
3. FLOW CONTROL - IF
VICTOR LEE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DECISION AND ACTION

• In real-life:
• We make decisions almost everyday
• Decisions will be followed by one or more actions

• In programming:
• Decision is based on a condition (logical expression) that is either

true or false
• Action is in form of program statements

WHAT MAKE A DECISION IN PYTHON

• Understand the problem
• Understand the problem such as requirements and constraints

• Identify the possible alternatives
• Develop an algorithm to solve the problem (make a decision)

• Formulate conditions for the alternatives
• Based on a condition (logical expression) which is either true or false to select an alternative

• Take action!
• Write code for each alternative

OUTLINES

• Flow chart

• If statement

• Simple

• Chained

• Nested

• Logical expression

HOW TO DEPICT YOUR THOUGHT(LOGIC)?

FLOWCHART

• A tool used to visualize the logic flow of an algorithm/process

• Basic elements:

Decision

Process

Input / Output

Flow

Start / End

THE BASIC: TO MAKE A DECISION BETWEEN TWO
ALTERNATIVES

Decision

No

Yes

EXAMPLE

• Make a decision between bus and subway based on cost

Bus fare is
lower?

Take bus

Start

Take subway

End

Yes

No

EXAMPLE

• Make a decision between bus and subway based on cost and need of interchange

Bus fare is
lower?

Take bus

Start

Take subway

End

Yes

No

Bus requires
interchange?

No

Yes

DID YOU HAVE TROUBLE TO MAKE DECISIONS?

Set A?

Start

Order set A

No

Go the SU
canteen

Find a seat

Yes

End

Set B?

Set C?

No
Yes

Yes
Order set B

Order set C

No
Order set D

Eat

MAKING DECISIONS COULD BE COMPLEX!

No

Yes

Yes

Yes

Yes

Yes

Yes

No No

No No

No

MAKING DECISION IN PYTHON

SIMPLE IF STATEMENT

if logical_expression:

⇥statement

⇥statement

Condition which is either True or False

Indentation created by any number of space / tab

Code block

Header

• If the condition (logical expression) is true, the indented code block runs.

• If not, nothing happens.

A colon “:” denotes the start of an indented
code block, after which all the statements

must be indented the same distance to the
left until the end of the code block.

EXAMPLE: PRINT THE ABSOLUTE
VALUE OF AN INTEGER

a=int(input())

if a<0:
a=-a

print(a)

4
4

-3
3

Less
than 0?

Start

No a = -a

Yes

End

Read an
integer a

print a
to screen

SIMPLE IF-ELSE STATEMENT

if logical_expression:

⇥statement
⇥statement

else:

⇥statement
⇥statement Code block to be executed if the condition is false

• If the condition is true, the first code block runs.

• If not, the second code block runs.

• The two alternatives are called branches because they are branches in the flow of execution.

Code block to be executed if the condition is true

EXAMPLE: EVEN NUMBER?

a=int(input())

if a%2==0:
print("Even")

else:
print("Odd")

4
Even

-3
Odd

Start

No Yes

End

Read an
integer a

print
"Even"

print
"Odd"

The modulus operator, %,
divides two numbers and

returns the remainder

a%2==0?

CHAINED CONDITIONALS
if logical_expression_1:

⇥statement
⇥statement

elif logical_expression_2 :

⇥statement
⇥statement

else:

⇥statement
⇥statement

Code block to be executed if the logical
expression 1 is false but logical expression 2
is true

If there is an else clause, it has to be at
the end

There is no limit on the
number of elif but only
the code block of the first
true condition runs.

EXAMPLE: AM I FAT?

weight=float(input())
height=float(input())
bmi=weight/height/height

if bmi>=25:
print("Overweight")
print("You should do more exercise")

elif bmi<18.5:
print("Underweight")
print("Please eat more")

else:
print("Normal")
print("Good!")

>=25

Start

No

Yes

End

Calculate BMI

Print overweight
message

<18.5
Yes

Print underweight
messageNo

Print normal
message

NESTED CONDITIONALS
• One conditional appears in one of the branches of another conditional

• Statements indented the same distance to the left belong to the same code block
if bmi>=25:

print("Overweight")
print("You should do more exercise")

else:
if bmi<18.5:

print("Underweight")
print("Please eat more")

else:
print("Normal")
print("Good!")

LOGICAL EXPRESSION

• A logical expression is either true or false
• True and False are special values of the Boolean type bool
• True

• Nonzero number
• Nonempty object

• False
• A zero number
• Empty object
• None

• Comparative operators (>, <, >=, =<) and logical operators (and, or) return a
True or False

LOGICAL OPERATORS

• and
• Return True if both operands are true
• x and y

• or
• Return True if either operand is true
• x or y

• not
• Return True if the operand is false
• not x

Operand is the value on
which an operator operates

Logical operators return the last
evaluated operand if it is not a

Boolean value.

LOGICAL OPERATORS

x y x and y

True True True

True False False

False True False

False False False

x y x or y

True True True

True False True

False True True

False False False

x not x

True False

False True

SHORT-CIRCUIT EVALUATION

! Evaluation of expressions containing 'and' and
'or' stops as soon as the outcome True or False
is known and this is called short-circuit evaluation

! Short-circuit evaluation can improve program
efficiency

! Short-circuit evaluation exists in some other
programming languages too, e.g., C++ and Java

COMPARATIVE OPERATORS

• Binary operators which accept two operands and compare them, return
either True or False

Relational operators Syntax Example

Less than < x < y

Greater than > z > 1

Less than or equal to <= b <= 1

Greater than or equal to >= c >= 2

Equality operators Syntax Example

Equal to == a==b

Not equal to != b!=3

NOTE: A<B<C
• In python, you may test a variable in certain range like this

• 1 > a > 4
• 4 < b <12

• Not all programming languages support this expression, e.g., C++ and Java do not
support this syntax and should use a < b && b < c instead of a < b < c

min=10
max=15
a=int(input("Please enter an integer: "))
if min < a < max:

print("You hit the Jackpot!")
else:

print("Sorry, please try again")

PRECEDENCE AND ASSOCIATIVITY

• Precedence: The order of evaluation when an expression consists of multiple
operators

• Associativity: The order of evaluation on operators with same precedence

PRECEDENCE & ASSOCIATIVITY OF OPERATORS, AGAIN

Operator precedence (high to low) Description Associativity

() Parentheses Left to right

** Exponent Right to left

+, - Unary plus, Unary minus Left to right

*, /, //, % Multiplication, Division, Floor division, Modulus Left to right

+, - Addition, Subtraction Left to right

==, !=, >, >=, <= Comparisons, Identity

not Logical NOT

and Logical AND

or Logical OR

SUMMARY

• A logical expression is either True or
False

• Conditional statements are
statements that will only execute
under certain condition.

• Keyword: if, elif, else

if logical_expression_1:

⇥statement
⇥statement

elif logical_expression_2:

⇥statement
⇥statement

else:

⇥statement
⇥statement

SUMMARY

• Writing conditional statement is not difficult, difficult is make it right
• Right condition test

• Right statement for true case and false case

