
Week 7b:

Dimensionality reduction
G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk

Pre-processing data
• Input normalisation: Normalise (rescale) features to lie on a sensible scale.

Useful for network/model training, and for visual inspection of data.
• Imputing: I.e., filling in missing data.
• Feature construction and selection: Incorporate your domain knowledge to

select features that are likely to be useful.
Mindfully build features from the data based on visual inspection and
consideration of the task to be done.

• Today: Dimensionality reduction: Use maths to efficiently reduce the number of
dimensions.
Define a few new variables that are combinations of the raw variables, and
account for most of the variance.

• Principal Components Analysis (PCA)
• Aside on eigenvalues and eigenvectors

2 / 23

Dimensionality reduction
• What is it?

• Reducing the number of dimensions (i.e., features) that are used to represent an
object of interest

• Why?
• Computationally expensive to store and work with high dimensional spaces
• Overfitting less likely if there are fewer parameters to learn
• One feature that combines several noisy, yet correlated, features means modelling

accuracy improves
• Impossible to visualize high-dimensional spaces - humans can typically only

visualize 2 or 3 dimensions!

3 / 23

Curse of dimensionality
• E.g., K-means clustering. Algorithm works based on distances between the things

we want to classify. For 2 members of our population, x and y:

Distance(x, y) = [(x1 − y1)
2 + (x2 − y2)

2 + ... + (xD − yD)
2]

• K-means clustering relies on things in the same class being closer together.
• Suppose feature 1 and 2 will take very different values when x and y are in different

classes and very similar values when x and y are in the same class.
• Suppose features 3, 4, . . . , D vary a lot, and don’t actually tell you anything about

the class of x and y.
• Then, if the number of features d is large, k-means gets messed up:

the distances between things in the same class and things in different classes will
both vary a lot, and on average won’t be very different for things in the same class
vs things in different classes.

4 / 23

Example: Trajectory of depression symptoms
24 features → reduced to 3 features for clustering → visualize just 2 of these features

5 / 23

Illustration: 2 features down to 1 feature

6 / 23

Lower dimensional projections
Generally, rather than picking a subset of the features, we construct new features z f
that are (linear) combinations of existing features {x1, x2, ..., xD}:

z f =
D

∑
i=1

w f ,ixi

7 / 23

Principal Components Analysis - Key idea
• Intuitively, for a given component, if the data has large variability between

examples, this component tends to be important, in the sense that it more likely
determines the output value.

• On the other hand, if the data takes roughly the same or similar values for all
examples, then this component is unlikely to have a significant influence on
outputs, and hence can be neglected.

• In other words, it is sensible to choose those components having large
variability as important features if we do not have other prior knowledge.

How do we measure variability? We compute the variance!

8 / 23

Example: Principal component
The most important feature of the data is
given by the projection of the data onto
the principal component, which in this
example is the direction:

u1 =
x1 + x2√

2

The projection on the other direction u2
can be ignored.

9 / 23

PCA: the covariance matrix holds all the
information

Σ =


var(x1) cov(x1, x2) . . . cov(x1, xD)

cov(x1, x2) var(x2) . . . cov(x2, xD)
...

...
cov(x1, xD) cov(x2, xD) . . . var(xD)


The idea is to:

1. Change coordinates (rotate axes), so that the off-diagonal covariance terms are
zero (new features are uncorrelated)

2. Rank the variances of the newly defined features in the new coordinate system
3. The selected features are those corresponding to the largest d variances, where d

is how many features are to be kept.

10 / 23

Eigenvalues and eigenvectors

• Let M be a square matrix. Let λ be a constant and e a non-zero vector. λ is an
eigenvalue of M and e is the corresponding eigenvector if:

Me = λe

• In geometry, if M represents a transformation of the space (e.g., a rotation,
reflection or enlargement) then an eigenvector is a vector which is unchanged
under the transformation (e.g., the axis of rotation or reflection) and the
eigenvalue is the scaling factor.

11 / 23

Example

M =

(
1 3

4
3
4 1

)
Is v =

(
1
−1

)
an eigenvector?

Mv =

(
1 3

4
3
4 1

)(
1
−1

)
=

(
1 · 1 + 3

4 · (−1)
3
4 · 1 + 1 · (−1)

)
=

(1
4
− 1

4

)
=

1
4

(
1
−1

)
=

1
4

v = λv

Yes, and the corresponding eigenvalue is λ = 1
4 .

12 / 23

Orthogonal eigenvectors, diagonal matrix
If A is symmetric (true if A is the covariance matrix), the eigenvectors u will be
orthogonal (all perpendicular to each other).
Then, the eigenvectors can be used to define new features.

Expressed in the new coordinate system, the matrix becomes diagonal, with the
eigenvalues down the diagonal:

A′ =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . .
...

0 0 . . . λD


The data is rewritten: Instead of features x1 and x2, create a table of new features u1
and u2.

13 / 23

Covariance matrix

Σ =


var(x1) cov(x1, x2) . . . cov(x1, xD)

cov(x1, x2) var(x2) . . . cov(x2, xD)
...

