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Recap of previous lecture

 Application of Bayes’ theorem to interpret results
o Classifiers, odds ratio for tests

 Probability density estimation

* Non-parametric approach:
histograms, kernel density estimation
(smoothed-out histogram, density estimate in a
region around each datapoint)

» Parametric approach:
assuming a distribution (often Gaussian),
finding the best fit parameters
- usually mean, standard deviation
(plus covariances if multi-dimensional)
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Recap on instances and instance spaces

« Consider data to consist of a set of instances
« an instance represents an object of interest

« Set of all possible instances is the instance space:

« e.g, set of all email messages written in English
o or, set of human faces

« We will denote the instance space by X
+ Anindividual instance will be denoted by x
cx€eX
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Labels and label spaces

« In supervised problems, each instance is associated with a known label.
In unsupervised tasks the label is unknown.
« Set of all labels for a task is called the label space.

Class labels C in classification tasks, e.g., C = {frogs, badgers}
Real numbers C R in regression tasks, e.g., temperature
Cluster indices [0... Npax| in clustering tasks

« We will denote an arbitrary label space by V
+ Labelling function f : X — ) maps from instances to labels
« Label associated with a given instance x denoted by y = f(x)
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Outline
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We'll introduce the regression task in some more detail and talk through some
examples.

We will define what a linear model is, and how it can be used for regression and
classification.

We'll analyse the assumptions of linear least squares regression models and
understand its probabilistic interpretation.

We'll relate regression back to probability density estimation.

We'll see an algorithm for solving linear regression problems.
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Regression

What is it and when might we use it?
+ The regression task predicts a continuous output value,
i.e., the label space V) C R.

+ This can be applied to a wide variety of problems.

» Today we’re going to consider applications where prediction of y is our goal.
« In the next lecture we’ll talk briefly about other uses of regression.

+ There are many possible models that have been used for regression
» Today we’ll talk about linear regression.

« Let’s think about some example tasks, and contrast them with classification.
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Example: the hiring problem

+ Imagine we are a company looking to hire machine learning experts.

Maybe all we have to account for is how well they did in the FOML course
X C[0,1]

+ The classification problem is: do we hire?
hiring approval = discrete output: Y = {yes, no}

+ Aregression problem is: how much do we pay?
annual salary (£ amount) = real-valued output: ) C R*

How can we set up a model to predict this?
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The training dataset

Input: x =

FoML Assessment mark 0.61
Attendance rate in lectures | 80%
Attendance rate in labs 95%

Hiring managers decide on salary:

(1), (& yP), - (x

y" € R is the annual salary for applicant x".

Linear regression tries to replicate that.
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Modelling the relationship — simplified
« An applicant only has one feature: FOML grade

« What is the relationship between FOML grade and annual salary?

« What is our hypothesis about the relationship?
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Hypothesis space

The relationship is modelled by a straight line:

annual salary ~ f(FoML Grade) = wy + w; x FOML Grade

« Why is this called linear regression?
 The hypothesis space consists of straight lines
e The model is linear in its parameters (wg and wy)

+ Linear classification implements:
hire decision ~ f(FoML Grade) = sign(wy + w; x FOML Grade)
« This is a binary classifier, predicting 1 or 0 for a given input.
o The classification boundary is perpendicular to the line given by wy, w; IE
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Fitting a line to data

 Form a hypothesis:
f(x) = wo +wix

+ Need to choose the parameter
values wy and w; to get best fit of
line to training data

+ Need to find some way of
evaluating fit of line to data
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Evaluating hypotheses
f(x) = wo+ wyx

¥
ol *** ol *
e Y Y " e
34— * 3_1_ *
T E | *
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| | | | | | | | | |
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wo = 2.5 and w; =0 wy =0 and wy; =1

F(@) = wo + wrz F(@) = wo + iz US
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Linear regression — more generally
Formalisation:
« Input: x (student application)
» where x contains several variables this is multiple linear regression.

Output: y (£ amount)
Labelled data: (x!,y'),..., (XN, yVN)
Target function: f : X — R™ (ideal annual salary formula)
« Hypothesis space:
» Given applicant’s features (FOML Grade, attendance rates, .. .)
« Find weights w: y ~ f(x) = Y7, w;x; = (w,x) with xg = 1
Why is xg = 1?
Offset for when x = 0, in this case minimum salary if you got 0% on the assignment

and 0% attendance.
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Matrix notation for linear regression

d
P'=wo-1+) wix] — §=Xw
i—1

7! 1 xj...x} wo
72 2 2
X v 1 x7...x5 w1
y: X: W —=
N 1 x.xl wy

d+1 features
superscript: instance n

Python: subscript: feature i
ones = np.ones((data.shape[1],1)) # make a col of omnes
X = np.concatenate ([ones, data], axis=1) # concat left 119
y-hat = np.matmul(X, w) # predict
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Think Break

« I'will give you a few minutes to reflect on what we’ve talked about.
+ In this time, get some paper, and draw some simple examples of regression.
» Try and identify what the parameters wy and w, are: what can you interpret them as
in your example?

