
Week 3a:

Linear models
for regression and classification

G6061: Fundamentals of Machine Learning [23/24]

Dr. Johanna Senk

Recap of previous lecture
• Application of Bayes’ theorem to interpret results

• Classifiers, odds ratio for tests

• Probability density estimation
• Non-parametric approach:

histograms, kernel density estimation
(smoothed-out histogram, density estimate in a
region around each datapoint)

• Parametric approach:
assuming a distribution (often Gaussian),
finding the best fit parameters
- usually mean, standard deviation
(plus covariances if multi-dimensional)

p(x)

x

2 / 26

Recap on instances and instance spaces
• Consider data to consist of a set of instances

• an instance represents an object of interest
• Set of all possible instances is the instance space:

• e.g., set of all email messages written in English
• or, set of human faces

Notation

• We will denote the instance space by X
• An individual instance will be denoted by x
• x ∈ X

3 / 26

Labels and label spaces
• In supervised problems, each instance is associated with a known label.

In unsupervised tasks the label is unknown.
• Set of all labels for a task is called the label space.

Class labels C in classification tasks, e.g., C = {frogs, badgers}
Real numbers ⊆ R in regression tasks, e.g., temperature
Cluster indices [0 . . . Nmax] in clustering tasks

Notation

• We will denote an arbitrary label space by Y
• Labelling function f : X → Y maps from instances to labels
• Label associated with a given instance x denoted by y = f (x)

4 / 26

Outline

• We’ll introduce the regression task in some more detail and talk through some
examples.

• We will define what a linear model is, and how it can be used for regression and
classification.

• We’ll analyse the assumptions of linear least squares regression models and
understand its probabilistic interpretation.

• We’ll relate regression back to probability density estimation.
• We’ll see an algorithm for solving linear regression problems.

5 / 26

Regression
What is it and when might we use it?

• The regression task predicts a continuous output value,
i.e., the label space Y ⊆ R.

• This can be applied to a wide variety of problems.
• Today we’re going to consider applications where prediction of y is our goal.
• In the next lecture we’ll talk briefly about other uses of regression.

• There are many possible models that have been used for regression
• Today we’ll talk about linear regression.

• Let’s think about some example tasks, and contrast them with classification.

6 / 26

Example: the hiring problem
• Imagine we are a company looking to hire machine learning experts.
• Maybe all we have to account for is how well they did in the FoML course
X ⊆ [0, 1]

• The classification problem is: do we hire?
hiring approval = discrete output: Y = {yes, no}

• A regression problem is: how much do we pay?
annual salary (£ amount) = real-valued output: Y ⊆ R+

How can we set up a model to predict this?

7 / 26

The training dataset

Input: x =

FoML Assessment mark 0.61
Attendance rate in lectures 80%

Attendance rate in labs 95%
.

Hiring managers decide on salary:

(x1, y1), (x2, y2), . . . , (xN , yN)

yn ∈ R+ is the annual salary for applicant xn.

Linear regression tries to replicate that.

8 / 26

Modelling the relationship – simplified
• An applicant only has one feature: FoML grade
• What is the relationship between FoML grade and annual salary?
• What is our hypothesis about the relationship?

ML Grade
9 / 26

Hypothesis space
Hypothesis

The relationship is modelled by a straight line:

annual salary ≈ f̂ (FoML Grade) = w0 + w1 × FoML Grade

• Why is this called linear regression?
• The hypothesis space consists of straight lines
• The model is linear in its parameters (w0 and w1)

• Linear classification implements:
hire decision ≈ f̂ (FoML Grade) = sign(w0 + w1 × FoML Grade)

• This is a binary classifier, predicting 1 or 0 for a given input.
• The classification boundary is perpendicular to the line given by w0, w1

10 / 26

Fitting a line to data
• Form a hypothesis:

f̂ (x) = w0 + w1x
• Need to choose the parameter

values w0 and w1 to get best fit of
line to training data

• Need to find some way of
evaluating fit of line to data

11 / 26

Evaluating hypotheses
f̂ (x) = w0 + w1x

12 / 26

Linear regression – more generally
Formalisation:

• Input: x (student application)
• where x contains several variables this is multiple linear regression.

• Output: y (£ amount)
• Labelled data: (x1, y1), . . . , (xN , yN)

• Target function: f : X → R+ (ideal annual salary formula)
• Hypothesis space:

• Given applicant’s features (FoML Grade, attendance rates, . . .)
• Find weights w: y ≈ f̂ (x) = ∑d

i=0 wixi = ⟨w, x⟩ with x0 = 1
Why is x0 = 1?
Offset for when x = 0, in this case minimum salary if you got 0% on the assignment
and 0% attendance.

13 / 26

Matrix notation for linear regression

ŷn = w0 · 1 +
d

∑
i=1

wixn
i → ŷ = Xw

ŷ =


ŷ1

ŷ2

...

ŷN

 X =


1 x1

1 . . . x1
d

1 x2
1 . . . x2

d
...

