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Recap The Perceptron
• A single artificial neuron (perceptron) can do binary classification,
     if a linear decision boundary makes sense.

• The perceptron sums all the inputs, weighting each one according to 
the weight parameters, then classifies according to whether or not 
the sum exceeds the threshold of the activation function.

• The perceptron can do supervised learning, by updating weights 
using gradient descent.
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• Takes the values for each of the features, 𝑥! as input.
• Scales the features by their weights 𝑤! and sums the products.
• Passes result through a non-linear activation function, 𝑓.
• Produces a binary classification as output, 𝑦, that is a function 

of the features: {0, 1} or {-1, 1}.

What are the parameters?
• The weights, 𝑤", 𝑤#, . . . , 𝑤$
• The bias, 𝑤%
• (The activation function, f)

The single perceptron

Can be viewed 
as a model…

… or a function.

𝑦 = 𝑓 𝒘 * 𝒙

𝑓



Learning for a perceptron

On the error surface, each new weight is directly downhill from the old weight
𝜂 is how much to change in that direction

Vector notation Scalar notation
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Gradient descent 
Learning Rule 𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂
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Visualisation of gradient descent

[in reality there is w0 as well, but you can only picture the error surface for two parameters!]

𝐰𝑛𝑒𝑤	 = 	𝐰𝑜𝑙𝑑	 − 	𝜂	∇𝐸(𝐰)



Hyperparameters / settings for training a 
perceptron
• Set learning rate: 𝜂
• Set initial weight values: w
• When to stop?
• Training set shown repeatedly until stopping criteria are met e.g., the error 

drops below a threshold or plateaus
• Note, each full presentation of all patterns := ‘epoch’

• Which type of training regime? 
• Sequential (on-line, stochastic, or per-pattern): Weights updated after each 

pattern is presented.
• Batch: Calculate the derivatives/weight changes for each pattern in the 

training set. Calculate total change by summing individual changes.
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à get 𝑦 = 1

Present: (𝑥" = −1, 	 𝑥! = 2)
à get 𝑦 = 1, which is wrong!
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Decision boundary 
gets steeper and 
moves up
(if 𝜂 is not too big).
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Apply the learning rule:

𝑤$ → 𝑤$ − 𝜂
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Differentiate error 
w.r.t. each weight…

𝑥! = −
𝑤"
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For this parameter 
initialization, the 
decision boundary 
is the straight line: 𝑥! 	 = −𝑥"i.e. 

We want:
𝑦 = 1 for ⭐ stars and 
𝑦 = −1 for 🟡 circles



Learning 
outcomes 
for today’s 
main topic: 
Clustering.

Understand first unsupervised 
learning problem: clustering

Understand the steps of the 
k-means algorithm



Clustering

• Learn a model from unlabelled instances 𝑥!, 𝑥", . . . , 𝑥#

• Learning is unsupervised (we have no labelling function, beforehand): 
Requires data, but no labels 

• Detects patterns / discover structure in the data
• e.g. in customer shopping behaviours, search results, regions of images, etc. 

• Useful when don’t know what you’re looking for 



Clustering vs. Classification
In classification, we have data for which the groups are known, and we try to learn 
what differentiates these groups to properly classify future data. 

In clustering, we look at data for which groups are unknown and undefined, and try to 
learn the groups themselves, as well as what differenWates them. 





Clustering
• Basic idea: group together similar instances

• Example 2-D Point patterns
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Clustering

• What could “similar” mean?

o One option: small squared Euclidean distance

 𝐷𝑖𝑠(𝒙, 𝒚) 	= 𝒙 − 𝒚 != [	(𝑥"−𝑦")! + (𝑥!−𝑦!)!	+	. . . 	+	(𝑥#−𝑦#)!	 ]
 
 where 1  denotes the Euclidean distance

• Clustering results are crucially dependent on the measure of similarity (or 
distance) between “points” to be clustered



What is similar/dissimilar?



You pick your similarity/dissimilarity



Clustering examples



Clustering algorithms

• Partition algorithms
• No hierarchy

• Hierarchical algorithms:
• Bottom up – agglomerative (“merging”)
• Top down – divisive (“splitting”)



k-means
• Simple partitioning approach based on the idea of 

centroids or prototypes

p1

c

The centroid (middle) of any 
group of points in a Euclidean 
space can be found by taking 
the mean on every dimension.
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k-means
1. Select k points 

as initial 
centroids

2. while centroids 
changing:
1. Form k clusters 

by assigning each 
point to its 
nearest centroid

2. Recompute 
centroid of the 
cluster
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Pros and cons of k-means

Advantages
• Fast

ØDon’t have to keep 
computing distances 
between all pairs of points.

• Simple to implement

• Intuitive

Disadvantages
• Need to choose/know k in advance

ØCould try out several different k and 
select the best?

• May converge on a local mimimum 
i.e., suboptimal clustering
ØCan be overcome to some extent by 

repeated random initialisations
• Hard clustering (each point is only 

assigned to a single cluster)
• Flat structure (no clusters within 

clusters)



What is k-means optimizing?

• Given data points X the goal is to choose k centroids and cluster 
assignments so that the average distance from centroids is minimised. 

• That is minimise:

"
$%!

#

𝑥$ − 𝐶$ "

with respect to all centroids and allocations (for a given k). 



DistorWon =∑%&!? 𝑥% −𝐶% "

• If you have N clusters, every 
point is at the centroid of its own 
cluster containing just itself.

• Looking for substantial gain in 
having more clusters.

How many clusters?
• Minimize sum of distances to 

centroids? Called distortion or inertia:

• E.g. Data are accident prone areas, centroids are where to put Hospital Emergency Units.
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Example: T-shirts

• Suppose I am a manufacturer of t-shirts and I want to make 3 
different sizes. How do I opSmise the sizes?
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Example: T-shirts

• But is this opWmal?
• Have to consider many factors...

S
M
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Extra material: Agglomera/ve 
hierarchical clustering

• AHC is an agglomerative technique which builds up clusters 
by repeatedly merging the closest pair of clusters

• Do not need to know the number of clusters in advance

• Hierarchical (clusters have internal structure)



Agglomerative hierarchical clustering
1. Initialise n 

clusters as the n 
data points

2. Find closest pair 
<pi,pj>  of 
clusters with 
distance d

3. while d < 
threshold:
1. Merge clusters 

<pi,pj>
2. Find closest pair 

<pi, pj> with 
distance d 
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Example: teacher dividing up a class of students



Build the dendrogram

• If you’re lucky this will tell you how many clusters to have.



Agglomerative 
hierarchical 
clustering 
versus k-means

• k-means is quicker – just go through all N 
data points and calculate distances from 
centroids.

• Agglomerative hierarchical clustering – need 
similarity of all pairs, 𝑁×𝑁 similarity 
calculations each iteration. If 𝑁 is large, this 
is a lot bigger!

• But with AHC, get a thorough snap-shot of 
data from one pass of algorithm, and don’t 
need to specify number of clusters.



What have you learned today?

• Unsupervised learning. 
• Clustering. 
• k-means. 
• AgglomeraSve hierarchical
• Dendrograms show the hierarchy and possibiliLes for cuts

• Next week: reading / catch up week.
• Tuesday: No lecture.
• Thursday: opWonal MCQ revision lecture.
• Labs as usual (for this week’s content)

Week 7: Pre-processing.
Week 8: Neural networks II.