+ Have a think if you can reinterpret it as a classification problem.
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How to measure the error (cost function)

How well does f(x) = (w,x) approximate our corresponding labelled data, y.

In linear least squares regression, sometimes called ordianry least squares (OLS),

we used squared error: %(f(x) — y)2

. 1 N £ron n\2
residual error : Eyes = N ;1( F(x") —y")

n
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The residual error in matrix notation

Python:

ones = np.ones ((data.shape[1],1)) # make a col of omnes
X = np.concatenate ([ones, data], axis=1) # concat left
y-hat = np.matmul(X, w) # predict

residual = y_hat - y

mse = np.mean(np.square(residual)) / 2

Question: Why do we use the squared error?
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Gaussian error
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Answer: Gaussians, Gaussians, and Gaussians, . . .

In a probabilistic sense, our prediction is a linear function of the data plus
Gaussian noise:

y' = f(xX") + €4 €4 ~ N(0,02)

Therefore

p(y"|x",w) = Gaussian(f(x"),c?)
o exp(— 5 (FX') —y')?)

So the sum of squares maximises the log probability of the data under a
Gaussian distribution.

UsS

UNIVERSITY
OF SUSSEX



Probabilistic output

19/26

Linear regression gives us a forward model of the data, where we assume that
there is some noise on our measurements.

The simplest model assumes that the level, o, of noise for all of our outputs is the
same.

« This is referred to as identically distributed or homoscedastic.
¢ This can be quite limiting, as it assumes the same variance for small or large outputs.

If our regression model predicts more than 1 output variable, this is called
multivariate linear regression.

» We usually assume that the errors the model makes for each output are
independent.

Overall, we generally assume our errors are i.i.d.
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Learning in least squares regression

« We’ve defined our linear regression model as:
y = Xw, where X is our data stored in a matrix with an extra column of 1s, and w
is a vector of weights that we need to choose.

« We’ve also defined our cost function as the squared error in our predictions:
o5 || Xw — y||%>, minimising this gives us better predictions.

« How do you think we could choose the best values for w to gives the smallest
value for our cost function?
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Learning in least squares linear regression: 1st approach

UsS

UNIVERSITY
OF SUSSEX
21/26



Minimising residual error E,s

1 2
Eres—ﬁHXW_YH XW—Y/XW_Y>

:ﬁ<

Fact: At a minimum of E,, the partial derivative of E,cs with respect to the vector w
must be zero.
In scalar case of w:

9w (xw —y) (xw —y) = 2x(xw — y).
In vector case of w:

Vw (Xw —y, Xw —y) =2X" (Xw —y).
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Minimising residual error E,s
1
Eres = ZN | Xw _Y||2 N (Xw —y, Xw —y)

Fact: At a minimum of E,s, the partial derivative of E,es with respect to the vector w
must be zero.

VwEres(W) = 0
Z;\f (X" (xw—y)) =0

X"Xw—-X"y=0

X' Xw=X'y
wi= (X'X)'X"y=X"y [8\)
—————
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The linear regression algorithm

1. Construct the matrix X and the vector y from the data set (x,y'),..., (x",yN) as

follows
Xl,T yl
XZ,T yQ
—xN.T yN
input data matrix target vector

2. Compute the pseudo-inverse X* = (X' X)"1XT
3. Returnw = X'y
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Fitting with pseudo-inverse in Python

ones = np.ones((data.shape[1],1)) # make a col of omnes
X = np.concatenate ([ones, data], axis=1) # concat left
w_hat = np.matmul(np.linalg.pinv(X), y) # fit

y-hat = np.matmul(X, w_hat) # predict
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Summary and outlook

Today we've:
« Talked about the regression task in more detail, and how it’s different from
classification.
+ We've described what linear models are, and how they can be used for both tasks.
+ We've talked about the assumptions of linear least squares regression, and how
we can interpret the output as the predicted probability of an observation.
« We've seen how to minimise the residual error using the pseudo-inverse.

Next lecture:
+ Another approach for fitting regression models to data.
« How to manipulate data to match our assumptions.
+ Other ways that regression can be used.

UsS

UNIVERSITY
OF SUSSEX

26/26



