Week 2b:
Probability theory for machine learning
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Recap of previous lecture
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Probability density functions:
1= [Z p(x)dx

Properties / parameters of probability distributions:

mean, variance, standard deviation
Multivariate probability distributions:
covariance, correlation, independence

Uniform distribution and Gaussian distribution

(aka normal distribution):
central limit theorem
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Warm-up: Heads or tails?

« I want to know how to test whether a coin is biased when it comes to landing on
heads or tails. To do this, I'll investigate the probability distribution for the
proportion of throws that come up heads for a fair coin.

Let’s analyse the distribution of this if I just throw the coin twice. In this case:

P(X=0)=1/4 Two tails

P(X =1/2) =1/2 Tails then heads, or heads then tails
P(X=1)=1/4 Two heads

o Mean? E(X):(X>:%.o+%.%+%,1:%
« Variance? Var(X) = (X — (X))} = 1~ (%)2 +3-0+1 (%)2 =1
» Standard deviation? ox = /Var(X) ~ 0.35
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Is the coin fair?
We need a lot more than two tosses to test if a coin is fair!

Proportion of heads in 100 and 200 tosses
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Overview

Probability distributions are important in ML:
« To characterize your data and inform your choice/design of algorithm.
« To interpret ML results.

Today:
« Application of Bayes’ theorem to interpret results

« Probability density estimation

» Non-parametric approach (histograms, kernel density estimation)
 Parametric approach
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Bayes’ theorem

« Very (very) useful theorem:

P(B|A)P(A)

P(AIB) = =5

+ Follows from conditional probability and joint probability relation:

P(A,B) = P(A|B)P(B)
= P(B|A)P(A)

The joint probability of two events equals the probability of event A times the
probability of event B given event A.
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Bayes’ theorem and classifiers

If the classifier says 1, what is the probability that the class is actually 1?

_— This is the sensitivity of the classifier for
detecting class 1

Pzélassiﬁer says 1| Class =1) P(Class=1),

P(Classifier says 1) .
N

AN

N
This denominator term we don’t know

P(Class=1]|Classifier says 1) =

A

Our prior expectations

Want to know this
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Bayes’ theorem and classifiers

If the classifier says 1, what is the probability that the class is actually 1?

Classifier says 1|Class = 1)P(Class = 1)
P(Classifier says 1)

P(Class = 1|Classifier says 1) = il

P(Classifier says 1|Class = 0) P(Class = 0)
P(Classifier says 1)

P(Class = 0|Classifier says 1) =

Compute the odds ratio for class 1 vs. class 0, assuming our prior expectation is
correct:
P(Class = 1|Classifier says 1)  P(Classifier says 1|Class = 1)P(Class = 1)

P(Class = 0|Classifier says 1) ~ P(Classifier says 1|Class = 0) P(Class = 0)
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Bayes’ example: COVID test

+ Suppose there’s a new COVID test which picks up COVID early, at the first hint
of symptoms. The probability of testing positive given you actually have COVID
(= sensitivity) is P(T=1|COVID=1) = 0.99.

« However, the specificity is not as good as the sensitivity, it has a 10% false
positive rate: P(T=1|COVID=0) = 0.1

+ Are these tests useful? Depends on your prior: P(COVID=1) =?

+ Odds ratio to compute:

P(COVID=1|T=1) P(T =1|COVID =1)P(COVID = 1)

P(COVID=0T=1) P(T=1|COVID = 0)P(COVID = 0)

UsS

UNIVERSITY
OF SUSSEX
9/27



Bayes’ example: COVID test

« Case 1: Tonnes of COVID around: prior P(COVID=1) = 0.5

P(COVID=1|T=1) _ P(T=1|COVID=1)P(COVID=1) 0.99-0.5

0.495

P(COVID=0T=1) P(T=1|COVID=0)P(COVID=0) 01-05

10 times more likely than not to have COVID.

+ Case 1: Not much COVID around: prior P(COVID=1) = 0.05

P(COVID=1|T=1) _ P(T=1|COVID =1)P(COVID=1) _ 0.99-0.05 _ 0.0495

0.05 79

P(COVID=0T=1) P(T=1|COVID=0)P(COVID=0) 0.1-095

Roughly half as likely to have COVID than not have COVID,
i.e.,, about 1 in 3 chance of having COVID.
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0.005 ~ 02
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Probability density estimation

« Non-parametric estimation (histograms, kernel density estimation):
No assumptions about the form of the probability density function, it is
determined entirely from the data.

« Parametric estimation:
Assumes a specific kind of distribution, e.g., Gaussian (normal).
Parameters of the distribution are optimized to fit the data (usually mean,
standard deviation, plus covariances if multi-dimensional).
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Non parametric method: Histograms

+ Divide range of data into a certain number of bins and plot number of data
points that fall in each bin.
+ 50 data points, drawn from a normal distribution, but would you know from

these histograms that the distribution is normal?
10 bins 20 bins

Frequency
o N & o w

- 4 2 0 2 2 5 - 3 2 0 2 3 6
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Non parametric method: Histograms
+ Normalise the bars so that their heights represent probability density

13/27

(i.e., rescale y-axis).

