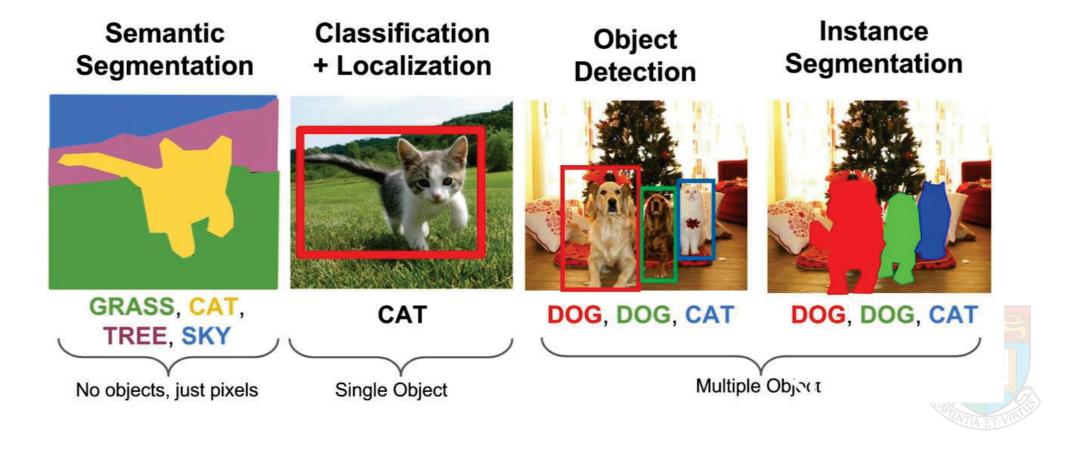


Review Typical CV tasks

- Image recognition
 - Recognize car/dog/person/building etc.
 - Recognize whether an image contains/is a certain object.
- Semantic segmentation
 - Recognize different parts in an image
 - Where is the road, where is the building, where is the sky, etc.
- Object detection
 - How may objects are there in an image and what are they.
- Instance segmentation
 - Object detection + semantic segmentation

