
ENGG1330 Computer Programming I Assignment 1

 1

ENGG1330 Computer Programming I (22-23 Sem 2)
Assignment 1

Least Recently Used (LRU) Cache

Due date: noon, 17-MAR-2023 (Friday)
Late submission: 20% deduction per day

Coverage: Only Python libraries/features covered in this course up to and including Array
(List). Using other libraries, non-built-in functions, and features (e.g., dictionary, set) is not
allowed and you will be given zero marks. If you are unsure, feel free to contact us for
clarification.

Grading: Evaluated against a set of private test cases on VPLs. While programming style is not
graded, you are highly recommended to use function to factor your program and write clear
and tidy codes, e.g., appropriate comments, concise and clear naming, appropriate spacing.

Introduction

You are having a technical interview for a software engineer internship at EEE Limited.
You are asked to implement a least recently used (LRU) cache in Python. The interviewers
know that you may be unfamiliar with LRU cache, so they also give you a description of LRU
cache as follows.

 A cache in programming is used to store data so that future requests for the data can
be served faster. A data item in cache is stored as a key-value pair [key, value], where key is a
unique identifier that identifies the data item and value is the data item to be stored. For
example, after computing total marks of students, a cache can be used to store the total
marks by using student ID as the key and his/her total mark as the value. As a result, a request
for a student’s total mark can be directly retrieved from the cache instead of re-computing it
to reduce the computational time. However, since the cache also occupies storage/memory,
its capacity is limited. When the cache is full, an existing item must be swapped out when a
new item needs to be stored.

A LRU cache is a special kind of cache that defines the way of evicting item from the
cache when it is full. Its policy is to evict the least recently used item. For example, a cache
having capacity of 4 and is currently storing [[1, '101'], [2, '102'], [3, '103'], [4, '104']], where
the 1st (leftmost) item [1, '101'] is the least recently used and the last (rightmost) item [4,
'104'] is the most recently used. When the item [2, '102'] is accessed, the cache becomes [[1,
'101'], [3, '103'], [4, '104'], [2, '102']] as the item [2, '102'] becomes the most recently used.
When another item [10, '110'] is pushed into the cache, the cache cannot hold all of the items
and must evict the least recently used item which is [1, '101'] and the cache becomes [[3,
'103'], [4, '104'], [2, '102'], [10, '110']].

ENGG1330 Computer Programming I Assignment 1

 2

Level 1 (25%)
Your program will receive the capacity of the cache, a list of keys and a list of values

as the inputs. You are then required to combine the keys and values to initialize a cache as a
list of key-value pairs as follows and each key-value pair is stored as a sub-list of length 2.

![𝐾1, 𝑉1], [𝐾2, 𝑉2], …	[𝐾𝑛, 𝑉𝑛],, 𝑤ℎ𝑒𝑟𝑒	𝑛	𝑖𝑠	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑖𝑡𝑒𝑚𝑠

Requirements:

1. Keys must be stored as integers.
2. Values must be stored as strings.
3. If the numbers of keys and values are different, prints “Warning: number of keys and

values are not the same" and outputs an empty cache.
4. If the cache capacity is larger than or equal to the number of data items, stores all the

data items in the cache. The order of data items stored in the cache must be the same
as the order of the input key-value pairs.

5. If the cache capacity is smaller than the number of data items, keeps only those that
are near the end of the inputs (right) up to the capacity. For example, if capacity is 3,
keys = [1,2,3,4,5] and values = [-1,-2,-3,-4,-5], cache = [[3, '-3'], [4, '-4'], [5, '-5']].

Inputs:

1. Capacity of the cache 𝐶 (integer). 𝐶 = -1 means that the cache has unlimited capacity.
2. A string of integral keys K1, K2, …, KNk separated by “,” where 𝑁! is number of keys.
3. A string of values V1, V2, …, VNv separated by “,” where 𝑁" is number of values.

Outputs:

1. Warning message if 𝑁! 	¹	𝑁".
2. Cache as a list with format ![𝐾1, 𝑉1], [𝐾2, 𝑉2], …	[𝐾𝑛, 𝑉𝑛],.

Assumptions:

• 1 ≤ 𝐶 ≤ 1000	𝑜𝑟	𝐶 = −1
• 1 ≤ 𝑁! , 𝑁" ≤ 1000
• Input keys can be converted to integers
• Input keys are unique, no duplicates
• Input values are non-null string

Hints:

• You can use “A_STRING”.split(“,”) to split a string separated by a comma “,” into a
list of strings, e.g., “1,2,3”.split(“,”) à [“1”, “2”, “3”]
https://docs.python.org/3/library/stdtypes.html#str.split

Examples:

Case Sample input Sample output
1 -1

1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110

[[1, '101'], [2, '102'], [3, '103'], [4,
'104'], [5, '105'], [6, '106'], [7,
'107'], [8, '108'], [9, '109'], [10,
'110']]

ENGG1330 Computer Programming I Assignment 1

 3

2 3
1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110

[[8, '108'], [9, '109'], [10, '110']]

3 6
9,10
101,102,103,104,105,106,107,108,109,110

Warning: number of keys and
values are not the same
[]

4 6
9,10
109,110

[[9, '109'], [10, '110']]

Level 2 (45%)

Next, you are going to implement two main functions, get(key) and put(key, value) to
access a data item in the cache. The get(key) function retrieves the value of the data item
given by the key parameter if the key exists in the cache. The put(key, value) function modifies
the value of the data item, if the key exists, or inserts a new data item, if the key does not
exist.

