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Recap of previous lecture
• Probability density functions:

1 =
∫ ∞
−∞ p(x)dx

• Properties / parameters of probability distributions:
mean, variance, standard deviation

• Multivariate probability distributions:
covariance, correlation, independence

• Uniform distribution and Gaussian distribution
(aka normal distribution):
central limit theorem

p(x)

x
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Warm-up: Heads or tails?
• I want to know how to test whether a coin is biased when it comes to landing on

heads or tails. To do this, I’ll investigate the probability distribution for the
proportion of throws that come up heads for a fair coin.

• Let’s analyse the distribution of this if I just throw the coin twice. In this case:

P(X = 0) = 1/4 Two tails
P(X = 1/2) = 1/2 Tails then heads, or heads then tails
P(X = 1) = 1/4 Two heads

• Mean? E(X) = ⟨X⟩ = 1
4 · 0 + 1

2 ·
1
2 +

1
4 · 1 = 1

2

• Variance? Var(X) = ⟨(X − ⟨X⟩)2⟩ = 1
4 ·

( 1
2

)2
+ 1

2 · 0 + 1
4 ·

( 1
2

)2
= 1

8

• Standard deviation? σX =
√

Var(X) ≈ 0.35
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Is the coin fair?
We need a lot more than two tosses to test if a coin is fair!

Keep this in mind
when assessing
the accuracy of an
ML algorithm!
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Overview
Probability distributions are important in ML:

• To characterize your data and inform your choice/design of algorithm.
• To interpret ML results.

Today:
• Application of Bayes’ theorem to interpret results

• Probability density estimation
• Non-parametric approach (histograms, kernel density estimation)
• Parametric approach
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Bayes’ theorem
• Very (very) useful theorem:

P(A|B) = P(B|A)P(A)

P(B)

• Follows from conditional probability and joint probability relation:

P(A, B) = P(A|B)P(B)
= P(B|A)P(A)

The joint probability of two events equals the probability of event A times the
probability of event B given event A.
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Bayes’ theorem and classifiers
If the classifier says 1, what is the probability that the class is actually 1?
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Bayes’ theorem and classifiers
If the classifier says 1, what is the probability that the class is actually 1?

P(Class = 1|Classifier says 1) =
P(Classifier says 1|Class = 1)P(Class = 1)

P(Classifier says 1)

P(Class = 0|Classifier says 1) =
P(Classifier says 1|Class = 0)P(Class = 0)

P(Classifier says 1)

Compute the odds ratio for class 1 vs. class 0, assuming our prior expectation is
correct:

P(Class = 1|Classifier says 1)
P(Class = 0|Classifier says 1)

=
P(Classifier says 1|Class = 1)P(Class = 1)
P(Classifier says 1|Class = 0)P(Class = 0)
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Bayes’ example: COVID test
• Suppose there’s a new COVID test which picks up COVID early, at the first hint

of symptoms. The probability of testing positive given you actually have COVID
(= sensitivity) is P(T=1|COVID=1) = 0.99.

• However, the specificity is not as good as the sensitivity, it has a 10% false
positive rate: P(T=1|COVID=0) = 0.1

• Are these tests useful? Depends on your prior: P(COVID=1) =?
• Odds ratio to compute:

P(COVID = 1|T = 1)
P(COVID = 0|T = 1)

=
P(T = 1|COVID = 1)P(COVID = 1)
P(T = 1|COVID = 0)P(COVID = 0)
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Bayes’ example: COVID test
• Case 1: Tonnes of COVID around: prior P(COVID=1) = 0.5

P(COVID = 1|T = 1)
P(COVID = 0|T = 1)

=
P(T = 1|COVID = 1)P(COVID = 1)
P(T = 1|COVID = 0)P(COVID = 0)

=
0.99 · 0.5
0.1 · 0.5

=
0.495
0.05

= 9.9

10 times more likely than not to have COVID.

• Case 1: Not much COVID around: prior P(COVID=1) = 0.05

P(COVID = 1|T = 1)
P(COVID = 0|T = 1)

=
P(T = 1|COVID = 1)P(COVID = 1)
P(T = 1|COVID = 0)P(COVID = 0)

=
0.99 · 0.05
0.1 · 0.95

=
0.0495
0.095

= 0.52

Roughly half as likely to have COVID than not have COVID,
i.e., about 1 in 3 chance of having COVID.
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Probability density estimation

• Non-parametric estimation (histograms, kernel density estimation):
No assumptions about the form of the probability density function, it is
determined entirely from the data.