Review Typical CV tasks

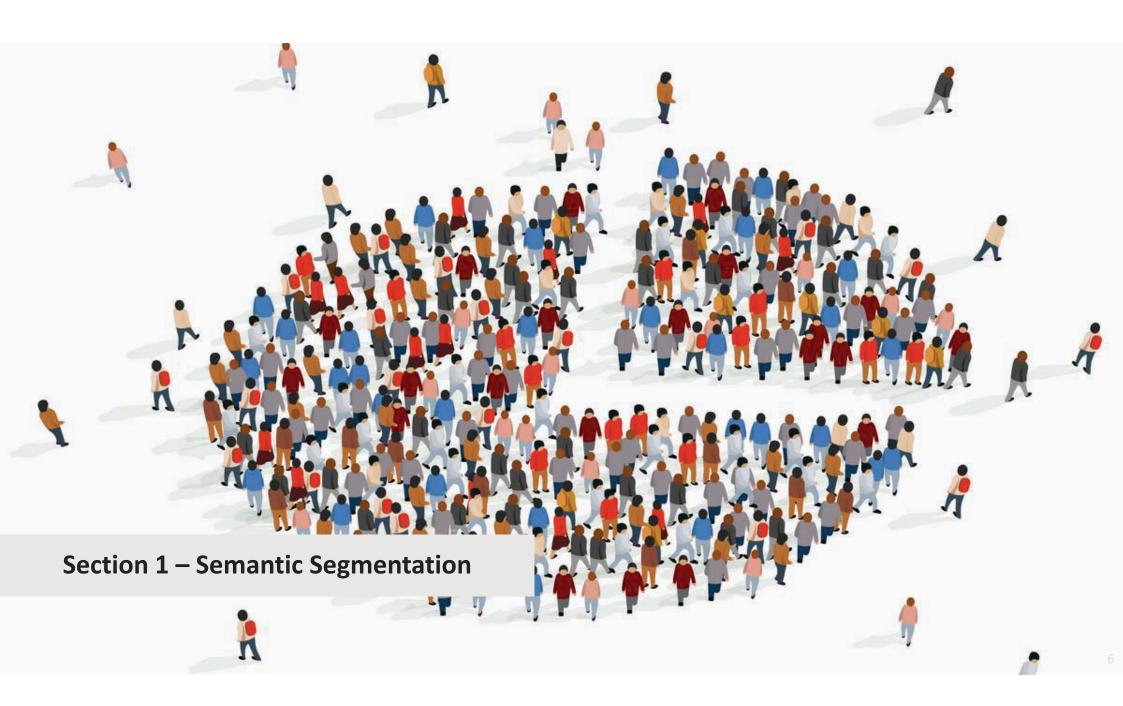


Review Object Detection

- RCNN
- Fast RCNN
- Faster RCNN
- YOLO

Quick Question

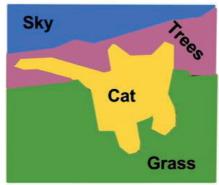
- Which method utilized the anchor box technique?
 - 1. RCNN
 - 2. Fast RCNN
 - 3. Faster RCNN
 - 4. YOLO

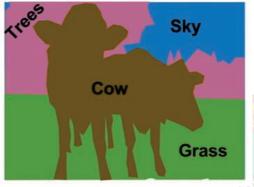


Semantic Segmentation

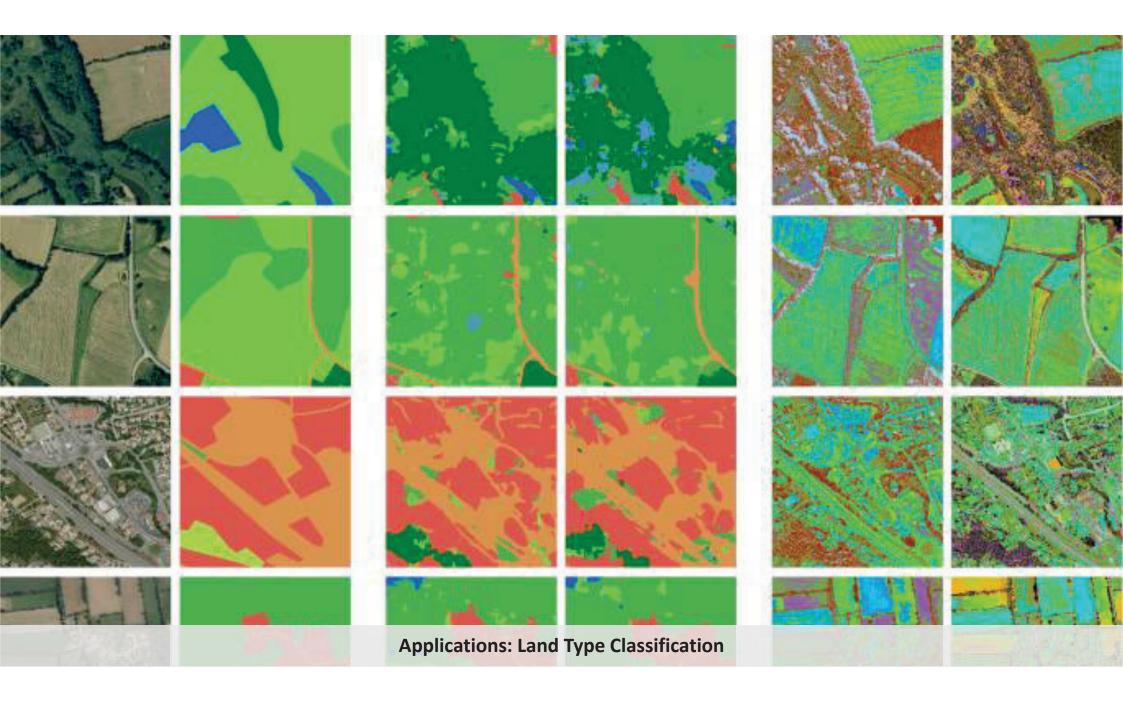
Label each pixel in the image with a category label

