Week 4a:

Regularisation:
Learning linear models that generalise
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Today we’ll
+ Think about relaxing some of our assumption in learning linear regression.
« Discuss the concept of over-fitting and explain why it happens and how you can
spot it.
+ Introduce regularisation as a mechanism to combat overfitting, and explain it’s
link to Bayes’ theorem.

At the end of this session you should be able to
+ Understand how weighted least squares fitting works, why it can be useful, and
how to implement it in numpy.
+ Describe the concept of overfitting, and be able to spot if your model is
overfitting.
 Explain what regularisation is, and how it can be applied to reduce

overfitting. llg
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Recap: linear least squares regression

+ We defined linear regression as:
y = 7 = Xw, where y=labels, j =prediction, X=input data matrix,
and w=weight vector
+ We defined the cost function as the squared prediction error:
1 2
an [|Xw — ]|
« This gives us a probabilistic interpretation of our predictions as a normal
distribution N (y; Xw, 0?) = N (y;9,1c?).
« This states: errors are independent & identically distributed across samples

« Is this realistic? Can you think of a case when it wouldn’t be?
» How can we relax the assumption that the distribution of model errors is the same
across samples?
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Weighted linear regression

+ There are often times where assigning different weights on our training data pairs
i.e. (xu, y,) might be helpful.
+ This would be because we may have more or less confidence in some data points
than others
» For instance, maybe one of the hiring managers makes erratic decisions and we
wanted to downweight their opinions.

« Alternatively, another one might always make excellent decisions and we want to
model that process.

. ine! Bli . . v
Warning! Blindly assuming our models are informative can exacerbate human
bias and unfairness in decision making.

» We’re not covering Al fairness and bias in this module, but I'd recommend that you
check out this blog post on the topic.
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https://www.borealisai.com/en/blog/tutorial1-bias-and-fairness-ai/

Weighted linear regression

« We can modify linear least squares regression to allow ¢ to change across
training samples.
« This is known as heteroscedastic noise.
+ Our problem is mostly the same, we just attribute different importance to some of
the data.

+ Mathematically, we can still write it in closed form
w' = (XTWX)" X Wy

where W is a diagonal matrix containing the reciprocal sample variance W;; = %

1

# Given X, y and W

w_hat = np.linalg .inv (X.T@WeX)@X.Teweay

# We can still use the psuedoinverse

w_hat = np.linalg.pinv(np.sqrt W)y@X)@np.sqrt (W)@y

y-hat = X@w_hat # predict IE
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How do I know what ¢ should be?

» Depends on your problem.
» Sometimes you know the expected precision of a sensor
¢ Or how erratic a human labeller is!

« You can also learn or infer it from data, but that’s a more advanced use case.

UsS

UNIVERSITY
OF SUSSEX
6/29



Making linear models complicated

+ Last week we saw how linear models could be extended to explain more complex
relationships in the input data.
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So we can fit polynomials, or any set of basis functions:
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But what if our model is too complicated?

« What will it do?

« It will probably be better at describing the data you trained it on!
* i.e. the training error will be lower.

« It will probably be worse at describing the unseen validation or test data!
o Which means that practically speaking, it’s not very useful!
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Polynomial regression
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Sometimes the simplest model will be best for predicting new data.
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Training and test error
as a function of model complexity

For example, the higher the degree of a polynomial, the more complex.
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Think break

 Our linear model produces an output by

7=) wix
i

+ We can make the model more complicated by adding new variables to x, e.g.:

7 = wo + wix + wax? + wax® 4+ wyx* + wsx®

« What prior knowledge could we build into our learning to make the model less
complicated?

¢ How can we make a complex model act like a simple model?
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Regularisation — intuition
« Consider the 5th order polynomial model

f(x,' W) = wo + w1 x + wox? + w3x® + wyx* + wsx®

« Even if this model itself has 6 possible parameters to learn, we can simplify it in
several ways.

+ The most trivial model: w = (0,0,0,0,0,0), and the model will always predict a
value of zero.

+ The next simplest model: set w( to some non-zero value, and the model will
predict a constant wy.

+ The next next simplest model: leave wy at its new value, we can set w; to some
value. The model has become more complex, it can predict a line now!

UNIVERSITY
OF SUSSEX
12/29



Regularisation and model complexity

+ The 5th order polynomial model has more available complexity as we allow each
additional parameter w, to be given a non-zero value!
« One way to think of this, is the more non-zero weights, the more complex the
model. ||w]||o
+ The L° norm is not differentiable, as it’s a count, so tricky to optimise dynamically.
 Another description of complexity is: the more w deviates from 0, the more
complex the model is.
« This can be written as the sum of absolute values, L' = ||w]|;.
* But absolute value tend to be tricky to optimise, as it’s not differentiable at 0.

« What might we use instead?
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Another squared term

+ A squared term is helpful again.

d
2
[[wlf; = Z wzz
i=0

or, in a vector form,

+ This gives us a description of model complexity that increases as the square of the
weight values.

« Where do you think this might have come from?

