CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Algorithm Analysis

Review

» Essential elements of an algorithm * Efficiency
* Input * Time factor
* Processing unit « Space factor
* Output

* Analysis after implementation
* Principles of algorithm design
- Readability
* Correctness
* Robustness
« Efficiency

Algorithm analysis — After implementation

* Two programs for obtaining a Fibonacci number E,

 Recursion

get_fn_1(n):
ifn<2:

fn=n
else:

fn =get_fn_1(n-1) + get_fn_1(n-2)
return fn

° I get_fn_2(n):
Iteration .

fn=n
else:
first=0

second=1
for _in range(n-1):
sum = first + second
first = second
second = sum
fn = second
return fn 3

Algorithm analysis — After implementation

* Two programs for obtaining a Fibonacci number E,
« Execution times at n = 30

import time
n=30

start = time.time()

results = get_fn_1(n)

end = time.time()

print('The results of f_{}is {}.".format(n, results))

print(‘The Recursion algorithm takes {} second to calculate!'.format(end - start))

start = time.time()

results = get_fn_2(n)

end = time.time()

print('The results of f_{}is {}.'.format(n, results))

print('The Ilteration algorithm takes {} second to calculate!'.format(end - start))

Output:

The results of f 30is 832040.

The Recursion algorithm takes 3.15065598487854 second to calculate!

The results of f 30is 832040.

The lteration algorithm takes 0.00010323524475097656 second to calculate!

Algorithm analysis — After implementation

* The execution time highly relies on
« The hardware configuration
* The programming language
* The quality of code
« Other environmental factors

* The execution time is useful for evaluating the empirical performance of
an algorithm; however, can we characterize the resource requirements
before implementing a program for the algorithm?

Algorithm analysis — Before implementation

* The computational complexity of an algorithm is a function describing the
algorithm’s efficiency in terms of the amount of (input) data.

* The computational complexity is calculated based on theoretical analysis.

* The resource to be consumed by carrying out an algorithm can be
estimated from the computational complexity of the algorithm

* Time complexity T (n)
* Afunction that describes the amount of computer time an algorithm takes to run in
terms of the input size n

« Space complexity S(n)
 Afunction that describes the amount of computer space (memory storage) an
algorithm requires to run in terms of the input size n

(1] _ N :) e

https://www.simplilearn.com/tutorials/data-structure-tutorial

Algorithm analysis — Before implementation

* Time complexity T (n)
 An algorithm consists of elementary operations.
* The running time Is estimated by
Y. time for executing an elementary operation X number of the operation

« Space complexity S(n)
* Input space: the memory used by the input of the algorithm.

« Auxiliary space: any other memory the algorithm uses during execution, such as
the extra space used for constants, variables, data structures, and function calls

* The running space is estimated by
Input space + Auxiliary Space

[1] hitps://www simplilearn.com/tutorials/data-structure-tutorial 7

https://www.simplilearn.com/tutorials/data-structure-tutorial

Examples

def algorithm_1(n): | def algorithm 2(n): | def algorithm_3(n)
a

return a

return c

return c

Algorithm analysis — Asymptotic analysis

* The comparison of algorithm efficiency should be independent of any
particular dataset or programming language

* The order of growth of an algorithm matters, instead of the exact value.
« How quickly the resource requirement grows relative to the input size
* T(n) and S(n) versus n

« Asymptotic analysis is not perfect, but effective for analyzing algorithms

Algorithm analysis — Big-Oh notation

* The “Big-Oh notation” is commonly used for algorithm complexity.

* f(n) = 0(g(n)) if there exist positive constants c and n,.
such that f(n) < cg(n) when n > n,.

In other words, cg(n) gives an upper bound for f(n).
The function f(n) growth is slower than cg(n).
Example: n* + n = 0(n?).

cg(n)
« Example: n® +n = 0(n3)???
* There are many upper bounds. Growth o)
« Which one is better? Rate /
J Input Size ‘

n
"0 f) = 0(g(n))

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Inde pendent Publishing Platform. 10

Algorithm analysis — Big-Omega notation

* The “Big-Omega notation”

* f(n) = Q(g(n)) if there exist positive constants ¢ and n,.
such that f(n) = cg(n) when n > n,.

In other words, cg(n) gives a lower bound for f(n).

The function f(n) growth is faster than cg(n).

Example: f(n) = ¢™ and g(n) = n° give f(n) = Q(gn)).
Example: f(n) = n® + 2n? = Q(n?).)
Example: f(n) = n3 + 2n? = Q(n?>) ??? 1)
* There are many lower bounds. Growth
 Which one is better? Rate e

av

N

Input Size

n

f(n) = Q(gn)

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Inde pendent Publishing Platform. 11

Algorithm analysis — Big-Theta notation

* The “Big-Theta notation”

* f(n) = O(g(n)) if there exists positive constants c;, ¢,, and n;.
such that c;g(n) < f(n) < c,g(n) whenn = n;.