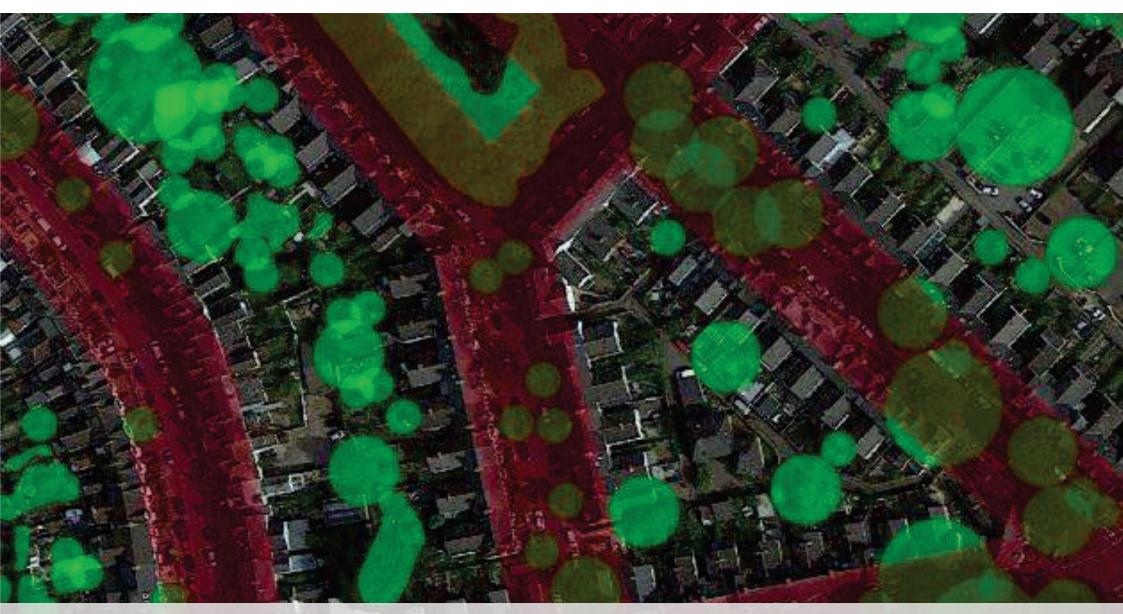
Don't differentiate instances, only care about pixels



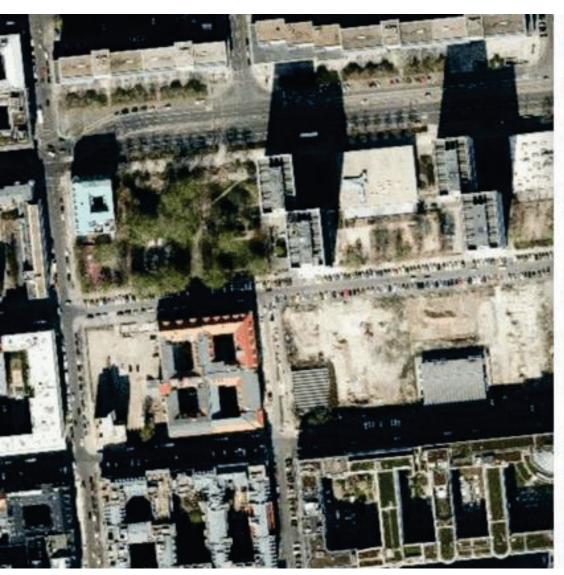


Applications: Street Scene Understanding





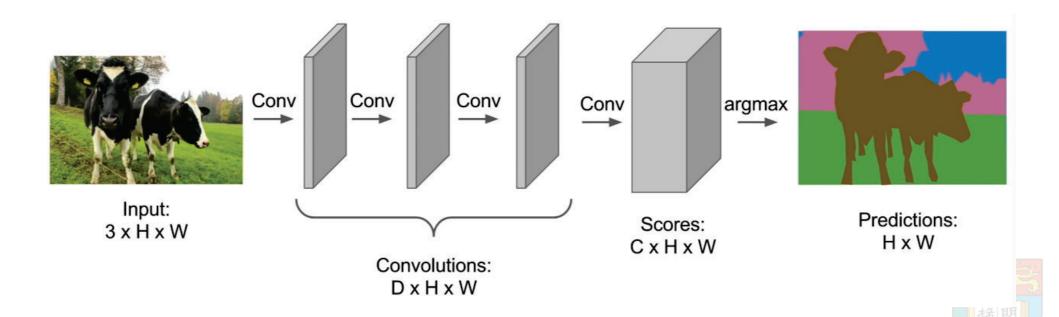
Application: Urban Vegetation/Road Analysis





Application: Roof/Building Analysis

The basic idea is the easy



Just change the outputs into a matrix (CxHxW, where C is the category, H and W is the original image size)

Try to feel the difference (x are the same, feel y)

