
COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 1 

 

COMP3322A Modern Technologies on World Wide Web 
Lab 8: MERN 

Overview 
 
In this lab exercise, we will use React to re-implement the front-end of the web service that we 
have built in Lab 6. In this way, we are using MongoDB, Node.js/Express.js and React, i.e., the 
MERN framework. The resulting web page will look identical as Lab 6 and have exactly the same 
behaviour.  
 
To re-implement the front end in React, we use the create-react-app package to create a 
development server which hosts the files needed to run the React frontend app. We will reuse 
the web service that we built using the node.js/express.js environment in lab 6 (including the 
MongoDB database). The React app will be running on localhost:3000, while the Express.js server 
will be running on localhost:3001. The following diagram shows the interaction between your 
browser, the React App, and the Express.js server: 

  



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 2 

 

Lab Exercise 
Part 1. Set up the Back-end Web Service 
 
Step 1. Recreate the back-end web service we implemented in lab6. 
 
Create a folder “lab8”. Download lab6_samplesolution.zip from Moodle, extract it and rename 
the folder to “webservice”. Copy the folder into the “lab8” folder. Follow step 3 in Lab 6 to set 
up the MongoDB database (we will still use the database “lab6-db”). Please make sure that you 
can run the app in “webservice” (as did in Lab 6) and see the same web page as in Lab 6 before 
proceeding to the following steps. This ensures that the back-end service is working correctly. 
 
Step 2. Enable CORS in the Web service  
 
In this lab, we are going to run the web service built in Lab 6 as the back-end service, and allow 
our React app (front-end) to access the Web service. That is, we are not using .pug templates to 
generate HTML contents in this lab (though the files exist in your downloaded lab6 sample 
solution folder), but only the web services provided in users.js (via app.js). We are going to run 
this web service on your localhost on the port 3001 (instead of 3000), since we are going to run 
our React app on the port 3000. We are using the front-end code served from localhost:3000 to 
send AJAX requests to localhost:3001, and localhost:3000 and localhost:3001 with different ports 
are considered as different domains. Therefore, we need to enable CORS (Cross-Origin Resource 
Sharing) on the express.js web server. See https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS for a more detailed introduction. 
 
Launch a terminal and switch to the “webservice” directory, and run the following command to 
install CORS package: 
 

npm install cors 
 
We will need this CORS package for providing a middleware used to enable CORS with various 
options (see https://www.npmjs.com/package/cors).  
 
Open app.js in the “webservice” folder. Add the following code at the beginning of app.js: 
 

var cors = require('cors'); 
 
Then, we make the app use the cors middleware by adding the following line below the line “var 
app = express();” 
 
app.use(cors()); 
 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 3 

 

Further, we add the following line of code (highlighted in red) for handling pre-flight requests 
before registering the routers: 
 
app.options('*', cors()); 
app.use('/', indexRouter); 
app.use('/users', usersRouter); 
 
A CORS pre-flight request is an HTTP OPTIONS request, which is sent to check if the CORS protocol 
is understood. In this lab exercise, when your browser is about to send an HTTP PUT or DELETE 
request to a web server running in another domain, it first automatically sends an OPTIONS 
request to check whether the actual request is safe to send; if so, the browser will follow up 
sending the actual PUT or DELETE request. (For “simple requests” such as GET and POST, such a 
pre-flight request will not be sent by your browser.) The front-end code does not need to deal 
with sending a pre-flight request (as browser automatically sends it). But at the back-end server, 
we need to handle/respond to such OPTIONS requests; that’s why we add the above middleware 
into app.js. See more at https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request. 
 
You can remove the pug template engine-related code and module, static file serving, 
indexRouter and index.js from the “webservice” folder. Our React app will only make use of the 
Web service implemented by app.js and users.js, but not any other modules in the app you built 
in Lab 6. 
 
At the end of app.js, replace “module.exports = app;” by the following code: 
 

//module.exports = app; 
app.listen(3001); 

 
 
Step 3. Launch the web service 
 
Make sure you have correctly set up the database, as specified in Step 1. Stop the express.js 
server (NOT the MongoDB server) if you have launched it in Step 1. Now, do not launch the 
service using “npm start”. Instead, we launch the web service using the following command: 
 
node app.js  
 
This makes the express.js server run at 3001 port, following our specification. 
  