• Parametric estimation:
Assumes a specific kind of distribution, e.g., Gaussian (normal).
Parameters of the distribution are optimized to fit the data (usually mean,
standard deviation, plus covariances if multi-dimensional).
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Non parametric method: Histograms
• Divide range of data into a certain number of bins and plot number of data

points that fall in each bin.
• 50 data points, drawn from a normal distribution, but would you know from

these histograms that the distribution is normal?
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Non parametric method: Histograms
• Normalise the bars so that their heights represent probability density

(i.e., rescale y-axis).
• Proportion of data that lie in the bin is given by: (height of bar) x (width of bar)

(corresponding to probabilities being determined by areas under a probability
density curve).

• Sum of areas of all bars = 1.
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Non parametric method: Histograms

• Choice of bin width, ∆, can impact
conclusions, so should be considered
carefully.

• How many classes do we have? It should
be two here, but histogram may or may
not show that.

• Horizontal alignment of bars also
important. Are the bars centred on the left
or right bin edge or between the bin
edges?
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Using a histrogram
p

• p is the probability density
• N is the sample size
• k is the number of points in small range V

P(X lies in small range of length V) = k/N Good approx. if N and k tend to be large.
P(X lies in small range of length V) = pV Good approx. if V is small.

pV = k/N so estimate p = k
NV
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Kernel density estimation
• Instead of density at x just being number of points within a fixed small distance

of x, do a weighting, so data points very close to x contribute a lot, and points
further from x contribute little.

p =
k

NV
→ p(x) =

1
N

N

∑
i=1

1
V

K
(

x − xi

V

)
• A Gaussian function can be used for the kernel K in which case V is its standard

deviation.
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Example
Distribution of car crashes along a road
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Kernel density estimation

It is possible to use different forms of kernel to get
smoother continuous estimates for x.

V is critical:
• too small → spiky pdf
• too big → over-smoothed
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Parametric density estimation
• Assume a particular kind of distribution and then make your best guess of the

parameters. For the example of the Gaussian (normal) distribution, the
probability density function (pdf) is:

p(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)

• The parameters to find in this case are
the mean µ = E(X) = ⟨X⟩
and the variance σ2 = E(X − µ)2 = ⟨(X − µ)2⟩
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Parametric density estimation

Naı̈ve approach:
• The most obvious way of estimating the mean and variance is simply to take the

mean and variance of the sample.

• Guess for the mean µ:
x = 1

n ∑i xi

• Guess for the variance σ2:
Var = 1

n ∑i(xi − x)2
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Example
• For a given dataset, you don’t know how accurate your estimates are.

Consider the following two samples, both with true mean (4, 5):
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Confidence intervals
• You never know for sure how good your estimate of the mean and standard

deviation are.
• But we can compute the standard error, which is roughly what the standard

deviation of the estimate of the mean would be if we repeated the experiment
many times:

Standard error =
Standard deviation (data)√

number of data points

• A very rough ”rule-of-thumb” is that the true mean is unlikely to be more than
two standard errors away from your estimate.
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Different methods
There are more sophisticated methods for parametric density estimation
to be aware of:

• Maximum likelihood estimation:
Choose the parameters that maximise the overall probability density function for
the n data points that you have.

• Bayesian inference:
Parameters θ described by a probability distribution. Initially set to prior
distribution and converted to posterior P(θ|X) through Bayes’ theorem once data
is observed.
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Maximum likelihood estimation
• pdf of normal (Gaussian) distribution:

p(x | µ, σ2) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
• Likelihood L(µ, σ2) = pdf for n i.i.d. normal random variables:

p(x1, . . . , xn | µ, σ2) =
n

∏
i=1

p(xi | µ, σ2) =

(
1

2πσ2

)n/2

exp
(
−∑n

i=1(xi − µ)2

2σ2

)
• Optimisation problem: We have to find the mean and standard deviation that

maximise the joint probability density.
• Values which maximize the likelihood will also maximize its logarithm, the

log-likelihood log
(
L(µ, σ2)

)
.

• For the normal distribution, the most likely mean is the mean of the data
(= sample mean) and the most likely standard deviation is the standard
deviation of the data. For other distributions it can get more complicated.
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Multivariate normal

• Suppose we have a multivariate normal, say overall levels of red R, green G and
blue B in an image that is part of a large dataset.

• We need to find the 3 means and the 3 variances.
What other parameters are there?

• Three covariances! Cov(R, G), Cov(R, B), Cov(G, B).
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Multivariate normal
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Bayesian inference
• P(params|data) proportional to P(data|params)× P(params)
• Given the data, get a new likely range for the parameters.
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Summary and outlook
• What have you learned about estimating

probability density functions?
• Can do it non-parametrically:

▶ Use histograms to estimate the density.
▶ Kernel density estimation is like a smoothed-out

histogram, where each data point contributes to the
density estimate in a region around it.

• Can do it parametrically:
▶ By assuming the form of a distribution (often

Gaussian) and
▶ Finding the best fit parameters - usually mean,

standard deviation (plus covariances if
multi-dimensional).

• Next lecture: Linear regression

p(x)

x
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