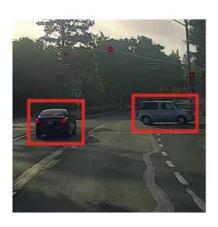
Image classification

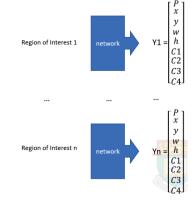
 $Y = \begin{bmatrix} C1 \\ C2 \\ C3 \\ C4 \end{bmatrix}$

Classification with localization

$$Y = \begin{bmatrix} P \\ x \\ y \\ w \\ h \\ C1 \\ C2 \\ C3 \\ C4 \end{bmatrix}$$

Detection





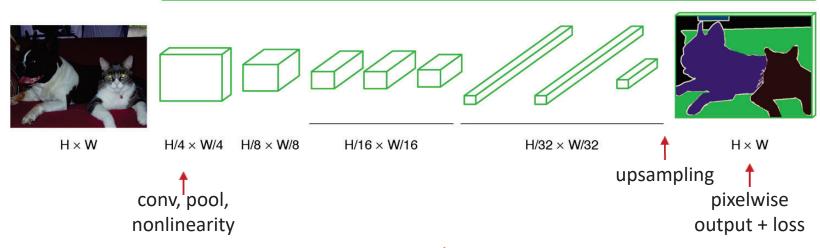
Segmentation

Quick Question

- Which method introduce regional proposal network?
 - 1. RCNN
 - 2. Fast RCNN
 - 3. Faster RCNN
 - 4. YOLO

Major Technical Difference

convolution



- 1. Pixelwise Output
- 2. Loss
- 3. Up sampling

1. Pixelwise Output

- The process is easy to understand
- But the data could be time consuming to prepare.

- Precise localization is hard to annotate
- Common solution: annotate few classes (often things), mark rest as "Other"
- Common datasets: PASCAL VOC 2012 (~1500 images, 20 categories), COCO (~100k images, 20 categories)

100

2. Loss

- Cross entropy
 - Cross entropy of every pixels and then average or sum.
 - Just understand them a classification task for HxWx3 number of elements.

$$L(y, \hat{y}) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

- Others
 - Dice Coefficient

$$DL(y, \hat{y}) = 1 - \frac{2y\hat{y} + 1}{y + \hat{y} + 1}$$

• Shape-aware loss

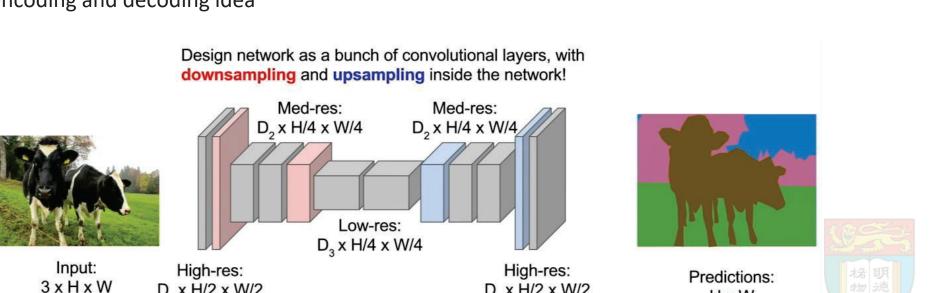
$$L(y, \hat{y}) = -w(\mathbf{x}) \times [y \log(\hat{y}) + (1 - y) \log(1 - \hat{p})]$$

3. The up-sampling in practice

· Directly learn the segmentation from images are difficult

D, x H/2 x W/2

- We trying to utilize the power from image recognition
- The encoding and decoding idea



D, x H/2 x W/2

3 x H x W

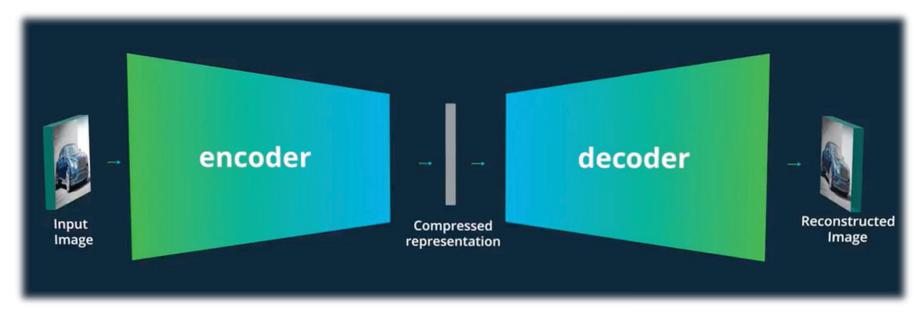
CxHxW

DxHxW

HxW

The idea is like you teach a kid how to draw an image. The process is let him know he is drawing a cow first and the other details.8

