
Week 5a
Neural Networks I

Fundamentals of Machine Learning
2023-24

Dr Benjamin Evans



Here’s what we’ll do over the next few weeks…
• This week:

• Neural networks I - single-layer (Perceptron) [binary classification, supervised learning]
• Clustering -      k-means   [ classification, unsupervised]

• Next week: Catch up week. Labs for this week (the perceptron). 
 - No lecture on Tuesday 5th March
 - Revision lecture with me covering difficult MCQ questions: Thursday 7th March at 9am

• Week 7:
• Pre-processing

• Week 8:
• Neural networks II – multi-layer perceptron and backpropagation

• Office Hours: please email to book.
Dr Johanna Senk Dr Benjamin Evans

Wednesdays: 11-12pm Tuesdays: 12-1pm

Thursdays: 11-12pm Thursdays: 3-4pm



What will you learn today?





The Mark I Perceptron at the 
Cornell Aeronautical Laboratory
Invented by Frank Rosenblatt, 1957

“The Navy revealed the embryo 
of an electronic computer that it 
expects will be able to walk, talk, 
see, write, reproduce itself and 
be conscious of its existence.”

New York Times 8/vii/1958





Inspiration 
from 
biological 
neurons



Inspiration 
from 
biological 
neurons



Inspiration 
from 
biological 
neurons

𝑥!

𝑥"

𝑥#

𝑥$

Inputs

Weights

𝑤!
𝑤"

𝑤#

𝑤$

Σ Output
𝑦

𝑦 = 𝑓 '
%&!

$

𝑤%𝑥% +𝑤'

𝑓

𝑤'
Bias



Recording from a real neuron: membrane potential



Summation of inputs until
threshold reached and a spike 
or action potential is emitted.



Components of a general artificial neuron:

1. A set of inputs, xi

2. A set of weights, 𝑤!, 𝑤", . . . , 𝑤$
3. A bias, 𝑤'
4. An activation function, f

5. An output, y

𝑥!

𝑥"

𝑥#

𝑥$

Inputs

Weights

𝑤!
𝑤"

𝑤#

𝑤$

Σ Output
𝑦

𝑦 = 𝑓 '
%&!

$

𝑤%𝑥% +𝑤'

𝑓

An artificial neuron – The Perceptron

𝑤'
Bias

My%20Documents/downloads/teach/artificialneuron/aneuronPrg/html/components.html
My%20Documents/downloads/teach/artificialneuron/aneuronPrg/html/components.html
My%20Documents/downloads/teach/artificialneuron/aneuronPrg/html/components.html


xn

x1

x2

Outputs

Hidden layers

Inputs

x3

Multi-layer perceptron – deep neural network



𝑦 = 𝑓 '
%&!

$

𝑤% + 𝑥% +𝑤'

• Takes the values for each of the features, 𝑥! as input
• Scales the features by their weights 𝑤! and sums the products
• Passes result through a non-linear activation function, 𝑓
• Produces a binary classification as output, 𝑦, that is a function 

of the features: {0, 1} or {-1, 1}

What are the parameters?
• The weights, 𝑤", 𝑤#, . . . , 𝑤$
• The bias, 𝑤%
• (The activation function, f)

The single perceptron

Can be viewed 
as a model…

… or a function.

𝑦 = 𝑓 𝐰)𝐱

Inputs Weights
𝑥!

𝑥"

𝑥#

𝑥$

𝑤!
𝑤"

𝑤#

𝑤$

Σ Output
𝑦𝑓



The most basic single perceptron

• Very simple artificial neuron can perform basic logical operations such as: 
• AND
• OR
• NOT

x1 x2 x1 AND x2

0 0 0

0 1 0

1 0 0

1 1 1

𝑥!

𝑥"

*+1

*+1
Σ

-2

Inputs

Bias

Output:
If sum<0: y=0
Else: y=1

𝑓





x1 x2 x1 OR x2

0 0 0

0 1 1

1 0 1

1 1 1

What logic gate is this perceptron computing?

• Idea: Groups of these “neuronal” logic gates could carry out any 
computation, even though each neuron was very limited.
•Could computers be built from these simple units and reproduce the 

computational power of biological brains?
•Are biological neurons performing logical operations?

𝑥!

𝑥"

*+1

*+1
Σ

-1

Inputs

Bias

Output:
If sum<0: y=0
Else: y=1

𝑓



E.g. Handwritten digit 
classification: 

• First need a data set to learn from: sets of characters

• How are they represented? E.g. as an input vector x = (x1, …, xD) to the network (e.g. 
vector of ones and zeroes for each pixel according to whether it is black/white). 