The ordering of data items in the cache must conform to the description in the
Introduction, i.e., the 1st (leftmost) item is the least recently used while the last (rightmost)
item is the most recently used. Every time a data item is accessed, whether using get or put,
the data item has to be moved to the end (rightmost) of the cache to become the most
recently used item. When a new data item is inserted to a full cache, the least recently used
(leftmost) item needs to be evicted.

For example, given a cache of capacity 5: [[1,'100'], [2,'200'], [3,'300'], [4,'400']], the
cache contents will be updated as follows.

1. get(3) à [[1,'100'], [2,'200'], [4,'400'], [3,'300']]
2. put(2,’6’) à [[1,'100'], [4,'400'], [3,'300'], [2,'6']]
3. put(10,’-1’) à [[1,'100'], [4,'400'], [3,'300'], [2,'6'], [10,'-1']]
4. put(100,’-5’) à [[4,'400'], [3,'300'], [2,'6'], [10,'-1'], [100,'-5']]

In addition to the inputs you received from Level 1, you will also receive a list of

commands. “get,KEY” denotes the get operation with key KEY and “put,KEY,VALUE” denotes
the put operation with key KEY and value VALUE. Get operation prints the value of the key-
value pair if the key exists, otherwise prints “NULL”. Put operation does not need to print
anything. The command “end” denotes the end of the inputs and you should then print the
final contents of the cache.

Inputs:

1. Capacity of the cache 𝐶 (integer). 𝐶 = -1 means that the cache has unlimited capacity.
2. A string of integral keys K1, K2, …, KNk separated by “,” where 𝑁! is number of keys.
3. A string of values V1, V2, …, VNv separated by “,” where 𝑁" is number of values.
4. A series of commands consisting of either “get,KEY” or “put,KEY,VALUE” separated by

a newline character.
5. The input must be ended with “end”.

ENGG1330 Computer Programming I Assignment 1

 4

Outputs:
1. Warning message if 𝑁! 	¹	𝑁".
2. For every get operation, print the value of the key-value pair if the key exists,

otherwise print “NULL”.
3. Cache as a list with format ![𝐾1, 𝑉1], [𝐾2, 𝑉2], …	[𝐾𝑛, 𝑉𝑛], with the 1st (leftmost)

item being the least recently used while the last (rightmost) item being the most
recently used.

Assumptions:

• 1 ≤ 𝐶 ≤ 1000	𝑜𝑟	𝐶 = −1
• 1 ≤ 𝑁! , 𝑁" ≤ 1000
• Input keys can be converted to integers
• Input keys are unique, no duplicates
• Input values are non-null string
• None of the values will be equal to “NULL”

Examples:

Case Sample input Sample output
1 -1

1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110
get,3
get,6
get,1
get,100
get,5
end

103
106
101
NULL
105
[[2, '102'], [4, '104'], [7, '107'], [8,
'108'], [9, '109'], [10, '110'], [3,
'103'], [6, '106'], [1, '101'], [5,
'105']]

2 3
1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110
get,1
get,2
get,3
get,10
get,9
end

NULL
NULL
NULL
110
109
[[8, '108'], [10, '110'], [9, '109']]

3 6
9,10
101,102,103,104,105,106,107,108,109,110
get,9
put,1,100
put,2,200
put,3,300
get,10
get,2
put,4,400
put,5,500

Warning: number of keys and
values are not the same
NULL
NULL
200
NULL
200
[[4, '400'], [5, '500'], [6, '600'], [1,
'10000'], [7, '700'], [2, '200']]

ENGG1330 Computer Programming I Assignment 1

 5

put,6,600
put,1,10000
put,7,700
get,3
get,2
end

Level 3 (30%)

After passing all the tests in Level 2, the interviewers proceed to ask a follow-up
question to truly test your ability in programming and problem solving. They tell you that it is
computationally expensive to move the most recently used item to the end of the list in order
to conform to the description in the Introduction, i.e., the 1st (leftmost) item is the least
recently used while the last (rightmost) item is the most recently used. It is because all the
subsequent items need to be moved to the left by 1. For example, the steps of moving 2 in
[1,2,3,4] to the end of the list is [1,2,3,4] à [1,3,3,4] à [1,3,4,4] à [1,3,4,2]. As a result,
moving item to the end of a list should be avoided if possible.

