
INT3075 Programming and Problem

Solving for Mathematics

Dictionaries and Sets

More Data Structures

• We have seen the list data structure and

what it can be used for

• We will now examine two more advanced

data structures, the Set and the Dictionary

• In particular, the dictionary is an important,

very useful part of python, as well as

generally useful to solve many problems.

2

Dictionaries

3

What is a dictionary?

• In data structure terms, a dictionary is

better termed an associative array,

associative list or a map.

• You can think if it as a list of pairs, where

the first element of the pair, the key, is

used to retrieve the second element, the

value.

• Thus we map a key to a value

4

Key Value pairs

• The key acts as an index to find the

associated value.

• Just like a dictionary, you look up a word

by its spelling to find the associated

definition

• A dictionary can be searched to locate the

value associated with a key

5

Python Dictionary

• Use the { } marker to create a dictionary

• Use the : marker to indicate key:value pairs

contacts= {'bill': '353-1234',

'rich': '269-1234', 'jane': '352-1234'}

print (contacts)

{'jane': '352-1234',

'bill': '353-1234',

'rich': '269-1234'}

6

7

keys and values

• Key must be immutable

– strings, integers, tuples are fine

– lists are NOT

• Value can be anything

8

collections but not a sequence

• dictionaries are collections but they are not

sequences such as lists, strings or tuples

– there is no order to the elements of a

dictionary

– in fact, the order (for example, when printed)

might change as elements are added or

deleted.

• So how to access dictionary elements?

9

Access dictionary elements

Access requires [], but the key is the

index!

my_dict={}

– an empty dictionary

my_dict['bill']=25

– added the pair 'bill':25

print(my_dict['bill'])

– prints 25

10

Dictionaries are mutable

• Like lists, dictionaries are a mutable data

structure

– you can change the object via various

operations, such as index assignment

my_dict = {'bill':3, 'rich':10}

print(my_dict['bill']) # prints 3

my_dict['bill'] = 100

print(my_dict['bill']) # prints 100

11

Dictionary keys can be any immutable object

demo = {2: [‘a’,’b’,’c’], (2,4): 27, ‘x’: {1:2.5, ‘a’:3}}

demo

{‘x’: {‘a’:3, 1:2.5}, 2: [‘a’,’b’,’c’], (2,4): 27}

demo[2]

[‘a’, ‘b’, ‘c’]

demo[(2,4)]

27

demo [‘x’]

{‘a’:3, 1: 2.5}

demo[‘x’][1]

2.5

12

again, common operators

Like others, dictionaries respond to these

• len(my_dict)

– number of key:value pairs in the dictionary

• element in my_dict

– boolean, is element a key in the dictionary

• for key in my_dict:

– iterates through the keys of a dictionary

13

fewer methods

Only 9 methods in total. Here are some:
• key in my_dict

does the key exist in the dictionary

• my_dict.clear() – empty the dictionary

• my_dict.update(yourDict) – for each key
in yourDict, updates my_dict with that
key/value pair

• my_dict.copy - shallow copy

• my_dict.pop(key)– remove key, return value

14

Dictionary content methods

• my_dict.items() – all the key/value pairs

• my_dict.keys() – all the keys

• my_dict.values() – all the values

They return what is called a dictionary view.

• the order of the views correspond

• are dynamically updated with changes

• are iterable

15

Views are iterable
for key in my_dict:

print(key)

– prints all the keys

for key,value in my_dict.items():

print (key,value)

– prints all the key/value pairs

for value in my_dict.values():

print (value)

– prints all the values

16

my_dict = {'a':2, 3:['x', 'y'], 'joe':'smith’}

17

Frequency of words in list

3 ways

18

membership test

19

exceptions

20

get method

get method returns the value associated

with a dict key or a default value provided as

second argument. Below, the default is 0

21

Code Listings

L10-1.py – L10-4.py

Word Frequency

22

4 functions

• add_word(word, word_dict). Add

word to the dictionary. No return

• process_line(line, word_dict).

Process line and identify words. Calls
add_word. No return.