• Set of input vectors is our training set which have already been labelled as a’s and b’s. 

• Given a training set, our goal is to tell if a new image is an a or b i.e. classify it into one 
of 2 classes C1 (all a’s) or C2 (all b’s) (in general one of k classes C1,. . ., Ck )

Intuition: real neural networks do this well, so maybe artificial ones can do the same.

a b



For 2 class classification we want the 
network output y (a function of the 
inputs and network parameters) to be:

 

 y(x) = 1 if x is an image of letter a 

 y(x) = -1 if x is an image of letter b 
𝑦 = 𝑓 '

%&!

$

𝑤%𝑥% +𝑤'

𝑥!

𝑥"

𝑥#

𝑥$

𝑤!
𝑤"

𝑤#

𝑤$

Σ
𝑦𝑓



E.g. 2. Iris species A, or not species A?



Supervised learning 

The purpose of learning is to minimize: 

• training errors      on learning data:          learning error 
• prediction errors  on new, unseen data: generalization error

Recall the bias / variance trade-off from last week…

We use the labelled data to perform 
supervised learning (training, 
adaptation) i.e.:

Change the weights between neurons 
according to the training examples 
(and possibly prior knowledge of the 
problem)



The Perceptron as a classifier

For D-dimensional data, a perceptron consists of:
D weights, a bias and a thresholding activation function.
 
For 2D data we have: 

w1

w2

w0

z = w0 + w1 x1 + w2 x2 y=f(z) {-1, +1}

1. Weighted 
Sum of the 
inputs

2. Pass through 
Heaviside 
function:
T(z) = -1 if z < 0 
T(z) = 1 if z >= 0

x1

1
Output
= class
decision

x2

💡 Hint: View the bias 
as another weight 
from an input which is 
constantly on

z = w.x where x is [1, 𝑥!, 𝑥",…, 𝑥$]
                and w is [𝑤', 𝑤!, 𝑤",…, 𝑤$]



The prediction is: 𝑠𝑔𝑛 𝐰)𝐱 	
à we only care about which side 
of the decision boundary we are 
on, not how far we are from it.

Interpretation of the weights
Since the Heaviside function is thresholded at 0, the decision boundary is where: 

This is the equation of a straight line: 

𝑤' +𝑤!𝑥! +𝑤"𝑥" = 0

𝑥" = −
𝑤!
𝑤"
𝑥! −

𝑤'
𝑤"

if	 𝑤" ≠ 0

𝑥! = −
𝑤'
𝑤!

if	 𝑤" = 0

𝑥!

𝑥"

Recall: 𝑦 = 𝑚𝑥 + 𝑐



Perceptron = Linear discriminant function

The discriminant is always 
linear for single perceptron!
i.e., output 𝑦 depends only on a 
linear function of the inputs:

𝑧 =$
!"#

$

𝑤!𝑥! + 𝑤% = 𝐰. 𝐱

Separate the two classes using a 
straight line in feature space.

In 3D, it’s a plane. In higher 
dimensions, it’s a hyper-plane. 



29

𝑦 = 𝑓 𝑧

We have been considering 
the activation function to 
be the Heaviside step 
function: 𝑻 𝒛 = :−𝟏	𝐢𝐟	𝒛 < 𝟎

𝟏	𝐢𝐟	𝒛 ≥ 𝟎

𝑧 ='
%&!

$

𝑤%𝑥% +𝑤' = 𝐰 + 𝐱

Other activation functions can also 
be used. 

Common choices are the sigmoid 
or tanh functions, also called 
logistic functions.

f(z) = 1/(1 + e-z) f(z) = tanh(z)

Activation function 𝑥!

𝑥"

𝑥#

𝑥$

𝑤!
𝑤"

𝑤#

𝑤$

Σ
𝑦𝑓



Relationship to logistic regression

We have seen that the perceptron 
is a linear discriminant function.
Use of a logistic activation 
function, together with normally-
distributed data means that the 
activation gives you the posterior 
probabilities: 

𝑝(𝐶𝑘|𝑥)

This is logistic regression!



Learning / training
Gradient 
Descent• Standard procedure for training the weights is by

• Take a set of training data from known classes and use an error 
function 𝐸(𝐰) to specify an error for each sample. 
• Update the weights with:

𝐰𝑛𝑒𝑤	 = 	𝐰𝑜𝑙𝑑	− 	𝜂	∇𝐸(𝐰)
• Where,

• ∇Ε(𝐰) is the rate of change of the error with respect to 𝐰
• 𝜂 is the learning rate (positive, usually small: 0	 < 	𝜂	 < 	1)

• This moves us downhill i.e., in direction −∇𝐸(𝐰)
• This is the direction of steepest decrease since +∇𝐸(𝐰) is the gradient, i.e. 

the direction of steepest increase
• How far we go (the step size) is determined by the value of 𝜂



𝑤!
𝑤"

Error

Visualisation of gradient descent



E(w)

w1

w1

Decreasing E(w)

Moving Downhill: Move in direction of negative derivative

𝑑𝐸(𝒘)
𝑑𝑤!