* In other words, c;g(n) gives a lower bound for f(n),
* And c,g(n) gives an upper bound for f(n),
« The function g(n) is an asymptotically tight bound on f(n).

» In other words, the function f(n) grows at the same rate as g(n). c.so
« Example: f(n) = n® + n* + n = 0(n?). o
Growth
Rate %(H)
Input Size ‘

n
no

f(n) = 0(g(n))

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Inde pendent Publishing Platform. 12

Main types of complexities

» Constant complexity 0(1)
 Independent of the input size n

* Logarithmic complexity O(logn) o) 0"
» Square root complexity 0(vn)
 Linear complexity O (n)

* N-LogN complexity O(nlogn)
 Quadratic complexity 0(n?)

* Polynomial complexity O(n°)

« Exponential complexity O(c™)
 Factorial complexity O(n!) or O(n")
Note thatc > 1 Is a constant.

on®)

0(n log n)

Time / Space Consumptio

Input Growth

[1] https://www.scholarhat.com/tutorial/datastructures 13

https://www.scholarhat.com/tutorial/datastructures

Some useful formulas

 Addition in asymptotic notation: f(n) + g(n) = O(max(f(n), g(n)))
 Multiplication in asymptotic notation: f(n) * g(n) = 0(f(n) * g(n))
* EXponents:

e xAyb — xa+b; (xa)b — xab; x4+ x™ = 2x" =+ xZn; 2N 4 2N — 2n+1;

» Logarithms: a,b,c > 0

* log, b = igicz,where a # 1; logab =loga + logb;log(ab) = bloga;
» Series
; n+1_]
ioa' = aa_ll;Z?ioa‘ =ﬁ if0<a<1;

Lk nkt

~y

N A A
t=1 lk+1]’

where k + 1; Z’i’zl% ~ log, n;

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Inde pendent Publishing Platform. 14

Constant time complexity 0(1)

* The running time Is independent of the Iinput size n.
 Each statement is assumed to take a constant amount of time to run.

« Examples

 Assigning a value to a variable Zrini(a % 2 == 1)

* Determining a number is odd or even print("Hello World!")
 Printing out a phase like “Hello World” E:t[)?l]z 1

- Accessing n'"* element of an array R

« A push or pop operation of a stack print(a)

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial 15

https://www.simplilearn.com/tutorials/data-structure-tutorial

Linear time complexity 0(n)

* The running time Is proportional to the input size

* When a function checks all values in an input data set or traverses all the
nodes of a data structure, the complexity is no less than 0(n).

« Examples
 Array operations like searching element, finding min, finding max, and so on
 Linked list operations like traversal, finding min, finding max, and so on

main(n):
foriin range(n):

print(i)

16

https://www.simplilearn.com/tutorials/data-structure-tutorial

Linear time complexity 0(n)

« Examples

sum_n(inputs):
result=0
foriin inputs:
result += i
return result

main(n):
foriin range(n):
print(i)

factorial_Recur(n):
if n==0:
return 1
return n * factorial _Recur(n-1)

17

https://www.simplilearn.com/tutorials/data-structure-tutorial

Logarithmic time complexity O (logn)

* The running time Is proportional to the logarithm of the input size.

* An example
*1,2,4,8,16, ..., 2%,...
e 2k <n =k <log,n

log_print(n):
i=1
while i <= n:
print("Hello World !!!")

i=2%i

[1] hitps://www.gee 18

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

N-LogN time complexity O(nlogn)

* An example
* Inner loop: log, n iterations
« QOuter loop : n iterations

nlog_print(n):
for j in range(n):
i=1
while i <= n:
print("Hello World !11")
i=2%]

[1] hitps://www.gee 19

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

Double logarithmic time complexity O (loglogn)

* An example
o]=1,l=3_)9=32

. . 2
«j=2,i=9-81=3%"=3% loglog_print(n):

+j=3,i=81-3%=3% =3

. =k i=3- 32k forjin range(2,n+1):
el if(i >= n):

. 32k <n=log 2k < logn break

print("Hello World !!1")

i ¥=

* > k <loglogn

[1] https://www.gee 20

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

	Slide 1
	Slide 2: Review
	Slide 3: Algorithm analysis – After implementation
	Slide 4: Algorithm analysis – After implementation
	Slide 5: Algorithm analysis – After implementation
	Slide 6: Algorithm analysis – Before implementation
	Slide 7: Algorithm analysis – Before implementation
	Slide 8: Examples
	Slide 9: Algorithm analysis – Asymptotic analysis
	Slide 10: Algorithm analysis – Big-Oh notation
	Slide 11: Algorithm analysis – Big-Omega notation
	Slide 12: Algorithm analysis – Big-Theta notation
	Slide 13: Main types of complexities
	Slide 14: Some useful formulas
	Slide 15: Constant time complexity O 1
	Slide 16: Linear time complexity O n
	Slide 17: Linear time complexity O n
	Slide 18: Logarithmic time complexity O log n
	Slide 19: N-LogN time complexity O n log n
	Slide 20: Double logarithmic time complexity O log log n

