
Week 4a:

Regularisation:
Learning linear models that generalise

G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk

Outline
Today we’ll

• Think about relaxing some of our assumption in learning linear regression.
• Discuss the concept of over-fitting and explain why it happens and how you can

spot it.
• Introduce regularisation as a mechanism to combat overfitting, and explain it’s

link to Bayes’ theorem.

At the end of this session you should be able to
• Understand how weighted least squares fitting works, why it can be useful, and

how to implement it in numpy.
• Describe the concept of overfitting, and be able to spot if your model is

overfitting.
• Explain what regularisation is, and how it can be applied to reduce

overfitting.

2 / 29

Recap: linear least squares regression
• We defined linear regression as:

y ≈ ŷ = Xw, where y=labels, ŷ =prediction, X=input data matrix,
and w=weight vector

• We defined the cost function as the squared prediction error:
1

2N ∥Xw − y∥2

• This gives us a probabilistic interpretation of our predictions as a normal
distribution N (y; Xw, σ2) = N (y; ŷ, Iσ2).

• This states: errors are independent & identically distributed across samples
• Is this realistic? Can you think of a case when it wouldn’t be?
• How can we relax the assumption that the distribution of model errors is the same

across samples?

3 / 29

Weighted linear regression
• There are often times where assigning different weights on our training data pairs

i.e. (xn, yn) might be helpful.
• This would be because we may have more or less confidence in some data points

than others
• For instance, maybe one of the hiring managers makes erratic decisions and we

wanted to downweight their opinions.
• Alternatively, another one might always make excellent decisions and we want to

model that process.
• Warning! Blindly assuming our models are informative can exacerbate human

bias and unfairness in decision making.
• We’re not covering AI fairness and bias in this module, but I’d recommend that you

check out this blog post on the topic.

4 / 29

https://www.borealisai.com/en/blog/tutorial1-bias-and-fairness-ai/

Weighted linear regression
• We can modify linear least squares regression to allow σ2 to change across

training samples.
• This is known as heteroscedastic noise.

• Our problem is mostly the same, we just attribute different importance to some of
the data.

• Mathematically, we can still write it in closed form

w∗ = (X⊤WX)−1X⊤Wy

where W is a diagonal matrix containing the reciprocal sample variance Wii =
1

σ2
i

Given X, y and W
w hat = np . l i n a l g . inv (X .T@W@X)@X.T@W@y
We can s t i l l use t h e p s u e d o i n v e r s e
w hat = np . l i n a l g . pinv (np . s q r t (W)@X)@np . s q r t (W)@y
y hat = X@w hat # p r e d i c t

5 / 29

How do I know what σ should be?

• Depends on your problem.
• Sometimes you know the expected precision of a sensor
• Or how erratic a human labeller is!

• You can also learn or infer it from data, but that’s a more advanced use case.

6 / 29

Making linear models complicated
• Last week we saw how linear models could be extended to explain more complex

relationships in the input data.

X =


1 x1 x2

1 . . . xK
1

1 x2 x2
2 . . . xK

2
...

...
...

...
...

1 xN x2
N . . . xK

N


So we can fit polynomials, or any set of basis functions:

7 / 29

But what if our model is too complicated?

• What will it do?
• It will probably be better at describing the data you trained it on!

• i.e. the training error will be lower.
• It will probably be worse at describing the unseen validation or test data!

• Which means that practically speaking, it’s not very useful!

8 / 29

Polynomial regression

Sometimes the simplest model will be best for predicting new data.

9 / 29

Training and test error
as a function of model complexity

For example, the higher the degree of a polynomial, the more complex.

The Elements of Statistical Learning
10 / 29

Think break
• Our linear model produces an output by

ŷ = ∑
i

wixi

• We can make the model more complicated by adding new variables to x, e.g.:

ŷ = w0 + w1x + w2x2 + w3x3 + w4x4 + w5x5

• What prior knowledge could we build into our learning to make the model less
complicated?

• How can we make a complex model act like a simple model?

11 / 29

Regularisation – intuition
• Consider the 5th order polynomial model

f̂ (x; w) = w0 + w1x + w2x2 + w3x3 + w4x4 + w5x5

• Even if this model itself has 6 possible parameters to learn, we can simplify it in
several ways.

• The most trivial model: w = (0, 0, 0, 0, 0, 0), and the model will always predict a
value of zero.

• The next simplest model: set w0 to some non-zero value, and the model will
predict a constant w0.

• The next next simplest model: leave w0 at its new value, we can set w1 to some
value. The model has become more complex, it can predict a line now!

12 / 29

Regularisation and model complexity
• The 5th order polynomial model has more available complexity as we allow each

additional parameter wn to be given a non-zero value!
• One way to think of this, is the more non-zero weights, the more complex the

model. ||w||0
• The L0 norm is not differentiable, as it’s a count, so tricky to optimise dynamically.

• Another description of complexity is: the more w deviates from 0, the more
complex the model is.

• This can be written as the sum of absolute values, L1 = ||w||1.
• But absolute value tend to be tricky to optimise, as it’s not differentiable at 0.

• What might we use instead?

13 / 29

Another squared term
• A squared term is helpful again.

||w||22 =
d

∑
i=0

w2
i

or, in a vector form,

w⊤w

• This gives us a description of model complexity that increases as the square of the
weight values.

