Week 3a:

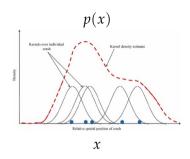
Linear models for regression and classification

G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk

Recap of previous lecture

- Application of Bayes' theorem to interpret results
 - · Classifiers, odds ratio for tests
- Probability density estimation
 - Non-parametric approach:
 histograms, kernel density estimation
 (smoothed-out histogram, density estimate in a
 region around each datapoint)
 - Parametric approach:
 assuming a distribution (often Gaussian),
 finding the best fit parameters
 usually mean, standard deviation
 (plus covariances if multi-dimensional)



Recap on instances and instance spaces

- Consider data to consist of a set of instances
 - an instance represents an object of interest
- Set of all possible instances is the instance space:
 - e.g., set of all email messages written in English
 - or, set of human faces

Notation

- We will denote the instance space by ${\mathcal X}$
- An individual **instance** will be denoted by *x*
- $x \in \mathcal{X}$

Labels and label spaces

- In supervised problems, each instance is associated with a known label. In unsupervised tasks the label is unknown.
- Set of all labels for a task is called the label space.

```
Class labels \mathcal{C} in classification tasks, e.g., \mathcal{C} = \{\text{frogs, badgers}\}\
Real numbers \subseteq \mathcal{R} in regression tasks, e.g., temperature
Cluster indices [0 \dots N_{\text{max}}] in clustering tasks
```

Notation

- We will denote an arbitrary label space by ${\mathcal Y}$
- Labelling function $f: \mathcal{X} \to \mathcal{Y}$ maps from instances to labels
- Label associated with a given instance x denoted by y = f(x)

Outline

- We'll introduce the regression task in some more detail and talk through some examples.
- We will define what a linear model is, and how it can be used for regression and classification.
- We'll analyse the assumptions of linear least squares regression models and understand its probabilistic interpretation.
- We'll relate regression back to probability density estimation.
- We'll see an algorithm for solving linear regression problems.

Regression

What is it and when might we use it?

- The regression task predicts a continuous output value, i.e., the label space $\mathcal{Y}\subseteq\mathbb{R}.$
- This can be applied to a wide variety of problems.
 - Today we're going to consider applications where prediction of y is our goal.
 - In the next lecture we'll talk briefly about other uses of regression.
- There are many possible models that have been used for regression
 - Today we'll talk about linear regression.
- Let's think about some example tasks, and contrast them with classification.

Example: the hiring problem

- Imagine we are a company looking to hire machine learning experts.
- Maybe all we have to account for is how well they did in the FoML course $\mathcal{X}\subseteq [0,1]$
- The classification problem is: do we hire? hiring approval = discrete output: $\mathcal{Y} = \{yes, no\}$
- A regression problem is: how much do we pay? annual salary (£ amount) = real-valued output: $\mathcal{Y} \subseteq \mathbb{R}^+$

How can we set up a model to predict this?

The training dataset

Input: x =	FoML Assessment mark	0.61
	Attendance rate in lectures	80%
	Attendance rate in labs	95%
	•••	

Hiring managers decide on salary:

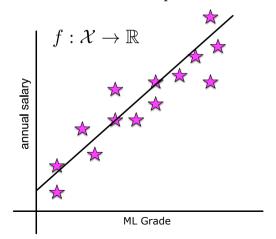
$$(\mathbf{x}^1, y^1), (\mathbf{x}^2, y^2), \dots, (\mathbf{x}^N, y^N)$$

 $y^n \in \mathbb{R}^+$ is the annual salary for applicant \mathbf{x}^n .

Linear regression tries to replicate that.

Modelling the relationship – simplified

- An applicant only has one feature: FoML grade
- What is the relationship between FoML grade and annual salary?
- What is our hypothesis about the relationship?



