
Week 5b
Perceptron recap.

Clustering.
Fundamentals of Machine Learning

2023-24

Dr Benjamin Evans

Recap The Perceptron
• A single artificial neuron (perceptron) can do binary classification,
 if a linear decision boundary makes sense.

• The perceptron sums all the inputs, weighting each one according to
the weight parameters, then classifies according to whether or not
the sum exceeds the threshold of the activation function.

• The perceptron can do supervised learning, by updating weights
using gradient descent.

𝑥!

𝑥"

𝑥#

𝑥$

Inputs Weights
𝑤!
𝑤"

𝑤#

𝑤$

Σ Output
𝑦

𝑦 = 𝑓 '
%&!

$

𝑤%𝑥% +𝑤'

• Takes the values for each of the features, 𝑥! as input.
• Scales the features by their weights 𝑤! and sums the products.
• Passes result through a non-linear activation function, 𝑓.
• Produces a binary classification as output, 𝑦, that is a function

of the features: {0, 1} or {-1, 1}.

What are the parameters?
• The weights, 𝑤", 𝑤#, . . . , 𝑤$
• The bias, 𝑤%
• (The activation function, f)

The single perceptron

Can be viewed
as a model…

… or a function.

𝑦 = 𝑓 𝒘 * 𝒙

𝑓

Learning for a perceptron

On the error surface, each new weight is directly downhill from the old weight
𝜂 is how much to change in that direction

Vector notation Scalar notation

Error 𝐸 𝐰 =
1
2 (𝑦 − 𝑐)(𝐰 0 𝐱) 𝐸 𝑤 =

1
2 (𝑦 − 𝑐)(𝑤% +𝑤"𝑥"+. . . +𝑤&𝑥&)

Gradient 𝛁𝐸 𝐰 =
1
2 (𝑦 − 𝑐)𝐱

𝜕𝐸(𝑤)
𝜕𝑤!

=
1
2
𝑦 − 𝑐 𝑥!

Gradient descent
Learning Rule 𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂

1
2 (𝑦 − 𝑐)𝐱 𝑤! 𝑡 + 1 = 𝑤! 𝑡 − 𝜂

1
2 (𝑦 − 𝑐)𝑥!

(

𝑤!
𝑤"

Error

Visualisation of gradient descent

[in reality there is w0 as well, but you can only picture the error surface for two parameters!]

𝐰𝑛𝑒𝑤	 = 	𝐰𝑜𝑙𝑑	 − 	𝜂	∇𝐸(𝐰)

Hyperparameters / settings for training a
perceptron
• Set learning rate: 𝜂
• Set initial weight values: w
• When to stop?
• Training set shown repeatedly until stopping criteria are met e.g., the error

drops below a threshold or plateaus
• Note, each full presentation of all patterns := ‘epoch’

• Which type of training regime?
• Sequential (on-line, stochastic, or per-pattern): Weights updated after each

pattern is presented.
• Batch: Calculate the derivatives/weight changes for each pattern in the

training set. Calculate total change by summing individual changes.

𝑥!

𝑥"
Decision boundary where:
𝑤! + 𝑤"𝑥" + 𝑤#𝑥# > 0

à get 𝑦 = 1

Present: (𝑥" = −1, 	 𝑥! = 2)
à get 𝑦 = 1, which is wrong!

𝐸 𝑤 =
1
2
(𝑤# + 𝑤"𝑥" + 𝑤!𝑥!) 𝑦 − 𝑐

=
1
2
0 − 1 + 2 1 − −1 = 1

𝑤# → 𝑤# − 𝜂

𝑤" → 𝑤" + 𝜂

𝑤! → 𝑤! − 2𝜂

𝑤# ⬇ decreases

𝑤" ⬆ increases

𝑤! ⬇ decreases

Decision boundary
gets steeper and
moves up
(if 𝜂 is not too big).

𝑥!

𝑥"

𝑤! = 1

𝑤" = 1
Σ

𝑤' = 0

Inputs

Bias

𝑦𝑓

𝜕𝐸
𝜕𝑤#

= 1

𝜕𝐸
𝜕𝑤"

= 𝑥" = −1

𝜕𝐸
𝜕𝑤!

= 𝑥! = 2

Apply the learning rule:

𝑤$ → 𝑤$ − 𝜂
𝜕𝐸
𝜕𝑤$

Differentiate error
w.r.t. each weight…

𝑥! = −
𝑤"
𝑤!

𝑥" −
𝑤#
𝑤!

For this parameter
initialization, the
decision boundary
is the straight line: 𝑥! 	 = −𝑥"i.e.

We want:
𝑦 = 1 for ⭐ stars and
𝑦 = −1 for 🟡 circles

Learning
outcomes
for today’s
main topic:
Clustering.

Understand first unsupervised
learning problem: clustering

Understand the steps of the
k-means algorithm

Clustering

• Learn a model from unlabelled instances 𝑥!, 𝑥", . . . , 𝑥#

• Learning is unsupervised (we have no labelling function, beforehand):
Requires data, but no labels

• Detects patterns / discover structure in the data
• e.g. in customer shopping behaviours, search results, regions of images, etc.

• Useful when don’t know what you’re looking for

Clustering vs. Classification
In classification, we have data for which the groups are known, and we try to learn
what differentiates these groups to properly classify future data.

In clustering, we look at data for which groups are unknown and undefined, and try to
learn the groups themselves, as well as what differenWates them.