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 4 

 

Part 2. Create the React App 
Step 4. Create the React App template using “create-react-app” command 
 
Launch a terminal. Go to your “lab8” directory and create a React app named “myreactapp” using 
the following commands: 
cd YourPath/lab8 
npx create-react-app myreactapp 
 
Go inside the “myreactapp” folder just created.  Since we are going to use the jQuery library for 
the React app to communicate with the webservice app, install the jQuery module in the React 
app as follows:  
 
cd myreactapp 
npm install jquery 
 
Then launch the React App as follows: 
 
npm start 
 
After successfully launching the app, you should see prompts like the following in your terminal: 
 

Compiled successfully! 
 
You can now view myreactapp in the browser. 
 
  Local:                          http://localhost:3000 
  On Your Network:    http://xxx.xxx.xx.xx:3000 
 
Note that the development build is not optimized. 
To create a production build, use npm run build. 
… 

And a web page should be loaded automatically in your browser, as follows: 

 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 5 

 

Part 3. Prepare the React App 
Step 5. Copy resource files to myreactapp/src folder 
Copy the two files, logo.png and  style.css from their respective folders of the backend-web 
service as follows, to myreactapp/src: 
webservice/public/images/logo.png 
webservice/public/stylesheets/style.css 
 
We directly reuse logo.png and style.css from Lab 6 for the front-end. We will not need 
externalJS.js from Lab 6 since we will recreate the logic in React, but you may use it as a reference. 
 
Step 6. Remove the default stylesheet 
 
Edit myreactapp/src/index.js and remove the line that imports index.css. In this lab, we will only 
use one CSS file, “style.css”, which will be imported in “App.js”. 
 
Step 7. Download code template from Moodle and inspect the provided code 
From Moodle, download lab8_materials.zip. Extract it and you will find a file named App.js. 
Replace App.js in myreactapp/src with the downloaded file. 
 
Open App.js and observe the render() function of the class “PlanPage”, which is the React 
component which renders the main page structure. 
Here we have recreated the HTML structure similar to that achieved through index.pug in Lab 6.  

 
Besides normal HTML elements, the PlanPage component has the following components as 
children: 
 

1. Header, Instruction and Footer: they are defined using functions and return static HTML 
code; 

Header and Instruction 

PlanTable 

DeleteForm 
Footer 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 6 

 

2. PlanTable: This is the component that creates the table containing topic plan.  
3. DeleteForm: This is the component that creates the form at the bottom where one can 

delete topics. 
 
Here <React.Fragment> allows one to group a list of HTML elements/components without adding 
an extra node to the DOM (https://reactjs.org/docs/fragments.html), which makes it a better 
wrapping element than <div>. 
 
The above describes what the HTML page is composed of. What is the interaction between the 
components? The design of this React App is centered around the PlanPage’s state: the topicInfo 
array. It locally stores all the topics’ information. The rendered contents of PlanTable and the 
behavior of DeleteForm will change based on the value of topicInfo: 
 

1. The PlanTable receives information about topics from PlanPage through its topicInfo 
props. It will render the topics in topicInfo in its table rows through the component 
PlanTableRow. It also receives a function to handle the click event of the links to update 
topic status through its operateTopic props.  operateTopic will update the internal state 
of PlanPage, which will in turn change the rendered HTML content of PlanTable. 
 

2. The DeleteForm receives a function, deleteTopic, to handle the deletion of topics. The 
function uses the topicInfo state in PlanPage to check if the topic is in the table and will 
update it when executed successfully. 
 

The following diagram summarizes the interaction between the components (“controller” refers 
to a function that updates a component’s state): 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 7 

 

 
Part 4. Implement PlanPage 
Step 8. Implement the constructor of PlanPage 
Locate the class “PlanPage”.  We have already provided the render function and empty controller 
functions “updateTopics”, “operateTopic”, and “deleteTopic” (which you will implement later). 
In this step, we implement the constructor of “PlanPage”, in which you need to: 

1. Call the parent constructor with props as argument 
2. Initialize the state of “PlanPage” with the key “topicInfo” and an empty array as the value. 

 
Step 9. Implement the controller functions 
Similar to the “showAllTopics”, “operateTopic”, and “deleteTopic” functions we implemented in 
Lab 6, the controller functions send AJAX requests to the backend web service.  But this time 
instead of directly editing the page’s content using DOM APIs, we only need to update the state 
in PlanPage since the page is automatically re-rendered when PlanPage’s state changes. 
 
Specifically, like “showAllTopics” we implemented in Lab 6, in the “updateTopics” controller 
function, we need to send an AJAX GET request for http://localhost:3001/users/get_table (note 
that we need to specify the full URL since the web service is running on another port). Same as 
in Lab 6, the web service will return a JSON object which is parsed to an array containing topics’ 
information. We directly set the state “topicInfo” to this array. (You may reuse some of the code 
in Lab 6 to send the AJAX request.) Note that we have import $ from 'jquery'; at the beginning of 
App.js, which allows us to write jQuery code in the functions. 
 