Hypothesis space

Hypothesis

The relationship is modelled by a straight line:

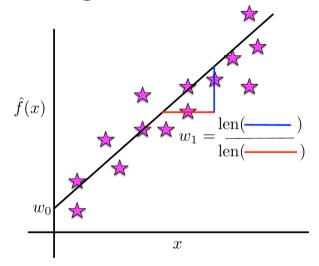
annual salary
$$pprox \hat{f}(ext{FoML Grade}) = w_0 + w_1 imes ext{FoML Grade}$$

- Why is this called linear regression?
 - The hypothesis space consists of straight lines
 - The model is linear in its parameters (w_0 and w_1)
- Linear classification implements:

hire decision
$$\approx \hat{f}(\text{FoML Grade}) = \text{sign}(w_0 + w_1 \times \text{FoML Grade})$$

- This is a binary classifier, predicting 1 or 0 for a given input.
- The classification boundary is perpendicular to the line given by w_0, w_1

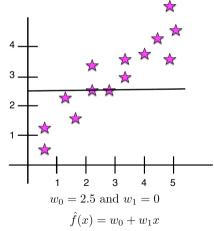
Fitting a line to data

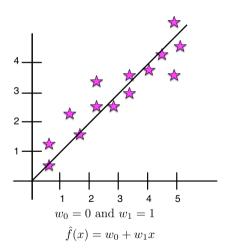


- Form a hypothesis: $\hat{f}(x) = w_0 + w_1 x$
- Need to choose the parameter values w₀ and w₁ to get best fit of line to training data
- Need to find some way of evaluating fit of line to data

Evaluating hypotheses

$$\hat{f}(x) = w_0 + w_1 x$$





Linear regression – more generally

Formalisation:

- Input: **x** (student application)
 - where **x** contains several variables this is multiple linear regression.
- Output: *y* (£ amount)
- Labelled data: $(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)$
- Target function: $f: \mathcal{X} \to \mathbb{R}^+$ (ideal annual salary formula)
- Hypothesis space:
 - Given applicant's features (FoML Grade, attendance rates, ...)
 - Find weights **w**: $y \approx \hat{f}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = \langle \mathbf{w}, \mathbf{x} \rangle$ with $x_0 = 1$ Why is $x_0 = 1$?

Offset for when x = 0, in this case minimum salary if you got 0% on the assignment and 0% attendance.

Matrix notation for linear regression

$$\hat{\mathbf{y}}^{n} = w_{0} \cdot 1 + \sum_{i=1}^{d} w_{i} x_{i}^{n} \rightarrow \hat{\mathbf{y}} = X \mathbf{w}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}^{1} \\ \hat{y}^{2} \\ \vdots \\ \hat{y}^{N} \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_{1}^{1} \dots x_{d}^{1} \\ 1 & x_{1}^{2} \dots x_{d}^{2} \\ \vdots \\ 1 & x_{1}^{N} \dots x_{d}^{N} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{d} \end{bmatrix}$$

Python:

ones = np.ones((data.shape[1],1)) # make a col of ones $X = np.concatenate([ones, data], axis=1) # concat left y_hat = np.matmul(X, w) # predict$

 $x_{\text{subscript: feature }i}^{\text{superscript: instance }n}$

Think Break

- I will give you a few minutes to reflect on what we've talked about.
- In this time, get some paper, and draw some simple examples of regression.
 - Try and identify what the parameters w_0 and w_1 are: what can you interpret them as in your example?
- Have a think if you can reinterpret it as a classification problem.

How to measure the error (cost function)

How well does $\hat{f}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ approximate our corresponding labelled data, y. In linear least squares regression, sometimes called ordinary least squares (OLS), we used squared error: $\frac{1}{2}(\hat{f}(\mathbf{x}) - y)^2$

residual error :
$$E_{\text{res}} = \frac{1}{2N} \sum_{n=1}^{N} (\hat{f}(\mathbf{x}^n) - y^n)^2$$

The residual error in matrix notation

$$E_{\text{res}} = \frac{1}{2N} \sum_{n=1}^{N} (\langle \mathbf{w}, \mathbf{x}^n \rangle - y^n)^2$$
$$= \frac{1}{2N} \|X\mathbf{w} - \mathbf{y}\|^2$$

Python:

```
ones = np.ones((data.shape[1],1)) # make a col of ones
X = np.concatenate([ones, data], axis=1) # concat left
y_hat = np.matmul(X, w) # predict
residual = y_hat - y
mse = np.mean(np.square(residual)) / 2
```

Question: Why do we use the squared error?