Clustering
• Basic idea: group together similar instances

• Example 2-D Point patterns

Clustering
• Basic idea: group together similar instances

• Example 2-D Point patterns

Clustering
• Basic idea: group together similar instances

• Example 2-D Point patterns

Clustering
• Basic idea: group together similar instances

• Example 2-D Point patterns

Clustering

• What could “similar” mean?

o One option: small squared Euclidean distance

 𝐷𝑖𝑠(𝒙, 𝒚) 	= 𝒙 − 𝒚 != [(𝑥"−𝑦")! + (𝑥!−𝑦!)!	+	. . . 	+	(𝑥#−𝑦#)!]

 where 1 denotes the Euclidean distance

• Clustering results are crucially dependent on the measure of similarity (or
distance) between “points” to be clustered

What is similar/dissimilar?

You pick your similarity/dissimilarity

Clustering examples

Clustering algorithms

• Partition algorithms
• No hierarchy

• Hierarchical algorithms:
• Bottom up – agglomerative (“merging”)
• Top down – divisive (“splitting”)

k-means
• Simple partitioning approach based on the idea of

centroids or prototypes

p1

c

The centroid (middle) of any
group of points in a Euclidean
space can be found by taking
the mean on every dimension.

p4

p2

p3

x1

x2

𝐶= =
∑%&'> 𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑗	𝑜𝑓	𝑝%

𝑛

k-means
1. Select k points

as initial
centroids

2. while centroids
changing:
1. Form k clusters

by assigning each
point to its
nearest centroid

2. Recompute
centroid of the
cluster

p2

p4

p5

p8

p1

p3

p7

p6

k-means
1. Select k points

as initial
centroids

2. while centroids
changing:
1. Form k clusters

by assigning each
point to its
nearest centroid

2. Recompute
centroid of the
cluster

p2 p3
p4

p5

p8

p1

p7

p6

k-means
1. Select k points

as initial
centroids

2. while centroids
changing:
1. Form k clusters

by assigning each
point to its
nearest centroid

2. Recompute
centroid of the
cluster

p2 p3
p4

p5

p8

p1

p7

p6
c

c

k-means
1. Select k points

as initial
centroids

2. while centroids
changing:
1. Form k clusters

by assigning each
point to its
nearest centroid

2. Recompute
centroid of the
cluster

p2 p3
p4

p5

p8

p1

p7

p6
c

c

k-means
1. Select k points

as initial
centroids

2. while centroids
changing:
1. Form k clusters

by assigning each
point to its
nearest centroid

2. Recompute
centroid of the
cluster

p2 p3
p4

p5

p8

p1

p7

p6
c

c

Pros and cons of k-means

Advantages
• Fast

ØDon’t have to keep
computing distances
between all pairs of points.

• Simple to implement

• Intuitive

Disadvantages
• Need to choose/know k in advance

ØCould try out several different k and
select the best?

• May converge on a local mimimum
i.e., suboptimal clustering
ØCan be overcome to some extent by

repeated random initialisations
• Hard clustering (each point is only

assigned to a single cluster)
• Flat structure (no clusters within

clusters)

What is k-means optimizing?

• Given data points X the goal is to choose k centroids and cluster
assignments so that the average distance from centroids is minimised.

• That is minimise:

"
$%!

#

𝑥$ − 𝐶$ "

with respect to all centroids and allocations (for a given k).

DistorWon =∑%&!? 𝑥% −𝐶% "

• If you have N clusters, every
point is at the centroid of its own
cluster containing just itself.

• Looking for substantial gain in
having more clusters.

How many clusters?
• Minimize sum of distances to

centroids? Called distortion or inertia:

• E.g. Data are accident prone areas, centroids are where to put Hospital Emergency Units.

Height

W
ei

gh
t

Example: T-shirts

• Suppose I am a manufacturer of t-shirts and I want to make 3
different sizes. How do I opSmise the sizes?

Height

W
ei

gh
t

Example: T-shirts

• But is this opWmal?
• Have to consider many factors...

S
M

L

Extra material: Agglomera/ve
hierarchical clustering

• AHC is an agglomerative technique which builds up clusters
by repeatedly merging the closest pair of clusters

• Do not need to know the number of clusters in advance

• Hierarchical (clusters have internal structure)

Agglomerative hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

AgglomeraHve hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

Agglomerative hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

AgglomeraHve hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

Agglomerative hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

AgglomeraHve hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

Agglomerative hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

AgglomeraHve hierarchical clustering
1. Initialise n

clusters as the n
data points

2. Find closest pair
<pi,pj> of
clusters with
distance d

3. while d <
threshold:
1. Merge clusters

<pi,pj>
2. Find closest pair

<pi, pj> with
distance d

p2

p6

p4

p5

p8

p1

p3

p7

Example: teacher dividing up a class of students

Build the dendrogram

• If you’re lucky this will tell you how many clusters to have.

Agglomerative
hierarchical
clustering
versus k-means

• k-means is quicker – just go through all N
data points and calculate distances from
centroids.

• Agglomerative hierarchical clustering – need
similarity of all pairs, 𝑁×𝑁 similarity
calculations each iteration. If 𝑁 is large, this
is a lot bigger!

• But with AHC, get a thorough snap-shot of
data from one pass of algorithm, and don’t
need to specify number of clusters.

What have you learned today?

• Unsupervised learning.
• Clustering.
• k-means.
• AgglomeraSve hierarchical
• Dendrograms show the hierarchy and possibiliLes for cuts

• Next week: reading / catch up week.
• Tuesday: No lecture.
• Thursday: opWonal MCQ revision lecture.
• Labs as usual (for this week’s content)

Week 7: Pre-processing.
Week 8: Neural networks II.

