#### Week 2b:

# Probability theory for machine learning

G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk



## Recap of previous lecture

- Probability density functions:  $\int_{-\infty}^{\infty}$ 
  - $1 = \int_{-\infty}^{\infty} p(x) \mathrm{d}x$
- Properties / parameters of probability distributions: mean, variance, standard deviation
- Multivariate probability distributions: covariance, correlation, independence
- Uniform distribution and Gaussian distribution (aka normal distribution): central limit theorem





## Warm-up: Heads or tails?

- I want to know how to test whether a coin is biased when it comes to landing on heads or tails. To do this, I'll investigate the probability distribution for the proportion of throws that come up heads for a fair coin.
- Let's analyse the distribution of this if I just throw the coin twice. In this case:

$$P(X=0)=1/4$$
 Two tails  $P(X=1/2)=1/2$  Tails then heads, or heads then tails  $P(X=1)=1/4$  Two heads

• Mean? 
$$E(X) = \langle X \rangle = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot 1 = \frac{1}{2}$$

• Variance? 
$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle = \frac{1}{4} \cdot (\frac{1}{2})^2 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot (\frac{1}{2})^2 = \frac{1}{8}$$

• Standard deviation? 
$$\sigma_X = \sqrt{Var(X)} \approx 0.35$$



#### Is the coin fair?

We need a lot more than two tosses to test if a coin is fair!



Keep this in mind when assessing the accuracy of an ML algorithm!



#### **Overview**

Probability distributions are important in ML:

- To characterize your data and inform your choice/design of algorithm.
- To interpret ML results.

#### **Today**:

- Application of Bayes' theorem to interpret results
- Probability density estimation
  - Non-parametric approach (histograms, kernel density estimation)
  - Parametric approach



## Bayes' theorem

• Very (very) useful theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Follows from conditional probability and joint probability relation:

$$P(A,B) = P(A|B)P(B)$$
  
=  $P(B|A)P(A)$ 

The joint probability of two events equals the probability of event A times the probability of event B given event A.



## Bayes' theorem and classifiers

If the classifier says 1, what is the probability that the class is actually 1?





## Bayes' theorem and classifiers

If the classifier says 1, what is the probability that the class is actually 1?

$$\begin{split} P(\text{Class} = 1 | \text{Classifier says 1}) &= \frac{P(\text{Classifier says 1} | \text{Class} = 1)P(\text{Class} = 1)}{P(\text{Classifier says 1})} \\ P(\text{Classifier says 1}) &= \frac{P(\text{Classifier says 1} | \text{Class} = 0)P(\text{Class} = 0)}{P(\text{Classifier says 1})} \end{split}$$

Compute the **odds ratio** for class 1 vs. class 0, assuming our **prior expectation** is correct:

$$\frac{P(\text{Class} = 1 | \text{Classifier says 1})}{P(\text{Classifier says 1})} = \frac{P(\text{Classifier says 1} | \text{Class} = 1)P(\text{Class} = 1)}{P(\text{Classifier says 1} | \text{Class} = 0)P(\text{Class} = 0)}$$



## Bayes' example: COVID test

- Suppose there's a new COVID test which picks up COVID early, at the first hint of symptoms. The probability of testing positive given you actually have COVID (= sensitivity) is P(T=1|COVID=1) = 0.99.
- However, the specificity is not as good as the sensitivity, it has a 10% false positive rate: P(T=1|COVID=0) = 0.1
- Are these tests useful? Depends on your prior: P(COVID=1) = ?
- Odds ratio to compute:

$$\frac{P(\text{COVID} = 1|\text{T} = 1)}{P(\text{COVID} = 0|\text{T} = 1)} = \frac{P(\text{T} = 1|\text{COVID} = 1)P(\text{COVID} = 1)}{P(\text{T} = 1|\text{COVID} = 0)P(\text{COVID} = 0)}$$



#### Bayes' example: COVID test

• Case 1: Tonnes of COVID around: prior P(COVID=1) = 0.5

$$\frac{P(\text{COVID} = 1 | \text{T} = 1)}{P(\text{COVID} = 0 | \text{T} = 1)} = \frac{P(\text{T} = 1 | \text{COVID} = 1)P(\text{COVID} = 1)}{P(\text{T} = 1 | \text{COVID} = 0)P(\text{COVID} = 0)} = \frac{0.99 \cdot 0.5}{0.1 \cdot 0.5} = \frac{0.495}{0.05} = 9.9$$
10 times more likely than not to have COVID.

• Case 1: Not much COVID around: prior P(COVID=1) = 0.05

$$\frac{P(\text{COVID} = 1 | \text{T} = 1)}{P(\text{COVID} = 0 | \text{T} = 1)} = \frac{P(\text{T} = 1 | \text{COVID} = 1)P(\text{COVID} = 1)}{P(\text{T} = 1 | \text{COVID} = 0)P(\text{COVID} = 0)} = \frac{0.99 \cdot 0.05}{0.1 \cdot 0.95} = \frac{0.0495}{0.095} = 0.52$$

Roughly half as likely to have COVID than not have COVID, i.e., about 1 in 3 chance of having COVID.



## Probability density estimation

- Non-parametric estimation (histograms, kernel density estimation):
   No assumptions about the form of the probability density function, it is determined entirely from the data.
- Parametric estimation:
   Assumes a specific kind of distribution, e.g., Gaussian (normal).

   Parameters of the distribution are optimized to fit the data (usually mean, standard deviation, plus covariances if multi-dimensional).



