.time()
print('The results of f {} is {}.'.format(n, results))
print('The Iteration algorithm takes {} second to calculate!'.format(end - start))
```

Output:

The results of f 30 is 832040. The Recursion algorithm takes 3.15065598487854 second to calculate! The results of f 30 is 832040. The Iteration algorithm takes 0.00010323524475097656 second to calculate!

Algorithm analysis – After implementation

- The execution time highly relies on
 - The hardware configuration
 - The programming language
 - The quality of code
 - Other environmental factors
- The execution time is useful for evaluating the empirical performance of an algorithm; however, can we characterize the resource requirements before implementing a program for the algorithm?

Algorithm analysis – Before implementation

- The computational complexity of an algorithm is a function describing the algorithm's efficiency in terms of the amount of (input) data.
- The computational complexity is calculated based on theoretical analysis.
- The resource to be consumed by carrying out an algorithm can be estimated from the computational complexity of the algorithm
- Time complexity T(n)
 - A function that describes the amount of computer time an algorithm takes to run in terms of the input size n
- Space complexity S(n)
 - A function that describes the amount of computer space (memory storage) an algorithm requires to run in terms of the input size n

Algorithm analysis – Before implementation

- Time complexity T(n)
 - An algorithm consists of elementary operations.
 - The running time is estimated by $\sum time\ for\ executing\ an\ elementary\ operation\ \times\ number\ of\ the\ operation$
- Space complexity S(n)
 - Input space: the memory used by the input of the algorithm.
 - Auxiliary space: any other memory the algorithm uses during execution, such as the extra space used for constants, variables, data structures, and function calls
 - The running space is estimated by

Input space + Auxiliary Space

Examples

```
def algorithm_1(n):
                    def algorithm_2(n):
                                         def algorithm_3(n):
                         a = 0
    a = 0
                                              a = 0
                                              for i in range(n):
    b = 0
                         b = 0
                         if n < 1:
                                                  a += 1
    a += n
    b -= n
                                              return a
                             a += n
    c = a * b
                         else:
    return c
                             b = n
                         c = a * b
                         return c
```

Algorithm analysis – Asymptotic analysis

- The comparison of algorithm efficiency should be independent of any particular dataset or programming language
- The order of growth of an algorithm matters, instead of the exact value.
 - · How quickly the resource requirement grows relative to the input size
 - T(n) and S(n) versus n
- Asymptotic analysis is not perfect, but effective for analyzing algorithms

Algorithm analysis – Big-Oh notation

- The "Big-Oh notation" is commonly used for algorithm complexity.
 - f(n) = O(g(n)) if there exist positive constants c and n_0 . such that $f(n) \le cg(n)$ when $n \ge n_0$.
 - In other words, cg(n) gives an upper bound for f(n).
 - The function f(n) growth is slower than cg(n).
 - Example: $n^2 + n = O(n^2)$.
 - Example: $n^2 + n = O(n^3)$???
 - There are many upper bounds.
 - Which one is better?

Algorithm analysis – Big-Omega notation

- The "Big-Omega notation"
 - $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 . such that $f(n) \ge cg(n)$ when $n \ge n_0$.
 - In other words, cg(n) gives a lower bound for f(n).
 - The function f(n) growth is faster than cg(n).
 - Example: $f(n) = c^n$ and $g(n) = n^c$ give $f(n) = \Omega(g(n))$.
 - Example: $f(n) = n^3 + 2n^2 = \Omega(n^3)$.
 - Example: $f(n) = n^3 + 2n^2 = \Omega(n^{2.5})$???
 - There are many lower bounds.
 - Which one is better?

Algorithm analysis – Big-Theta notation

- The "Big-Theta notation"
 - $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 , and n_1 . such that $c_1g(n) \le f(n) \le c_2g(n)$ when $n \ge n_1$.
 - In other words, $c_1g(n)$ gives a lower bound for f(n),
 - And $c_2g(n)$ gives an upper bound for f(n),
 - The function g(n) is an asymptotically tight bound on f(n).
 - In other words, the function f(n) grows at the same rate as g(n). $c_2g(n)$
 - Example: $f(n) = n^3 + n^2 + n = \Theta(n^3)$.

Main types of complexities

- Constant complexity O(1)
 - Independent of the input size n
- Logarithmic complexity $O(\log n)$
- Square root complexity $O(\sqrt{n})$
- Linear complexity O(n)
- N-LogN complexity $O(n \log n)$
- Quadratic complexity $O(n^2)$
- Polynomial complexity $O(n^c)$
- Exponential complexity $O(c^n)$
- Factorial complexity O(n!) or $O(n^n)$

Note that c > 1 is a constant.

Some useful formulas

- Addition in asymptotic notation: $f(n) + g(n) = O(\max(f(n), g(n)))$
- Multiplication in asymptotic notation: f(n) * g(n) = O(f(n) * g(n))
- Exponents:
 - $x^a x^b = x^{a+b}$; $(x^a)^b = x^{ab}$; $x^n + x^n = 2x^n \neq x^{2n}$; $2^n + 2^n = 2^{n+1}$;
- Logarithms: a, b, c > 0
 - $\log_a b = \frac{\log_c b}{\log_c a}$, where $a \neq 1$; $\log ab = \log a + \log b$; $\log(a^b) = b \log a$;
- Series
 - $\sum_{i=0}^{n} a^i = \frac{a^{n+1}-1}{a-1}$; $\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$ if 0 < a < 1;
 - $\sum_{i=1}^{n} i^k \approx \frac{n^{k+1}}{|k+1|}$, where $k \neq 1$; $\sum_{i=1}^{n} \frac{1}{i} \approx \log_e n$;

Constant time complexity O(1)

- The running time is independent of the input size n.
 - Each statement is assumed to take a constant amount of time to run.

Examples

- Assigning a value to a variable
- Determining a number is odd or even
- Printing out a phase like "Hello World"
- Accessing n^{th} element of an array
- A push or pop operation of a stack