In “operateTopic”, we send a PUT request for http://localhost:3001/users/update_status with 
the _id and op of the operation as we did in Lab 6, where _id and op are the arguments of the 
function. Same as in Lab 6, we use this _id to identify the topics to operate on and op (which is 
either “add” or “remove”) to indicate the operation. After receiving the server response, call 
“updateTopics” function to fetch the updated topics information.  
 
In “deleteTopic”, we need to send an AJAX DELETE request for 
http://localhost:3001/users/delete_topic/topicName, where topicName is the argument of the 
“deleteTopic” function. Similar to Lab 6, we check if topicName exists in the table before sending 
the request. This time, we use the topicInfo state in PlanPage to check for the existence of the 
topic: if there is no such a topic in the table, alert “No such topic in the table”; otherwise, send 
the DELETE request to the back-end web service. After receiving the server response, call 
“updateTopics” function to fetch the updated topics information. 
 
Note: you need to use .bind(this) on a callback function of a jQuery AJAX function call, if you want 
to use “this” in the callback function.  
 
Step 10. Invoke updateTopics() upon page loading 
To achieve this, call this.updateTopics() inside PlanPage’s componentDidMount() function. 
 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 8 

 

Part 5. Implement PlanTable 
Step 11. Complete the function PlanTableRow 
Locate the PlanTableRow function. This function creates a React component which renders a row 
in the PlanTable. PlanTableRow receives five attributes as its props: 

1. _id: the _id of the topic from MongoDB, which we will use to call “operateTopic”. 
2. name: the name of the topic. 
3. hour: the hours of the topic 
4. status: the selection status of the topic 
5. operateTopic: a function with two arguments, _id and op, that is to be called when the 

user clicks the “add” or “remove” action links, depending on the status of this topic.  
The format of the table is exactly the same as in Lab 6.  
 
Complete the PlanTableRow function to return the HTML elements of a table row (including the 
add or remove link whose onClick is handled by operateTopic). Assign the table row to the 
row_class class for CSS styling. Assign the add or remove link to the operation class for CSS styling. 
 
Step 12. Complete the implementation of PlanTable 
Locate the function PlanTable. The PlanTable component is also defined using a function. It 
renders a table header as well as the table body containing the PlanTableRows. Its props contain 
the following fields: 

1. topicInfo: an array of objects, each representing a topic. This is the topicInfo state passed 
from PlanPage. 

2. operateTopic: a function. This function is passed in from the PlanPage and should be 
passed onto each PlanTableRow. 

 
It uses a map function on the topicInfo array to generate a PlanTableRow component for each 
topic. Your task is to fill in the missing attributes (which will become props in PlanTableRow) for 
each table row. 
Now when you load the page, you should see exactly the same table as in Lab 6: 
 

 



COMP3322A | Lab 8 MERN 
 

  
LAB 8 MERN 9 

 

 
Part 6. Implement DeleteForm 
Step 13. Implement the function deleteTopic() 
Locate the class DeleteForm. Its props contain a function “deleteTopic”, which is passed from the 
PlanPage component. DeleteForm also contains a “deleteTopic” function itself, which should call 
the “deleteTopic” function from the props with the input topic name as the argument. 
 
This component contains an input field and a submit button. In React, we use a technique called 
“controlled components” to manage the value of input fields. To manage the mutable “value” of 
an input field, we create a state for it in the containing component. These states correspond to 
the values of the input fields, and are updated whenever the values of input fields change. 
Therefore, the value of the state is always in sync with the value of the input field. For more 
detailed reference, see https://reactjs.org/docs/forms.html 
 
Implement the function deleteTopic() in DeleteForm, which calls the “deleteTopic” function in 
props with the inputTopicName state as the argument. 
 
 
Congratulations! Now you have finished Lab 8. You should see exactly the same page as in Lab 6. 
Test the behavior of the page to be identical with that implemented in Lab 6 by adding, updating 
and deleting some topics. 
 
 
Submission: 
Please finish this lab exercise before 23:59 Sunday Dec 4, 2022. You should submit a zip file 
containing the following files only:  

1. In /webservice: app.js 
2. In /myreactapp: App.js 

 
(1) Login Moodle. 
(2) Find “Labs” section and click “Lab 8”. 
(3) Click “Add submission”, browse your zip file and save it. Done. 
(4) You will receive an automatic confirmation email, if the submission was successful. 
(5) You can “Edit submission” to your already submitted file, but ONLY before the deadline. 