## Non parametric method: Histograms

- Divide range of data into a certain number of bins and plot number of data points that fall in each bin.
- 50 data points, drawn from a normal distribution, but would you know from these histograms that the distribution is normal?





## Non parametric method: Histograms

- Normalise the bars so that their heights represent probability density (i.e., rescale y-axis).
- Proportion of data that lie in the bin is given by: (height of bar) x (width of bar) (corresponding to probabilities being determined by areas under a probability density curve).
- Sum of areas of all bars = 1.





# Non parametric method: Histograms

- Choice of bin width, Δ, can impact conclusions, so should be considered carefully.
- How many classes do we have? It should be two here, but histogram may or may not show that.
- Horizontal alignment of bars also important. Are the bars centred on the left or right bin edge or between the bin edges?



## Using a histrogram



- *p* is the probability density
- ullet N is the sample size
- *k* is the number of points in small range *V*

$$P(X \text{ lies in small range of length } V) = k/N$$
 Good approx. if  $N \text{ and } k \text{ tend to be large.}$   $P(X \text{ lies in small range of length } V) = pV$  Good approx. if  $V \text{ is small.}$ 

$$pV = k/N$$
 so estimate  $p = \frac{k}{NV}$ 



## Kernel density estimation

• Instead of density at *x* just being number of points within a fixed small distance of *x*, do a weighting, so data points very close to *x* contribute a lot, and points further from *x* contribute little.

$$p = \frac{k}{NV}$$
  $\rightarrow$   $p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{V} K\left(\frac{x - x_i}{V}\right)$ 

• A Gaussian function can be used for the kernel *K* in which case *V* is its standard deviation.



## Example

#### Distribution of car crashes along a road





## Kernel density estimation



It is possible to use different forms of kernel to get smoother continuous estimates for x.

#### *V* is critical:

- too small  $\rightarrow$  spiky pdf
- too big  $\rightarrow$  over-smoothed



#### Parametric density estimation

 Assume a particular kind of distribution and then make your best guess of the parameters. For the example of the Gaussian (normal) distribution, the probability density function (pdf) is:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• The parameters to find in this case are the mean  $\mu = E(X) = \langle X \rangle$  and the variance  $\sigma^2 = E(X - \mu)^2 = \langle (X - \mu)^2 \rangle$ 



## Parametric density estimation

#### Naïve approach:

- The most obvious way of estimating the mean and variance is simply to take the mean and variance of the sample.
- Guess for the mean  $\mu$ :

$$\overline{x} = \frac{1}{n} \sum_{i} x_{i}$$

• Guess for the variance  $\sigma^2$ :  $Var = \frac{1}{n} \sum_i (x_i - \overline{x})^2$ 



#### Example

• For a given dataset, you don't know how accurate your estimates are. Consider the following two samples, both with true mean (4,5):







#### **Confidence intervals**

- You never know for sure how good your estimate of the mean and standard deviation are.
- But we can compute the standard error, which is roughly what the standard deviation of the estimate of the mean would be if we repeated the experiment many times:

$$Standard\ error = \frac{Standard\ deviation\ (data)}{\sqrt{number\ of\ data\ points}}$$

• A very rough "rule-of-thumb" is that the true mean is unlikely to be more than two standard errors away from your estimate.



#### Different methods

There are more sophisticated methods for parametric density estimation to be aware of:

- Maximum likelihood estimation:
   Choose the parameters that maximise the overall probability density function for the *n* data points that you have.
- Bayesian inference: Parameters  $\theta$  described by a probability distribution. Initially set to prior distribution and converted to posterior  $P(\theta|X)$  through Bayes' theorem once data is observed.



#### Maximum likelihood estimation

• pdf of normal (Gaussian) distribution:

$$p(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Likelihood  $\mathcal{L}(\mu, \sigma^2)$  = pdf for n i.i.d. normal random variables:

$$p(x_1,...,x_n \mid \mu,\sigma^2) = \prod_{i=1}^n p(x_i \mid \mu,\sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right)$$

- Optimisation problem: We have to find the mean and standard deviation that maximise the joint probability density.
- Values which maximize the likelihood will also maximize its logarithm, the log-likelihood  $\log(\mathcal{L}(\mu, \sigma^2))$ .
- For the normal distribution, the most likely mean is the mean of the data (= sample mean) and the most likely standard deviation is the standard deviation of the data. For other distributions it can get more complicated.



#### Multivariate normal

- Suppose we have a multivariate normal, say overall levels of red R, green G and blue B in an image that is part of a large dataset.
- We need to find the 3 means and the 3 variances. What other parameters are there?



#### Multivariate normal

- Suppose we have a multivariate normal, say overall levels of red R, green G and blue B in an image that is part of a large dataset.
- We need to find the 3 means and the 3 variances. What other parameters are there?
- Three covariances! Cov(R, G), Cov(R, B), Cov(G, B).



#### Bayesian inference

- P(params|data) proportional to  $P(\text{data}|\text{params}) \times P(\text{params})$
- Given the data, get a new likely range for the parameters.





#### Summary and outlook

- What have you learned about estimating probability density functions?
  - Can do it non-parametrically:
    - Use histograms to estimate the density.
    - Kernel density estimation is like a smoothed-out histogram, where each data point contributes to the density estimate in a region around it.
  - Can do it parametrically:
    - By assuming the form of a distribution (often Gaussian) and
    - Finding the best fit parameters usually mean, standard deviation (plus covariances if multi-dimensional).



• Next lecture: Linear regression