Gaussian error

- **Answer**: Gaussians, Gaussians, and Gaussians, . . .
- In a probabilistic sense, our prediction is a linear function of the data plus Gaussian noise:

$$y^n = \hat{f}(\mathbf{x}^n) + \epsilon_n; \ \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

Therefore

$$p(y^{n}|\mathbf{x}^{n}, \mathbf{w}) = \mathbf{Gaussian}(\hat{f}(\mathbf{x}^{n}), \sigma^{2})$$

 $\propto \exp(-\frac{1}{2\sigma^{2}}(\hat{f}(\mathbf{x}^{n}) - y^{n})^{2})$

 So the sum of squares maximises the log probability of the data under a Gaussian distribution.

Probabilistic output

- Linear regression gives us a forward model of the data, where we assume that there is some noise on our measurements.
- The simplest model assumes that the level, σ , of noise for all of our outputs is the same.
 - This is referred to as identically distributed or homoscedastic.
 - This can be quite limiting, as it assumes the same variance for small or large outputs.
- If our regression model predicts more than 1 output variable, this is called multivariate linear regression.
 - We usually assume that the errors the model makes for each output are independent.
- Overall, we generally assume our errors are i.i.d.

Learning in least squares regression

- We've defined our linear regression model as:
 ŷ = Xw, where X is our data stored in a matrix with an extra column of 1s, and w is a vector of weights that we need to choose.
- We've also defined our cost function as the squared error in our predictions: $\frac{1}{2N} \|X\mathbf{w} \mathbf{y}\|^2$, minimising this gives us better predictions.
- How do you think we could choose the best values for *w* to gives the smallest value for our cost function?

Learning in least squares linear regression: 1st approach

Minimising residual error E_{res}

$$E_{\text{res}} = \frac{1}{2N} \|X\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{2N} \langle X\mathbf{w} - \mathbf{y}, X\mathbf{w} - \mathbf{y} \rangle$$

Fact: At a minimum of E_{res} , the partial derivative of E_{res} with respect to the vector \mathbf{w} must be zero.

In scalar case of w:

$$\partial_w(xw-y)(xw-y)=2x(xw-y).$$

In vector case of w:

$$\nabla_{\mathbf{w}} \langle X\mathbf{w} - \mathbf{y}, X\mathbf{w} - \mathbf{y} \rangle = 2X^{\top} (X\mathbf{w} - \mathbf{y}).$$

Minimising residual error E_{res}

$$E_{\text{res}} = \frac{1}{2N} \|X\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{2N} \langle X\mathbf{w} - \mathbf{y}, X\mathbf{w} - \mathbf{y} \rangle$$

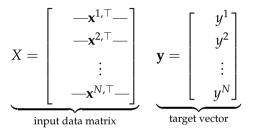
Fact: At a minimum of E_{res} , the partial derivative of E_{res} with respect to the vector \mathbf{w} must be zero.

$$\nabla_{\mathbf{w}} E_{\text{res}}(\mathbf{w}) = 0$$
$$\frac{1}{2N} \left(2X^{\top} (X\mathbf{w} - \mathbf{y}) \right) = 0$$
$$X^{\top} X \mathbf{w} - X^{\top} \mathbf{y} = 0$$
$$X^{\top} X \mathbf{w} = X^{\top} \mathbf{y}$$

$$\mathbf{w}^* = \underbrace{(X^\top X)^{-1} X^\top}_{\text{pseudo-inverse of } X := X^{\dagger}} \mathbf{y} = X^{\dagger} \mathbf{y}$$

The linear regression algorithm

1. Construct the matrix X and the vector \mathbf{y} from the data set $(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)$ as follows



- 2. Compute the pseudo-inverse $X^{\dagger} = (X^{\top}X)^{-1}X^{\top}$
- 3. Return $\mathbf{w} = X^{\dagger} \mathbf{y}$

Fitting with pseudo-inverse in Python

```
ones = np.ones((data.shape[1],1)) # make a col of ones
X = np.concatenate([ones, data], axis=1) # concat left
w_hat = np.matmul(np.linalg.pinv(X), y) # fit
y_hat = np.matmul(X, w_hat) # predict
```


Summary and outlook

Today we've:

- Talked about the regression task in more detail, and how it's different from classification.
- We've described what linear models are, and how they can be used for both tasks.
- We've talked about the assumptions of linear least squares regression, and how we can interpret the output as the predicted probability of an observation.
- $\bullet\,$ We've seen how to minimise the residual error using the pseudo-inverse.

Next lecture:

- Another approach for fitting regression models to data.
- How to manipulate data to match our assumptions.
- Other ways that regression can be used.