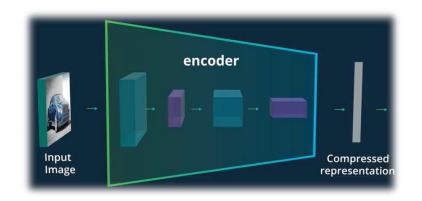
The key idea is called autoencoder



For applications involving image reconstruction:

1) Semantic segmentation, 2) noise removal, 3) image reconstruction, 4) style transfer etc.

The decoder process is trying to "reverse"

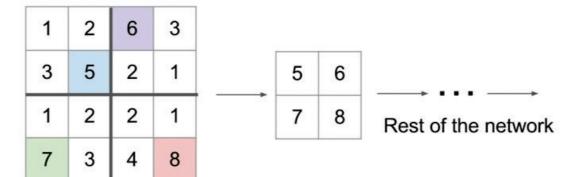


- In the encoding CNN part, we have convolutional layer and max polling layer
- In decoder, we somehow reverse the process:
 - "reverse" fully connected layer: still fully connected.
 - "reverse" max pooling: max unpooling
 - "reverse" convolution: transpose convolution

The max pooling and max unpooling

Max Pooling

Remember which element was max!



Max Unpooling

Use positions from pooling layer

1	2
3	4

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

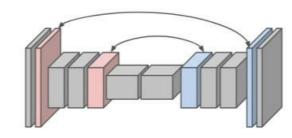
Input: 4 x 4

Output: 2 x 2

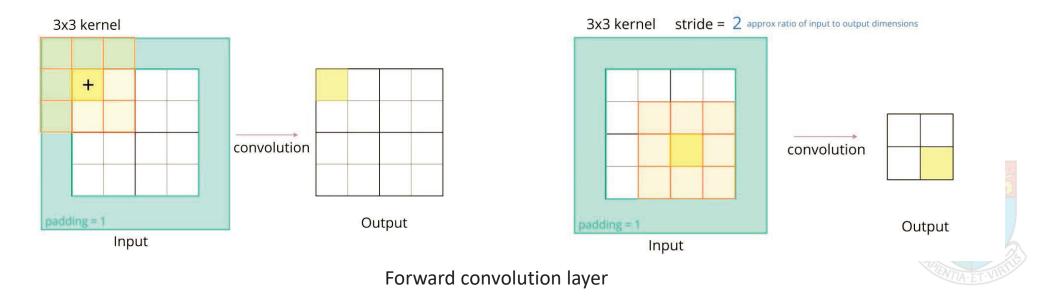
Input: 2 x 2

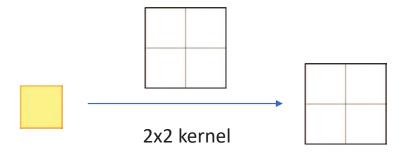
Output: 4 x 4

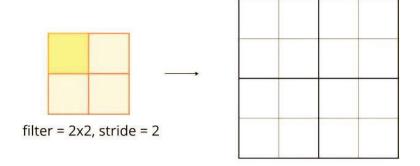
Corresponding pairs of downsampling and upsampling layers



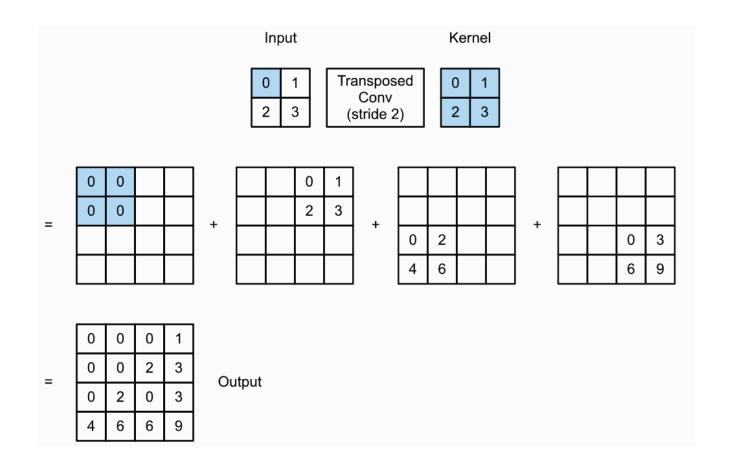
- How about the convolutional layers? How to reverse? --Transpose convolution
- Before transpose convolution, let's go over forward/normal convolution one more time.