The follow-up question is whether you can implement a solution without the need of
moving items in the cache once they are inserted. Specifically, when accessing an item, NO
movement should be made to any item but you are allowed to modify the item. When adding
a new item to the list, it should be added to the end of the list if the cache is not full. Otherwise,
the least recently used item is REPLACED by the new item and NO movement of other items
are allowed. For example, given a cache of capacity 4: [[1,’100’], [2,’200’], [3,’300’]], the cache
contents will be updated as follows.

1. get(2) à [[1,’100’], [2,’200’], [3,’300’]]
2. put(4,’400’) à [[1,’100’], [2,’200’], [3,’300’], [4,’400’]]
3. get(1) à [[1,’100’], [2,’200’], [3,’300’], [4,’400’]]
4. put(5,’500’) à [[1,’100’], [2,’200’], [5,’500’], [4,’400’]]

As a result, there is NO limitation on how you are going to store the data. However,
ONLY one list can be created and used for the cache and no other auxiliary list is allowed.

Note:
The test cases on VPL will be time limited. If you see timeout on VPL, it means your program
is too slow and need further optimization. Nested loops are usually the most expensive
operations and it is a good starting point for optimization.

Inputs:

1. Capacity of the cache 𝐶 (integer). 𝐶 = -1 means that the cache has unlimited capacity.
2. A string of integral keys K1, K2, …, KNk separated by “,” where 𝑁! is number of keys.
3. A string of values V1, V2, …, VNv separated by “,” where 𝑁" is number of values.
4. A series of commands consisting of either “get,KEY” or “put,KEY,VALUE” separated by

a newline character.
5. The input must be ended with “end”.

ENGG1330 Computer Programming I Assignment 1

 6

Outputs:
1. Warning message if 𝑁! 	¹	𝑁".
2. For every get operation, print the value of the key-value pair if the key exists,

otherwise print “NULL”.
3. Cache as a list with format ![𝐾1, 𝑉1], [𝐾2, 𝑉2], …	[𝐾𝑛, 𝑉𝑛], where the ordering is no

longer based on recent usage but follows the specs listed in the question.

Assumptions:

• 1 ≤ 𝐶 ≤ 10000	𝑜𝑟	𝐶 = −1
• 1 ≤ 𝑁! , 𝑁" ≤ 10000
• Input keys can be converted to integers
• Input keys are unique, no duplicates
• Input values are non-null string
• None of the values will be equal to “NULL”
• Time constraint will be imposed on VPL and timeout is possible

Hints:

• You may want to change the structure of how you keep the data. For example, you
can store extra information alongside with each data item if you find it useful.

• It is acceptable if put and/or other operations take more time to run as long as the
total time is within the time constraint. Your program should be well within the time
constraint unless it has multiple layers of loop.

Examples:

Case Sample input Sample output
1 -1

1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110
get,3
get,6
get,1
get,100
get,5
end

103
106
101
NULL
105
[[1, '101'], [2, '102'], [3, '103'], [4,
'104'], [5, '105'], [6, '106'], [7,
'107'], [8, '108'], [9, '109'], [10,
'110']]

2 3
1,2,3,4,5,6,7,8,9,10
101,102,103,104,105,106,107,108,109,110
get,1
get,2
get,3
get,10
get,9
end

NULL
NULL
NULL
110
109
[[8, '108'], [9, '109'], [10, '110']]

3 6
9,10
101,102,103,104,105,106,107,108,109,110
get,9

Warning: number of keys and
values are not the same
NULL
NULL

ENGG1330 Computer Programming I Assignment 1

 7

put,1,100
put,2,200
put,3,300
get,10
get,2
put,4,400
put,5,500
put,6,600
put,1,10000
put,7,700
get,3
get,2
end

200
NULL
200
[[1, '10000'], [2, '200'], [7, '700'],
[4, '400'], [5, '500'], [6, '600']]

Submission

• Virtual Programming Lab (VPL) will be set up for submission and testing. Only the last
submission will be considered as the final submission.

• Test your program thoroughly before the deadline. Your program must generate
output according to the given format and specifications, i.e., without extra text/space.

• The test cases in VPLs only check whether your programs meet the basic requirements.
Your programs will be assessed with another set of private test cases.

• Program should only use the Python libraries/features covered in this course up to and
including Array. Using other libraries, non-built-in functions, and features is not
allowed and you will be given zero marks. If you are unsure, feel free to contact us for
clarification.

• 20% will be deducted from the final mark for every 24 hours after the submission due
date.

• Do not submit any program after the due date if your work is final. Any submission
after the due date is regarded as late submission.

Plagiarism

• Confirmed plagiarism cases (detected by the system) will get zero mark and subject to
disciplinary actions. The penalty applies to the source provider(s) as well. In other
words, students who submit same/highly similar programs will all get zero mark.
Students have full responsibility to protect their programs from being accessed by
others.

• Last year, 6 students had found engaged in plagiarism. They all got zero mark for the
assignment and a warning letter issued by the Department Head.

Questions

• If you have any questions, please send email (cky166@connect.hku.hk) to Mr. Ryan
Chan.