• pretty_print(word_dict). Nice

printing of the dictionary contents. No

return

• main(). Function to start the program.
23

Passing mutables

• Because we are passing a mutable data

structure, a dictionary, we do not have to

return the dictionary when the function

ends

• If all we do is update the dictionary

(change the object) then the argument will

be associated with the changed object.

24

25

26

sorting in pretty_print
• the sort method works on lists, so if we

sort we must sort a list

• for complex elements (like a tuple), the

sort compares the first element of each

complex element:

(1, 3) < (2, 1) # True

(3,0) < (1,2,3) # False

• a list comprehension (commented out) is

the equivalent of the code below it

27

28

29

Periodic Table example

30

comma separated values (csv)

• csv files are a text format that are used by

many applications (especially

spreadsheets) to exchange data as text

• row oriented representation where each

line is a row, and elements of the row

(columns) are separated by a comma

• despite the simplicity, there are variations

and we'd like Python to help

31

csv module

• csv.reader takes an opened file object

as an argument and reads one line at a

time from that file

• Each line is formatted as a list with the

elements (the columns, the comma

separated elements) found in the file

32

encodings other than UTF-8

• this example uses a csv file encoded with

characters other than UTF-8 (our default)

– in particular, the symbol ± occurs

• can solve by opening the file with the
correct encoding, in this case windows-

1252

33

example

34

Sets

35

Sets, as in Mathematical Sets

• in mathematics, a set is a collection of

objects, potentially of many different types

• in a set, no two elements are identical.

That is, a set consists of elements each of

which is unique compared to the other

elements

• there is no order to the elements of a set

• a set with no elements is the empty set

36

Creating a set
Set can be created in one of two ways:

•constructor: set(iterable) where
the argument is iterable

my_set = set('abc')

my_set  {'a', 'b', 'c'}

•shortcut: {}, braces where the
elements have no colons (to distinguish
them from dicts)

my_set = {'a', 'b','c'}

37

Diverse elements

• A set can consist of a mixture of different

types of elements

my_set = {'a',1,3.14159,True}

• as long as the single argument can be

iterated through, you can make a set of it

38

no duplicates

• duplicates are automatically removed

my_set = set("aabbccdd")

print(my_set)

 {'a', 'c', 'b', 'd'}

39

example

40

common operators

Most data structures respond to these:

• len(my_set)

– the number of elements in a set

• element in my_set

– boolean indicating whether element is in the
set

• for element in my_set:

– iterate through the elements in my_set

41

Set operators

• The set data structure provides some

special operators that correspond to the

operators you learned in middle school.

• These are various combinations of set

contents

• These operations have both a method

name and a shortcut binary operator

42

method: intersection, &

a_set=set("abcd") b_set=set("cdef")

a_set & b_set  {'c', 'd'}

b_set.intersection(a_set)  {'c', 'd'}

e fa b c d

43

method: difference, -

a_set=set("abcd") b_set=set("cdef")

a_set – b_set  {'a', 'b'}

b_set.difference(a_set)  {'e', 'f'}

e fa b c d

44

method: union, |

a_set=set("abcd") b_set=set("cdef")

a_set | b_set  {'a', 'b', 'c', 'd', 'e', 'f'}

b_set.union(a_set){'a', 'b', 'c', 'd', 'e', 'f'}

a b c d e f

45

method: symmetric_difference, ^

a_set=set("abcd"); b_set=set("cdef")

a_set ^ b_set  {'a', 'b', 'e', 'f'}

b_set.symmetric_difference(a_set)  {'a', 'b',

'e', 'f'}

e fa b c d

46

method: issubset, <=

method: issuperset, >=

small_set=set("abc"); big_set=set("abcdef")

small_set <= big_set  True

big_set >= small_set  True

a b c d e f

47

Other Set Operations

• my_set.add("g")

– adds to the set, no effect if item is in the set already

• my_set.clear()

– empties the set

• my_set.remove("g") versus

my_set.discard("g")

– remove throws an error if "g" isn't there. discard

doesn't care. Both remove "g" from the set

• my_set.copy()

– returns a shallow copy of my_set

48

Copy vs. assignment

my_set=set {'a', 'b', 'c'}

my_copy=my_set.copy()

my_ref_copy=my_set

my_set.remove('b')

my_set

my_copy

my_ref_copy

set(['a','c'])

set(['a','b','c'])

49

Code Listings

L10-5.py – L10-8.py

Common/Unique words

50

4 functions
• add_word(word, word_set). Add

word to the set (instead of dict). No return.