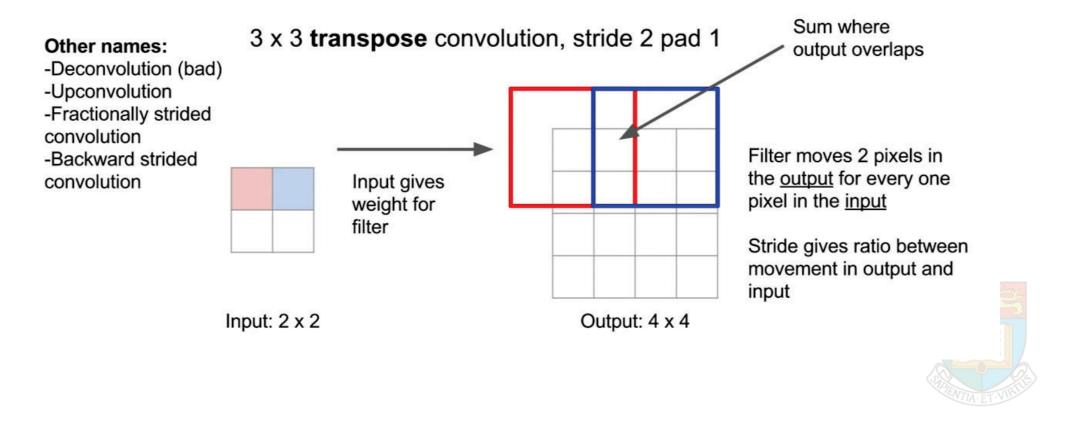




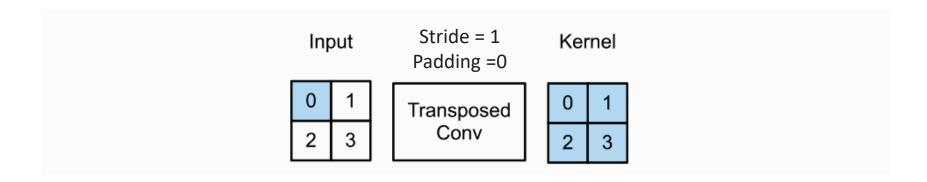


Usually we use filter = $2x^2$, stride = 2.

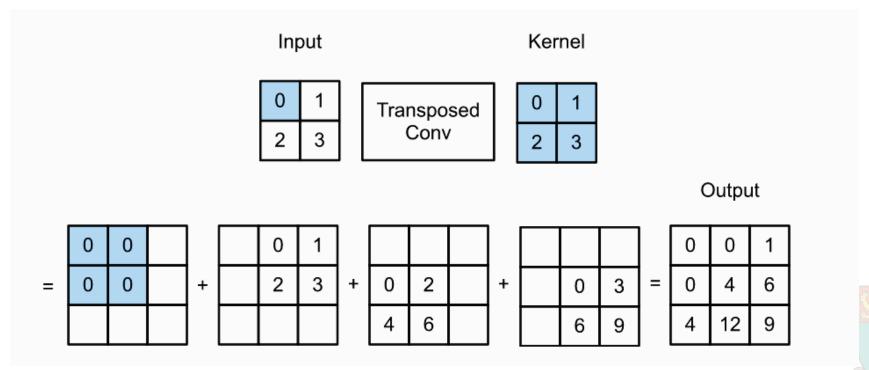




Quick question



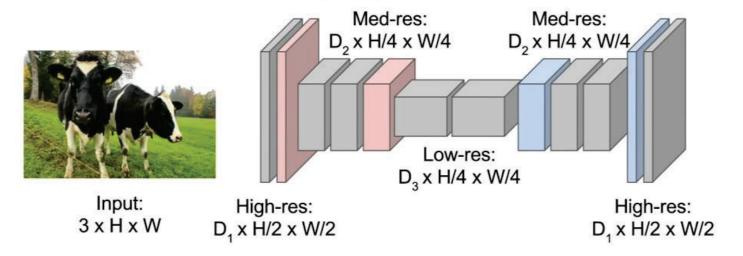
What is the output shape?

