
Decision Trees and Random Forests

Benjamin Evans

1

Today’s Outline

•Decision trees as a non-parametric prediction model
► Classifiers or Regressors
► What they can express, limitations and strengths
► A generic algorithm for learning them

•Ensemble of decision trees: a random forest

2

Learning Outcomes

1. Understand how decision tree classifiers work and how
they are trained.

2. Understand their advantages and disadvantages.
3. Explain the concept of ensembles, how they are

trained, and why random forests are effective models.

3

Applications: XBox-Kinect

Real-Time Human Pose Recognition in Parts from Single Depth Images, Shotton et al. CVPR 2011

4

Properties of Decision Trees?

•Decision trees are powerful predictive models that partition the
input space to allow predictions that are non-linear in the input.

•That have been applied to problems such as classification,
regression and probability density estimation.

•Decision trees are readily interpreted, their decision making
process can be understood by humans and used in knowledge-
based systems.

•Decision trees are highly expressive:
► Good for separating complex data.
► …but need to worry about over-fitting.

5

An Example

•Suppose we are building a binary classifier of sea creatures.
•We collect some properties that are assumed significant

for identification:
► Whether or not they have gills
► The length of the creatures in metres
► Whether they have a beak or not
► Whether they have few or many teeth

•We compile a collection of examples describing sea-
creatures that are manually labelled.

6

Sample Data

7

Decision Tree as a Classifier

•Recast observed properties into
a tree of questions (nodes):
► nodes labelled by features
► edges labelled by values of

those features
► leaf nodes labelled by class labels

8

gills

length

beak

YES

3 4

NO

5

YES

NO

FEW MANY

teeth

X

X

X⇥

⇥

⇥XX

X

√√

√

Tests and Splits

•Node is a test on a single feature:
► e.g. are there gills or not?

•The set of edges/values at a
node is called a split
► e.g. {yes, no}

•A path from the root to a leaf
is a logical conjunction of tests

9

YES

gills

length

NO

⇥X

A Little Bit of Logic

•A test is a simple proposition:
► i.e. a statement that can be

true or false

Test true false
gills=yes 1,4,. . . 2,3,5,6,7,. . .
length=3 1,3,. . . 2,4,5,6,7,. . .

teeth=many 3,4,5,6,. . . 1,2,7,. . .

•A test can also be understood as
denoting a set of instances
► i.e. just those instances for which

the test is true

10

A Little Bit More Logic

Operator English Symbol
negation

conjunction
disjunction
implication

not ¬
and ∧
or ∨

if. . .then →e.g. a conjunction of tests:

gills=no ∧ length=5 ∧ teeth=few
true just in the case that each of the simple tests is true.

•Can also be understood as denoting a set of instances.

11

•Complex tests can be built using
logical operators:

Path, Logic and Instances

•A path from the root to a leaf
encodes a logical conjunction of tests

•Leaf node represents:
► a logical expression
► a set of instances

12

NO

{2,7,…}
A set of instances A conjunction of tests

gills=no ^ length=5 ^ teeth=few

gills

length

beak

YES

3 4

NO

5

YES

NO

FEW MANY

teeth

X

X

X⇥

⇥

⇥

gills

length

beak

YES

3 4

NO

5

YES

NO

FEW MANY

teeth

X

X

X⇥

⇥

⇥XX

X

√√
√

gills

teeth

length

Decision Tree Classification

•Classify instances by following a path.
► Start at the root and finish at a leaf.

14

set node=root
until isleaf(node) do{
 follow true edge to next node
}
return label(node)

gills

length

beak

YES

3 4

NO

5

YES

NO

FEW MANY

teeth

X

X

X⇥

⇥

⇥XX

X

√√

√

gills

teeth

length

gills=no ∧ length=5 ∧ teeth=few

Learning a Decision Tree

•Start with examples D and features F
► take a divide and conquer approach

For each new node you might add:
1. IF : all examples D are (pretty much) of the same class,

then just label them as that class and terminate;
2. ELSE : choose a feature from F to split on and build a

decision tree from each corresponding subset of D
•There are some issues to resolve:
► pretty much of the same class?
► choose a feature to split on?