```
• ...
```

```
a = 5
print(a % 2 == 1)
print("Hello World!")
b = [0, 2, 1]
x = b[1]
b.append(a)
print(a)
```

Linear time complexity O(n)

- The running time is proportional to the input size
- When a function checks all values in an input data set or traverses all the nodes of a data structure, the complexity is no less than O(n).
- Examples
 - Array operations like searching element, finding min, finding max, and so on
 - Linked list operations like traversal, finding min, finding max, and so on

```
def main(n):
   for i in range(n):
     print(i)
```

Linear time complexity O(n)

Examples

```
def main(n):
   for i in range(n):
     print(i)
```

```
def sum_n(inputs):
    result = 0
    for i in inputs:
       result += i
    return result
```

```
# factorial with Recursion
def factorial_Recur(n):
   if n == 0:
      return 1
   return n * factorial_Recur(n-1)
```

Logarithmic time complexity $O(\log n)$

- The running time is proportional to the logarithm of the input size.
- An example
 - 1, 2, 4, 8, 16, ..., 2^k ,...
 - $2^k \le n \Rightarrow k \le \log_2 n$

```
def log_print(n):
    i = 1
    while i <= n:
        print("Hello World !!!")
        i = 2 * i</pre>
```

N-LogN time complexity $O(n \log n)$

- An example
 - Inner loop: $\log_2 n$ iterations
 - Outer loop : *n* iterations

```
def nlog_print(n):
    for j in range(n):
        i = 1
        while i <= n:
            print("Hello World !!!")
        i = 2 * i</pre>
```

Double logarithmic time complexity $O(\log \log n)$

An example

```
• j = 1, i = 3 \rightarrow 9 = 3^2
```

•
$$j = 2$$
, $i = 9 \rightarrow 81 = 3^4 = 3^{2^2}$

•
$$j = 3$$
, $i = 81 \rightarrow 3^8 = 3^{2^3}$

- ... $j = k, i = 3 \rightarrow 3^{2^k}$...
- $3^{2^k} \le n \Rightarrow \log 2^k \le \log n$
- $\Rightarrow k \leq \log \log n$

```
def loglog_print(n):
    i = 3
    for j in range(2,n+1):
        if(i >= n):
            break
        print("Hello World !!!")
        i *= i
```