 Proportion of data that lie in the bin is given by: (height of bar) x (width of bar)
(corresponding to probabilities being determined by areas under a probability

density curve).
o Sum of areas of all bars = 1.

Probability density
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Non parametric method: Histograms

a=o0s '

+ Choice of bin width, A, can impact M
conclusions, so should be considered 0 0 0.5 1
carefully. > SrRo .

« How many classes do we have? It should %) =R
be two here, but histogram may or may 3 __&_‘
not show that. g 00 05 1

a=-02 ' \
 Horizontal alignment of bars also
important. Are the bars centred on the left 0
or right bin edge or between the bin 0 0.5 1

edges? IE
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Using a histrogram

p « pis the probability density
\
v

+ N is the sample size

« kis the number of points in small range V

X

X1 X2

P(X lies in small range of length V) = k/N Good approx. if N and k tend to be large.
P(X lies in small range of length V) = pV  Good approx. if V is small.

pV =k/N soestimate p= %
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Kernel density estimation

« Instead of density at x just being number of points within a fixed small distance
of x, do a weighting, so data points very close to x contribute a lot, and points
further from x contribute little.

k N X — Xj
r=ny < 0=k ()

o A Gaussian function can be used for the kernel K in which case V is its standard
deviation.
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Example
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Density

Distribution of car crashes along a road

Kemels over individual ’ N
crash %

Kernel density estimate

Relative spatial position of crash IE
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Kernel density estimation
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It is possible to use different forms of kernel to get
smoother continuous estimates for x.

V is critical:
+ too small — spiky pdf
+ too big — over-smoothed
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Parametric density estimation

+ Assume a particular kind of distribution and then make your best guess of the
parameters. For the example of the Gaussian (normal) distribution, the
probability density function (pdf) is:

p) = e (-C 1)

2702

+ The parameters to find in this case are
the mean y = E(X) = (X)
and the variance 02 = E(X — )% = ((X — u)?)
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Parametric density estimation

Naive approach:

« The most obvious way of estimating the mean and variance is simply to take the
mean and variance of the sample.

+ Guess for the mean p:
X =3 Yix

« Guess for the variance 2:
Var = L5 (x, - 3
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Example

« For a given dataset, you don’t know how accurate your estimates are.
Consider the following two samples, both with true mean (4, 5):
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Mean=(4.00,5.02) Mean=(4.01,4.74)
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Confidence intervals

+ You never know for sure how good your estimate of the mean and standard
deviation are.

+ But we can compute the standard error, which is roughly what the standard
deviation of the estimate of the mean would be if we repeated the experiment
many times:

Standard deviation (data)

Standard error = -
\/number of data points

+ A very rough “rule-of-thumb” is that the true mean is unlikely to be more than
two standard errors away from your estimate.
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Different methods

There are more sophisticated methods for parametric density estimation
to be aware of:

« Maximum likelihood estimation:
Choose the parameters that maximise the overall probability density function for
the n data points that you have.

« Bayesian inference:
Parameters 6 described by a probability distribution. Initially set to prior
distribution and converted to posterior P(6|X) through Bayes’ theorem once data
is observed.
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Maximum likelihood estimation
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pdf of normal (Gaussian) distribution:

_ 1 (x—p)?
P(X ‘ ‘u’O—Z) - \/27_(7 exp <_ 202 >

Likelihood £ (y,0?) = pdf for n i.i.d. normal random variables:

n 1 \"? Y (x — p)?
p(x1,... x| p,0%) = gp(xi [wo?) = <2m72> P (_12‘;2>

Optimisation problem: We have to find the mean and standard deviation that
maximise the joint probability density.

Values which maximize the likelihood will also maximize its logarithm, the
log-likelihood log <£(y, 02)> .

For the normal distribution, the most likely mean is the mean of the data llg

(= sample mean) and the most likely standard deviation is the standard
deviation of the data. For other distributions it can get more complicated. gr'¢jesex’




Multivariate normal

« Suppose we have a multivariate normal, say overall levels of red R, green G and
blue B in an image that is part of a large dataset.

« We need to find the 3 means and the 3 variances.
What other parameters are there?
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Multivariate normal

« Suppose we have a multivariate normal, say overall levels of red R, green G and
blue B in an image that is part of a large dataset.

« We need to find the 3 means and the 3 variances.
What other parameters are there?

« Three covariances! Cov(R,G), Cov(R, B), Cov(G, B).
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Bayesian inference

+ P(params|data) proportional to P(data|params) x P(params)
« Given the data, get a new likely range for the parameters.

Posterior Beliefs
P(params|data)

Evidence
P(data|params)

Prior Beliefs
P(params)
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Summary and outlook

« What have you learned about estimating
probability density functions?
» Can do it non-parametrically:

> Use histograms to estimate the density.

» Kernel density estimation is like a smoothed-out
histogram, where each data point contributes to the
density estimate in a region around it.

» Can do it parametrically:

> By assuming the form of a distribution (often
Gaussian) and

» Finding the best fit parameters - usually mean,
standard deviation (plus covariances if
multi-dimensional).

 Next lecture: Linear regression
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