15

Learning a Decision Tree: Example

f1 f2 class
ex1 a yes −
ex2 a no +
ex3 b yes −
ex4 c yes +
ex5 c no +

•Examples are not (pretty much)
of the same class.

•Choose a feature to split on.
► suppose we choose f2

f2
yes no

+

► right node can be labelled as a leaf
with value +

► build a decision tree for the
remaining instances at left node

16

Learning a Decision Tree: Example

1f f 2 class
ex1 a yes −

ex3 b yes −
ex4 c yes +

•Examples still not (pretty much)
of same class, so split on f1:

•Tree is finished: all leaves
are labelled consistently

17

f2
yes no

+f1

� � +
a cb

Learning a Decision Tree: Algorithm

18

GrowTree(,):

if Homogeneous() OR == {} then
 return new tree with single leaf with Label();
S BestSplit(,);
partition into subsets according to S
for each i do
 if != {} then
 GrowTree(, /{S});
 else
 a single leaf with Label()
 endif
endfor
return new tree with root test S and subtrees

D F

if root homogeneous then
just label it and return

:=

:=

:=

D
D

D
D Di

Di

Di

D

Ti

Ti

Ti

F

F

Learning a Decision Tree: Algorithm

19

GrowTree(,):

if Homogeneous() OR == {} then
 return new tree with single leaf with Label();
S BestSplit(,);
partition into subsets according to S
for each i do
 if != {} then
 GrowTree(, /{S});
 else
 a single leaf with Label()
 endif
endfor
return new tree with root test S and subtrees

D F

Otherwise
DIVIDE:

find a good split ...

if root homogeneous then
just label it and return

:=

:=

:=

D
D

D
D Di

Di

Di

D

Ti

Ti

Ti

F

F

Learning a Decision Tree: Algorithm

20

GrowTree(,):

if Homogeneous() OR == {} then
 return new tree with single leaf with Label();
S BestSplit(,);
partition into subsets according to S
for each i do
 if != {} then
 GrowTree(, /{S});
 else
 a single leaf with Label()
 endif
endfor
return new tree with root test S and subtrees

D F

Otherwise
DIVIDE:

find a good split ...

if root homogeneous then
just label it and return

:=

:=

:=

D
D

D
D Di

Di

Di

D

Ti

Ti

Ti

F

F
… and CONQUER:

build a children tree for each subset

Homogeneity, Labels, and Splitting

•Algorithm assumes the following functions are defined:
► Homogeneous(D) : if D is homogeneous (enough) to be

assigned a single label return true else return false.
► Label(D) : return most appropriate label for D.
► BestSplit(D,F) : return best split of D (i.e. identify best

feature to split on).
•There are different possible instantiations of these functions.

21

Homogeneity, Labels, and Splitting

•What does Homogeneous(D) mean?
► Could simply say a set of instances is homogeneous if

all instances have the same class label.
► Clearly, this label should be returned by Label(D).
► Homogeneity can be relaxed, so more generally, Label(D)

should return the majority label.
•What does BestSplit(D,F) mean?
► Assume for the moment binary (+,-) classification and

just simple Boolean features.
► Ideally split D into two: one set of just + instances and

one set of just - instances (both sets are pure).
•Why would pure subsets be the ideal case?

22

Impurity of a Set of Instances

Binary classification:
• In general when training we may have splits at a node that

have mixes of + and - instances (at least one set is impure).
• We can write [n+, m−] to denote a set with a mix of n positive

instances and m negative instances.
• Assumption: (im)purity of a set of instances defined in terms

of proportion p = n+/(n+ + m−).

23

Measuring Impurity

Measures adopted in practice include:
1. Entropy:
• For C > 2 classes, it is:

• For C = 2 classes (binary), it is:
2. Gini index:
• The expected error rate:

• pi is the probability that a random instance in the
leaf node belongs to class i,

• 1− pi is the probability that it is misclassified.

• For C > 2 classes, it is:

• For C = 2 classes (binary), it is just:
24

"
!"#

$
𝑝!× log%

1
𝑝!