...
cov(x1, xD) cov(x2, xD) . . . var(xD)


Σii =

1
N

N

∑
n=1

(xi,n − xi)
2 Σij =

1
N

N

∑
n=1

(xi,n − xi)(xj,n − xj)

Diagonal terms are the variance of each feature.
Off-diagonal terms are the covariances between pairs of features.
Covariance is a measure of correlation.

14 / 23

Rotated feature space with no correlations

Eigenvalues of the
covariance matrix are equal
to the variances of
redefined set of features
that are uncorrelated

Σ =


var(x1) cov(x1, x2) . . . cov(x1, xD)

cov(x1, x2) var(x2) . . . cov(x2, xD)
...

...
cov(x1, xD) cov(x2, xD) . . . var(xD)


↓

Σ′ =


var(u1) 0 . . . 0

0 var(u2) . . . 0
...

...
0 0 . . . var(uD)



15 / 23

Steps of PCA

1. Compute the covariance matrix of the input data.
2. Compute the eigenvalues and eigenvectors of the covariance matrix.
3. Arrange eigenvectors in the order of magnitude of their eigenvalues.

• Take the first d eigenvectors as principal components if the input dimensionality is
to be reduced to d.

• Or look at the spectrum of eigenvalues to decide how many components to keep.
Each eigenvalue is the variance of the corresponding eigenvector (component).

4. Project the input data onto the principal components, which forms the
representation of the input data.

16 / 23

Example
Covariance matrix:(

1 3
4

3
4 1

)
We saw that one eigenvector was(

1
−1

)
with eigenvalue 1

4 .

Exercise:
Show that the other eigenvector is(

1
1

)
with eigenvalue 7

4 .

Use these eigenvectors to define new features
(scaled to length 1):

u1 =
x1 + x2√

2
, u2 =

x1 − x2√
2

u1 has a large variance 7
4 , whereas u2 has a

smaller variance 1
4 .

Therefore, could try keeping just u1,
the principal component of the data.

17 / 23

How many components to keep?
• Look at the spectrum of eigenvalues to

decide how many components to keep.
Each eigenvalue is the variance of the
corresponding eigenvector (component).

• Or try sequential forward search.
• Sequentially select features until there is

no improvement in prediction.
• Select 1 feature. Train and test model.
• Add another feature. Train and test

model.
• Iterate until there is no improvement in

prediction.
(Rogers & Giolami)

18 / 23

Does PCA always work well?
No!
When the relationship between components is
very non-linear, it doesn’t work well.

Here, PCA will overestimate the input dimensionality: there is equal variance in all
directions here, so PCA would consider these data to be 2 dimensional. But in reality
these are 1 dimensional data- the only actual variable here is the angle on the circle (a
non-linear function of x and y coordinates).

19 / 23

Other cases when PCA fails
In cases when components with small variability really matter, PCA will make
mistakes due to the unsupervised nature of the process.

In this example, if we only consider the projections of two classes of data as input, the
two classes become indistinguishable.

20 / 23

When does PCA work best?
For Gaussian distributed data,
i.e. when the inputs have a normal
(Gaussian) distribution.
In that case, the eigenvalues of the
covariance matrix indeed quantify
the variability of data along their
corresponding directions. (There are
no other parameters to the
probability distribution.)

21 / 23

Pre-processing before doing PCA

Input normalization:
• Must subtract the mean as the theory requires that the data are centred at the

origin
• Also, we divide by the standard deviation as results shouldn’t depend on the

units of the inputs.

22 / 23

Summary and outlook
• Input normalisation: aids visualisation, generally improves performance of

model training.
• Dimensionality reduction / Feature selection / Feature extraction:

• Reduces overfitting: less redundant data means less opportunity to make decisions
based on noise.

• Improves accuracy: one feature that combines several noisy, yet correlated, features
means modelling accuracy improves.

• Reduces training time: reducing number of features reduces algorithm complexity
and algorithms train faster.

• PCA also good for visualising data.

Next lecture:
• Multi-layer perceptron

23 / 23

EXTRA SLIDES: Example: Face recognition
The dimensionality of a face image is extremely high.

Suppose we describe a face image by a MxM two-dimensional
grid. The dimensionality of the input vector is then M^2.
Consider, for example, M=256 is needed to achieve a
reasonable precision of the image, the dimensionality of the
input vector is then 65,536!

Face images have structure.

If we put all face images in a M^2 dimensional space, they will
not fully fill the whole space, but will instead only cover a very
limited volume. This implies many input components are
correlated, and the dimensionality can be significantly reduced.

Eigenface: PCA for face images
Use PCA to identify non-trivial, global features of face images.

Each face image is represented as a Mx1 column vector Φ,
(M=6400 in our example).

Calculate the covariance matrix of data (6400x6400)

Choose d eigenvectors with the first d largest eigenvalues as
the principal components, which we call the eigenfaces.

Calculate the average face

Project face images on the eigenfaces, getting new
representations of data with the reduced dimensionality.

Examples of face images

The average face

The spectrum of eigenvalues

The first nine eigenfaces