• process_line(line, word_set).

Process line and identify words. Calls
add_word. No return. (no change except

for parameters)

• pretty_print(word_set). Nice

printing of the various set operations. No

return

• main(). Function to start the program.
51

52

53

more complicated pretty print

• the pretty_print function applies the

various set operators to the two resulting

sets

• prints, in particular, the intersection in a

nice format

• should this have been broken up into two

functions??

54

55

More on Scope

56

OK, what is a namespace

• We've had this discussion, but lets' review

• A namespace is an association of a name

and a value

• It looks like a dictionary, and for the most

part it is (at least for modules and classes)

57

Scope

• What namespace you might be using is

part of identifying the scope of the

variables and function you are using

• by "scope", we mean the context, the part

of the code, where we can make a

reference to a variable or function

58

Multiple scopes

• Often, there can be multiple scopes that

are candidates for determining a

reference.

• Knowing which one is the right one (or

more importantly, knowing the order of

scope) is important

59

Two kinds

• Unqualified namespaces. This is what

we have pretty much seen so far.

Functions, assignments etc.

• Qualified namespaces. This is modules

and classes

60

Unqualified

• this is the standard assignment and def we

have seen so far

• Determining the scope of a reference

identifies what its true 'value' is

61

unqualified follow the LEGB rule
• local, inside the function in which it was

defined

• if not there, enclosing/encomposing. Is it

defined in an enclosing function

• if not there, is it defined in the global

namespace

• finally, check the built-in, defined as part

of the special builtin scope

• else ERROR

62

Code Listing

L10-9.py

63

locals() function

Returns a dictionary of the current (presently

in play) local namespace. Useful for looking

at what is defined where.

64

function local values

• if a reference is assigned in a function,

then that reference is only available within

that function

• if a reference with the same name is

provided outside the function, the

reference is reassigned

65

global is still found

because of the

sequence of namespace

search

66

Code Listing

L10-10.py

67

globals() function

Like the locals() function, the

globals() function will return as a

dictionary the values in the global

namespace

68

69

70

Global Assignment Rule

A quirk of Python.

If an assignment occurs anywhere in the

suite of a function, Python adds that variable

to the local namespace

• means that, even if the variable is

assigned later in the suite, the variable is

still local

71

Code Listing

L10-11.py

72

my_var is local (is in the local namespace)

because it is assigned in the suite
73

the global statement

You can tell Python that you want the object
associated with the global, not local
namespace, using the global statement

• avoids the local assignment rule

• should be used carefully as it is an over-
ride of normal behavior

74

Code Listing

L10-12.py

75

my_var is not in the local namespace
76

Builtin

• This is just the standard library of Python.

• To see what is there, look at

import builtin

dir(builtin)

77

Enclosed

Functions which define other functions in a

function suite are enclosed, defined only in

the enclosing function

• the inner/enclosed function is then part of

the local namespace of the

outer/enclosing function

• remember, a function is an object too!

78

Code Listing

L10-13.py

79

80

81

Building dictionaries faster
• zip creates pairs from two parallel lists

– zip("abc",[1,2,3]) yields

[('a',1),('b',2),('c',3)]

• That's good for building dictionaries. We
call the dict function which takes a list of

pairs to make a dictionary

– dict(zip("abc",[1,2,3])) yields

– {'a': 1, 'c': 3, 'b': 2}

82

dict and set comprehensions

Like list comprehensions, you can write

shortcuts that generate either a dictionary or

a set, with the same control you had with list

comprehensions

• both are enclosed with {} (remember, list

comprehensions were in [])

• difference is if the collected item is a :

separated pair or not

83

dict comprehension

84

set comprehension

85