−𝑝 log% 𝑝 − 1 − 𝑝 log% 1 − 𝑝

"
!"#

$
𝑝! 1 − 𝑝!

2𝑝 1 − 𝑝

Impurity of a Split

•Suppose that a possible split of D results in subsets
D1,D2, . . . ,Dk

•How do we judge the “goodness” of this split?
•Have impurity measure Imp(D) for instances D
► e.g. Entropy or Gini index

•Define Imp(D1,D2, . . . ,Dk) as weighted average:

w1× Imp(D1) + w2× Imp(D2) + . . . + wk × Imp(Dk)

where

25

𝑤! = #𝐷!
∑",…,% 𝐷!

BestSplit Algorithm

26

BestSplit(,):

min_impurity 1;
for each f in do
 split into given k values of f;
 if Imp() < min_impurity then
 min_impurity Imp();
 best_feature f;
 endif
endfor
return best_feature;

D

D

F

F
{D1, . . . ,Dk}

{D1, . . . ,Dk}
{D1, . . . ,Dk}

:=

:=
:=

return best feature to split on

keep track of split
with lowest impurity

run through
each feature in turn

Why Favour Purity?

•Earlier we asked why pure subsets are the ideal case.
► answer has to do with generalisation.

• "Purer splits yield smaller trees,
with shorter paths from root to leaves.”

•Shorter paths mean fewer tests when classifying instances.
•Fewer tests mean fewer features to be examined

before assigning a class label.
•Occam’s razor again! Fewer features examined and tested

on means greater generalisation.

27

Ferns

•Ferns are a simpler form of tree.
•Here the function of the data for nodes at the same

level of the tree are the same.
► Although the thresholds can be different.

•This leads to more efficient prediction, as a more limited
set of functions of the data need to be evaluated.

28

Problems with Decision Trees

•Decision trees are tricky to get to predict very accurately
compared to other kinds of machine learning models.
► Learning good trees requires a lot of experimentation.

•Unstable: small changes to the input data can have large
effects on the structure of the tree → decision trees are
high variance models.

29

Example

30

Example Code:

>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(iris.data, iris.target)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0
|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2

Code from https://scikit-learn.org/stable/modules/tree.html

31

https://scikit-learn.org/stable/modules/tree.html

So how can we make these more useful?

•By building lots of them and combining them together!

32

Ensemble Models – General Idea
Ensemble models to reduce model variance.

33

Random Forests

•A forest is an ensemble of trees.
•Each tree is slightly different from the others.
•Two sources of randomness in the trees:

1. Random sampling of the training data: let D be the full training data,
and let Dt⊂ D be the random subset of training data for tree t.
GrowTree(D1,F 1) GrowTree(D2,F 2) GrowTree(D3,F 3)

34

Random Forest

2. Random subset of data features: let F be the set of data features:
e.g. F = {Length, Gills, Beak, Teeth}
and let F t ⊂ F be a random subset of data features for tree t:
e.g. F 1 = {Length, Beak}

35

GrowTree(D1,F 1) GrowTree(D2,F 2) GrowTree(D3,F 3)

Random Forest Prediction

ft=1(x test)

Prediction corresponds to an aggregation across
trees by majority voting.

xtest xtest

xtest

ft=2(x test)
ft=3(x test)

36

𝑓&' 𝑥()*(= 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑓(+! 𝑥()*(!+"
,

Random Forests

•Combining all these trees together leads to substantially
improved performance and reduces overfitting.
► This is because we aggregate over these high-variance models.

•Random forests were state of the art for many applications
until quite recently, and they are still very much in use.

37

Random Regression Forests on the Xbox Kinect

•Classify each pixel as a body part.
•Features are differences in the depth

map around a pixel of interest:
e.g. depth(x,y) - depth(x+1,y)

•Leaves contain class probabilities rather
than single classes.

Real-Time Human Pose Recognition in Parts from Single Depth Images, Shotton et al. CVPR 2011

38

Summary

•Decision trees are powerful models, but they need to
be used carefully to avoid overfitting.

•There are several heuristics that you need to define to
make them work well.

•Random forests can work very well, but again
experimentation is required!

39

What’s next?

Semi-supervised learning

40