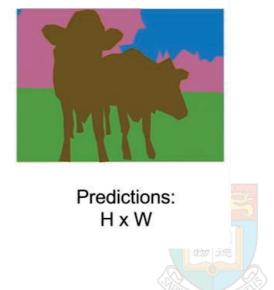


If overlapped, then sum

Semantic Segmentation

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!



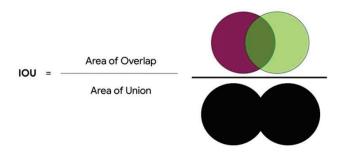


Famous Networks for Semantic Segmentation

- For demonstration:
 - Typically autoencoder CNN types of structures
 - CNN, AlexNet, VGG, ResNet, etc.
- Unet (Unet ++)
- DeepLab (DeepLab v3+)
- For 3D:
 - Point cloud: PointNet, ACNN
 - Video: Spatio-Temporal FCN
- Data labeling tools: https://github.com/heartexlabs/awesome-data-labeling

Evaluation Metric

loU



$$\mathsf{IoU} = \frac{\|A \cap B\|}{\|A \cup B\|}$$

• Dice score (different from Dice coefficient in the loss)

$$Dice(A, B) = \frac{2||A \cap B||}{||A|| + ||B||}$$

Evaluation Metric

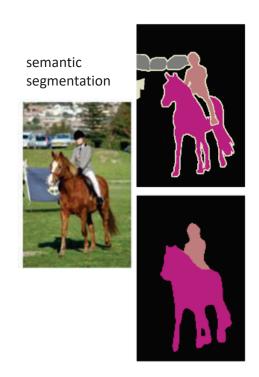
IOU Results

sky 0.8779669959482955 building 0.7570989578412737 column/pole 4.57875457665808e-10 road 0.915543155822588 side walk 0.7235628237658467 vegetation 0.7664541807647628 traffic light 3.0202657798187055e-05 fence 0.006380242448568188 vehicle 0.2950299461448835 pedestrian 0.0001264333276608086 byciclist 0.023621930993270864 void 0.16456276759816527

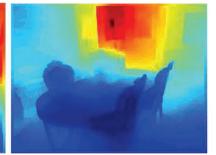
Dice Score Results

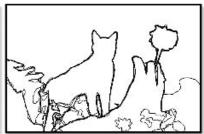
sky 0.9350185576821789 building 0.861760180856767 column/pole 9.15750915331616e-10 road 0.9559097147402678 side walk 0.8396129387346395 vegetation 0.8677883515092748 traffic light 6.040349126864078e-05 fence 0.012679586065167121 vehicle 0.45563416820437186 pedestrian 0.0002528346886971326 byciclist 0.04615362426586659 void 0.2826172572009191

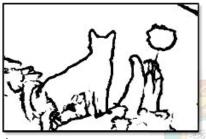
Other Applications of Autoencoder type network



monocular depth estimation (Liu et al. 2015)







boundary prediction (Xie & Tu 2015)

Others: change background, change clothes/dress, ...