• Where do you think this might have come from?

14 / 29

The Gaussians are back!
• Again, the squared term comes from a Gaussian/Normal distribution! which has

a log-probability log p(w|µ, σ2) ∝ (w−µ)⊤(w−µ)
σ2

• in our case µ = 0
• But this time we can think of it slightly differently, and see this as a prior

distribution on the values of w.
• This means it expresses our preferences on what values w should take, before we’ve

seen any data.
• Instead of σ2 describing noise, it’s describing the flexibility that we’re giving our

model to choose various values for w. As our preference is for w to be 0, we set
µ = 0 for most cases.

15 / 29

Maximum Likelihood

• When we discussed linear regression, we expressed it probabilistically saying our
signal was corrupted with Gaussian noise.

p(y|x, w) = N (y|x⊤w, σ2)

• This equation is the likelihood of observing y given that we’ve seen x and w.
• When we found the best values of w before, we were doing Maximum Likelihood

estimation!

16 / 29

Maximum-A-Posteriori
• Now we’re adding regularisation as a prior distribution, we’re actually doing a

form of Bayesian inference!
• Bayes’ rule can be written as:

p(w|x, y) ∝ p(y|x, w)p(w)

• taking logs on both sides

log p(w|x, y)︸ ︷︷ ︸
posterior

∝ log p(y|x, w)︸ ︷︷ ︸
likelihood

+ log p(w)︸ ︷︷ ︸
prior

• So by adding the 2 log probabilities together and optimising that, we are finding
the best values for w after seeing the prior and the data.

• This is called the posterior and finding the best value for w is called
Maximum-a-posteriori.

17 / 29

MAP vs. ML

A geometric perspective. wmap is between wml and the prior.
Taken from Bishop: Pattern recongition and machine learning

18 / 29

Regularisation
• So rather than just minimising a loss function L(y, f̂ (x; w)), for example our

residual error 1
2N ∑N

n=1(yn − f̂ (xn; w))2.
• We can minimise a regularised loss L′ by adding together our loss L and a term

penalising over-complexity:

minimise
w

L′(y, f̂ (x; w)) = minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
The free (hyper-) parameter λ = 1

σ2 controls the trade-off between penalising not
fitting the data well (L) and penalising overly complex models (w⊤w)

• Now we have
• Regularised linear regression: L′ = Lsquared loss +

λ
2 w⊤w

• Regularised logistic regression: L′ = Llogistic loss +
λ
2 w⊤w

• Regularised . . .: L′ = L... +
λ
2 w⊤w

19 / 29

Regularised linear regression

L′ =
1

2N
⟨Xw − y, Xw − y⟩︸ ︷︷ ︸

residual error (see linear regression ecture)

+
λ

2
w⊤w︸ ︷︷ ︸

penalty term

Taking partial derivatives of L′ with respect to w and set it to zero

∇wL′ =
1
N

X⊤(Xw − y) + λw = 0

The regularised linear regression solution is

wregularised = (X⊤X + NλI)−1X⊤y where I =


1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
0 0 0 · · · 1




To be contrasted to our non-regularised version of linear regression

wnon-regularised = (X⊤X)−1X⊤y20 / 29

Regularisation in action
Our data with just 6 data points: (0,−4), (0.2,−6), . . .

21 / 29

Regularisation in action
• We use the 5th order polynomial model

f̂ (x; w) = w0 + w1x + w2x2 + w3x3 + w4x4 + w5x5

• We set λ = 0 → we recover the non-regularised version of linear regression

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
22 / 29

Regularisation in action
• We set λ = 1e − 06 → the model follows the general shape of the exact 5th order

polynomial but without as much variability and is further away from the data
points.

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
23 / 29

Regularisation in action
• We set λ = 0.01 → the model becomes less complex.

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
24 / 29

Regularisation in action
• We set λ = 0.1 → the model becomes even less complex.

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
25 / 29

Regularisation in summary

minimise
w

{
L(y, f̂ (x; w)) +

λ

2
w⊤w

}
• Larger λ, higher regularisation:

too large, we will not capture any useful trends in the data

• Smaller λ, lower regularisation:
too small, our function will likely be too complex

More regularization tends to cause less overfitting.

26 / 29

Other forms of regularisation
• LASSO (Least Absolute Shrinkage and Selection Operator) regularisation places a

penalty on the absolute values of the weights ||w||1 = ∑i |wi|.

• Elastic net combines ridge regression and LASSO: λ1||w||1 + λ2||w||2
• you need to balance the two terms though.

Taken from Bishop: Pattern recongition and machine learning

27 / 29

Regularised linear models in sklearn

• Several options available in the sklearn.linear models.
• Please investigate the documentation.
• Some regularisation types may use alternative optimisation approaches, and be

much slower.

28 / 29

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model

Summary and outlook
• We’ve talked about how to incoporate how much we trust particular data

samples in fitting linear regression.
• We’ve also introduced the concept of over-fitting, which we want to avoid.
• Finally, we covered regularisation, which enables us to encourage our models to be

simpler.

Next lecture:
• We’re still missing how to choose our hyper-parameters λ!
• Next time we’ll cover Model selection: how to choose the model and it’s

hyper-parameters from data.

29 / 29