1 xN
1 . . . xN

d


︸ ︷︷ ︸

d+1 features

w =


w0

w1

...

wd



Python: xsuperscript: instance n
subscript: feature i

ones = np . ones ((data . shape [1] , 1)) # make a c o l o f one s
X = np . concatenate ([ones , data] , a x i s =1) # c o n c a t l e f t
y hat = np . matmul (X , w) # p r e d i c t

14 / 26

Think Break

• I will give you a few minutes to reflect on what we’ve talked about.
• In this time, get some paper, and draw some simple examples of regression.

• Try and identify what the parameters w0 and w1 are: what can you interpret them as
in your example?

• Have a think if you can reinterpret it as a classification problem.

15 / 26

How to measure the error (cost function)

How well does f̂ (x) = ⟨w, x⟩ approximate our corresponding labelled data, y.
In linear least squares regression, sometimes called ordianry least squares (OLS),
we used squared error: 1

2 (f̂ (x)− y)2

residual error : Eres =
1

2N

N

∑
n=1

(f̂ (xn)− yn)2

16 / 26

The residual error in matrix notation

Eres =
1

2N

N

∑
n=1

(⟨w, xn⟩ − yn)2

=
1

2N
∥Xw − y∥2

Python:
ones = np . ones ((data . shape [1] , 1)) # make a c o l o f one s
X = np . concatenate ([ones , data] , a x i s =1) # c o n c a t l e f t
y hat = np . matmul (X , w) # p r e d i c t
r e s i d u a l = y hat − y
mse = np . mean(np . square (r e s i d u a l)) / 2

Question: Why do we use the squared error?

17 / 26

Gaussian error
• Answer: Gaussians, Gaussians, and Gaussians, . . .
• In a probabilistic sense, our prediction is a linear function of the data plus

Gaussian noise:
yn = f̂ (xn) + ϵn; ϵn ∼ N (0, σ2)

• Therefore

p(yn|xn, w) = Gaussian(f̂ (xn), σ2)

∝ exp(− 1
2σ2 (f̂ (xn)− yn)2)

• So the sum of squares maximises the log probability of the data under a
Gaussian distribution.

18 / 26

Probabilistic output
• Linear regression gives us a forward model of the data, where we assume that

there is some noise on our measurements.
• The simplest model assumes that the level, σ, of noise for all of our outputs is the

same.
• This is referred to as identically distributed or homoscedastic.
• This can be quite limiting, as it assumes the same variance for small or large outputs.

• If our regression model predicts more than 1 output variable, this is called
multivariate linear regression.

• We usually assume that the errors the model makes for each output are
independent.

• Overall, we generally assume our errors are i.i.d.

19 / 26

Learning in least squares regression

• We’ve defined our linear regression model as:
ŷ = Xw, where X is our data stored in a matrix with an extra column of 1s, and w
is a vector of weights that we need to choose.

• We’ve also defined our cost function as the squared error in our predictions:
1

2N ∥Xw − y∥2, minimising this gives us better predictions.
• How do you think we could choose the best values for w to gives the smallest

value for our cost function?

20 / 26

Learning in least squares linear regression: 1st approach

21 / 26

Minimising residual error Eres

Eres =
1

2N
∥Xw − y∥2 =

1
2N

⟨Xw − y, Xw − y⟩

Fact: At a minimum of Eres, the partial derivative of Eres with respect to the vector w
must be zero.
In scalar case of w:

∂w(xw − y)(xw − y) = 2x(xw − y).

In vector case of w:

∇w ⟨Xw − y, Xw − y⟩ = 2X⊤(Xw − y).

22 / 26

Minimising residual error Eres

Eres =
1

2N
∥Xw − y∥2 =

1
2N

⟨Xw − y, Xw − y⟩

Fact: At a minimum of Eres, the partial derivative of Eres with respect to the vector w
must be zero.

∇wEres(w) = 0
1

���2N

(
���2X⊤(Xw − y)

)
= 0

X⊤Xw − X⊤y = 0

X⊤Xw = X⊤y

w∗ = (X⊤X)−1X⊤︸ ︷︷ ︸
pseudo-inverse of X:=X†

y = X†y

23 / 26

The linear regression algorithm
1. Construct the matrix X and the vector y from the data set (x1, y1), . . . , (xN , yN) as

follows

X =


x1,⊤

x2,⊤

...

xN,⊤


︸ ︷︷ ︸

input data matrix

y =


y1

y2

...

yN


︸ ︷︷ ︸

target vector

2. Compute the pseudo-inverse X† = (X⊤X)−1X⊤

3. Return w = X†y

24 / 26

Fitting with pseudo-inverse in Python

ones = np . ones ((data . shape [1] , 1)) # make a c o l o f one s
X = np . concatenate ([ones , data] , a x i s =1) # c o n c a t l e f t
w hat = np . matmul (np . l i n a l g . pinv (X) , y) # f i t
y hat = np . matmul (X , w hat) # p r e d i c t

25 / 26

Summary and outlook
Today we’ve:

• Talked about the regression task in more detail, and how it’s different from
classification.

• We’ve described what linear models are, and how they can be used for both tasks.
• We’ve talked about the assumptions of linear least squares regression, and how

we can interpret the output as the predicted probability of an observation.
• We’ve seen how to minimise the residual error using the pseudo-inverse.

Next lecture:
• Another approach for fitting regression models to data.
• How to manipulate data to match our assumptions.
• Other ways that regression can be used.

26 / 26