UsS

UNIVERSITY
OF SUSSEX
14 /29



The Gaussians are back!

+ Again, the squared term comes from a Gaussian/Normal distribution! which has
a log-probability log p(w|p, 0?) w
e inourcasey =0
« But this time we can think of it slightly differently, and see this as a prior
distribution on the values of w.
+ This means it expresses our preferences on what values w should take, before we’ve
seen any data.
« Instead of ¢ describing noise, it's describing the flexibility that we're giving our
model to choose various values for w. As our preference is for w to be 0, we set
u = 0 for most cases.
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Maximum Likelihood

« When we discussed linear regression, we expressed it probabilistically saying our
signal was corrupted with Gaussian noise.

p(ylx,w) = N(y|x"w,o?)

« This equation is the likelihood of observing y given that we’ve seen x and w.

« When we found the best values of w before, we were doing Maximum Likelihood
estimation!
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Maximum-A-Posteriori

« Now we're adding regularisation as a prior distribution, we're actually doing a
form of Bayesian inference!
 Bayes’ rule can be written as:

p(Wlx,y) o< p(ylx, w)p(w)

taking logs on both sides
log p(wlx,y) elog p(y|x w) +log p(w)
o ——

N—— N—
posterior likelihood prior

So by adding the 2 log probabilities together and optimising that, we are finding
the best values for w after seeing the prior and the data.
This is called the posterior and finding the best value for w is called

Maximum-a-posteriori. llg
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MAP vs. ML
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A geometric perspective. Wy, is between w,,; and the prior.

Taken from Bishop: Pattern recongition and machine learning
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Regularisation

+ So rather than just minimising a loss function L(y, f (x;w)), for example our
residual error o5 Y0 (" — f(x"; w))2.

+ We can minimise a regularised loss £’ by adding together our loss £ and a term
penalising over-complexity:

minimise £'(y, f(x; w)) = minimise {E(y,f(x; w)) + /Z\WTW}

The free (hyper-) parameter A = % controls the trade-off between penalising not
fitting the data well (£) and penalising overly complex models (w ' w)
+ Now we have

-

+ Regularised linear regression: £ = Lsquared loss T %w w

+ Regularised logistic regression: £ = Liogistic loss T %wTw

« Regularised ...: L' =L+ iw'w IB
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Regularised linear regression

1 A
L= N (Xw —y, Xw —y) t3 w'w

penalty term
residual error (see linear regression ecture)

Taking partial derivatives of £’ with respect to w and set it to zero
1

Vwl' = NXT(XW —y)+Aw =0
The regularised linear regression solution is
100
T 1y T 0 10

Wregularised = (X X+ N)\I)_ X'y wherel =
000

To be contrasted to our non-regularised version of linear regression

T 15T
20/29 Whon-regularised = (X' X)X y

o
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Regularisation in action
Our data with just 6 data points: (0, —4), (0.2, —6), ...
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Regularisation in action
« We use the 5th order polynomial model

f(x; w) = Wy + w1x + w2x2 + ZU3X3 -+ w4x4 + w5x5

+ We set A = 0 — we recover the non-regularised version of linear regression

A=0

A2

-3 Y-} & & & R £y
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3

minimise {E(y,f(x; w)) + wTw} 119
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Regularisation in action
« Weset A = 1e — 06 — the model follows the general shape of the exact 5th order
polynomial but without as much variability and is further away from the data
points.

A=1e—-06

S S

&

minimise {E(y, Flxw)) + ;wTw} us
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Regularisation in action

+ Weset A = 0.01 — the model becomes less complex.

A=0.01
0 . .
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minimise {E(y,f(x; w))+ )Z\WTW}
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Regularisation in action

+ Weset A = 0.1 — the model becomes even less complex.
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Regularisation in summary

minimise {L’(y,f(x; w))+ ngw}

« Larger A, higher regularisation:
too large, we will not capture any useful trends in the data

+ Smaller A, lower regularisation:
too small, our function will likely be too complex

More regularization tends to cause less overfitting.
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Other forms of regularisation

« LASSO (Least Absolute Shrinkage and Selection Operator) regularisation places a
penalty on the absolute values of the weights ||w||; = }; |w;].

wa w2

© ©

A :
A |

« Elastic net combines ridge regression and LASSO: A ||w||1 + Az||w]|2
 you need to balance the two terms though.

Taken from Bishop: Pattern recongition and machine learning
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Regularised linear models in sklearn

« Several options available in the sklearn.linear_models.
« Please investigate the documentation.

 Some regularisation types may use alternative optimisation approaches, and be
much slower.
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https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model

Summary and outlook

+ We've talked about how to incoporate how much we trust particular data
samples in fitting linear regression.

« We’ve also introduced the concept of over-fitting, which we want to avoid.

+ Finally, we covered regularisation, which enables us to encourage our models to be
simpler.

Next lecture:
« We're still missing how to choose our hyper-parameters A!

« Next time we’ll cover Model selection: how to choose the model and it’s
hyper-parameters from data.
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