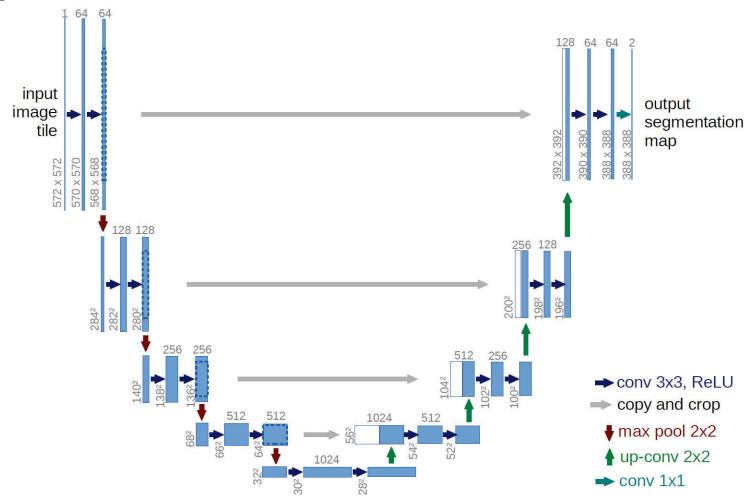
Quick Question

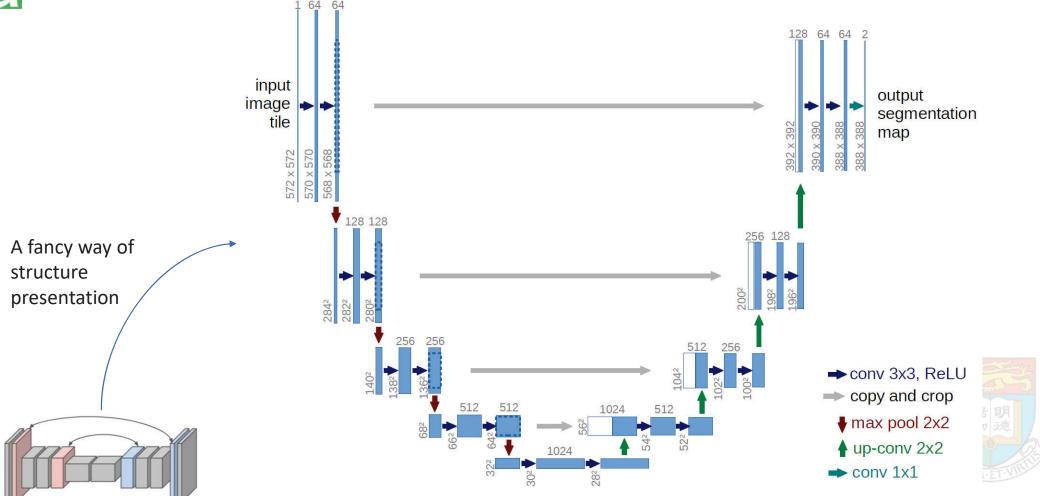
- Which is not a commonly seen technique/concept in semantic segmentation?
 - 1. Maxpooling
 - 2. Pixel wise output
 - 3. Upsampling
 - 4. Regional proposals

Why UNet

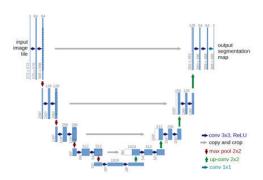
- The structure contains useful innovations in network design, which is helpful to take a look.
- Easy to understand
- Try to feel the flexibility in network design, and try to understand that why scholars design structures like this.

- The U-Net build upon the concept of FCN. Its architecture, similar to the above encoder-decoder architecture, can be divided into three parts:
 - The contracting or downsampling path consists of 4 blocks where each block applies two 3x3 convolution (+batch norm) followed by 2x2 max-pooling. The number of features maps are doubled at each pooling layer (after each block) as 64 -> 128 -> 256 and so on. (≈ encoding)
 - The horizontal bottleneck consists of two 3x3 convolution followed by 2x2 upconvolution.
 - The expanding or upsampling path, complimentary to the contracting path, also consists of 4 blocks, where each block consists of two 3x3 conv followed by 2x2 upsampling (transpose convolution). The number of features maps here are halved after every block. (≈ decoding)





- Contraction Phase
 - Reduce spatial dimension, but increases the "what."



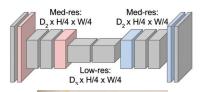
- Expansion Phase
 - Recovers object details and the dimensions, which is the "where."
- Concatenating feature maps from the Contraction phase helps the Expansion phase with recovering the "where" information.

Try to feel why scholars design structures like this

• Like a kid learns to draw an outer man picture

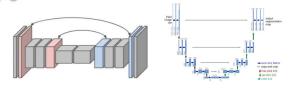
Classic model

The kid knows little but randomly learn to paint the colors



Autoencoder

Based on the encoder part, the kid at least knows he was drawing an outer man



UNet

The Concatenation of feature maps is like guiding the kid using outlines

Define a UNet in PyTorch

• https://amaarora.github.io/2020/09/13/unet.html

Demonstration

- Unet, Deeplabv3+
- Data preparation for semantic segmentation
- Custom training using DeepLabv3+
- Unet from scratch (should be no problem to understand):
- https://pyimagesearch.com/2021/11/08/u-net-training-image-segmentation-models-in-pytorch/
- A handy Semantic Segmentation toolbox:
- https://github.com/qubvel/segmentation models.pytorch
- If your project focus on street scenes (directly use deeplabv3+ or transfer learning your own):
- https://github.com/VainF/DeepLabV3Plus-Pytorch
- If you were a facebook/kaiming fan:
- https://github.com/facebookresearch/detectron2