𝑤! is updated to 𝑤! − 𝜂
"# 𝒘
"%&

 and  "# 𝒘
"%&

> 0. i.e., the rule decreases 𝑤!



Decreasing E(w)

Moving Downhill: Move in direction of negative derivative

𝑤! is updated to 𝑤! − 𝜂
"# 𝒘
"%&

 and  "# 𝒘
"%&

< 0. i.e., the rule increases 𝑤!

E(w)

w1

w1

𝑑𝐸(𝒘)
𝑑𝑤!



Illustration of Gradient Descent (2-d)

w1

w0

E(w)



Illustration of Gradient Descent

w1

w0

E(w)



Illustration of Gradient Descent

w1

w0

E(w)

Direction of steepest
descent = direction of
negative gradient



Illustration of Gradient Descent

w1

w0

E(w)

Original point in
weight space

New point in
weight space



Error for a perceptron

The prediction is 𝑠𝑔𝑛 𝐰)𝐱 	and so the error is 𝐸 𝐰 = 0 when classification is correct 
(the predicted and actual signs match) and non-zero otherwise.

When wrong, the sign specifies the type of error (and the value indicates how far the 
perceptron was from getting it right). 

Or equivalently to get the correct sign, we can write:

𝐸 𝒘 = !
"
𝐰 + 𝐱(𝑦 − 𝑐) 𝑦 is the output (prediction)

𝑐 is the true class 

𝐸 𝐰 = 𝐰)𝐱       if output is +1 but should have been -1
𝐸 𝐰 = −𝐰)𝐱   if output is -1 but should have been +1

Recall: 

𝐰#𝐱 = 𝐰 / 𝐱 = 	1
$%"

&

𝑤$𝑥$ + 𝑤'

The sign ensures the direction of the gradient is correct for adjusting the weights.



Learning for a perceptron

On the error surface, each new weight is directly downhill from the old weight
𝜂 is how much to change in that direction

Vector notation Scalar notation

Error (loss) 𝐸 𝐰 =
1
2 (𝑦 − 𝑐)(𝐰 7 𝐱) 𝐸 𝑤 =

1
2 (𝑦 − 𝑐)(𝑤% +𝑤"𝑥"+. . . +𝑤'𝑥')

Gradient 𝛁𝐸 𝐰 =
1
2 (𝑦 − 𝑐)𝐱

𝜕𝐸(𝑤)
𝜕𝑤!

=
1
2
𝑦 − 𝑐 𝑥!

Gradient descent 
Learning Rule 𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂

1
2 (𝑦 − 𝑐)𝐱 𝑤! 𝑡 + 1 = 𝑤! 𝑡 − 𝜂

1
2 (𝑦 − 𝑐)𝑥!



When does a perceptron work?

When the boundary between classes is 
approximately linear but performance 
degrades when the boundary is non-
linear.

- 100% accuracy when data are 
linearly separable (e.g. OR, AND)

- Imperfect accuracy when data are 
not linearly separable (e.g. XOR)

- enters an infinite training loop 
unless stopped



Hyperparameters / settings for training a 
perceptron
• Set learning rate: 𝜂
• Set initial weight values: w
• When to stop?
• Training set shown repeatedly until stopping criteria are met e.g., the error 

drops below a threshold or plateaus
• Note, each full presentation of all patterns := ‘epoch’

• Which type of training regime? 
• Sequential (on-line, stochastic, or per-pattern): Weights updated after each 

pattern is presented.
• Batch: Calculate the derivatives/weight changes for each pattern in the 

training set. Calculate total change by summing individual changes.



What have you learned today?

• The perceptron is a single artificial neuron, 
modelled on a biological neuron.

• It scales the inputs by their weights, 
summing their products, then classifies 
according to whether or not the sum exceeds 
the threshold of the activation function.

• It can do binary classification, if a linear 
decision boundary makes sense.

• The perceptron can learn to classify inputs by 
updating its weights using gradient descent 
in a supervised learning paradigm.

𝑦 = 𝑓 $
!"#

$

𝑤!𝑥! + 𝑤%

𝑤! 𝑡 + 1 = 𝑤! 𝑡 − 𝜂
1
2
(𝑦 − 𝑐)𝑥!


