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Dictionaries and Sets



More Data Structures

• We have seen the list data structure and 

what it can be used for

• We will now examine two more advanced 

data structures, the Set and the Dictionary

• In particular, the dictionary is an important, 

very useful part of python, as well as 

generally useful to solve many problems.
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Dictionaries
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What is a dictionary?

• In data structure terms, a dictionary is 

better termed an associative array,

associative list or a map.

• You can think if it as a list of pairs, where 

the first element of the pair, the key, is 

used to retrieve the second element, the 

value.

• Thus we map a key to a value
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Key Value pairs

• The key acts as an index to find the 

associated value.

• Just like a dictionary, you look up a word 

by its spelling to find the associated 

definition

• A dictionary can be searched to locate the 

value associated with a key
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Python Dictionary

• Use the { } marker to create a dictionary

• Use the : marker to indicate key:value pairs

contacts= {'bill': '353-1234', 

'rich': '269-1234', 'jane': '352-1234'}

print (contacts)

{'jane': '352-1234', 

'bill': '353-1234', 

'rich': '269-1234'}
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keys and values

• Key must be immutable

– strings, integers, tuples are fine

– lists are NOT

• Value can be anything

8



collections but not a sequence

• dictionaries are collections but they are not 

sequences such as lists, strings or tuples

– there is no order to the elements of a 

dictionary

– in fact, the order (for example, when printed) 

might change as elements are added or 

deleted. 

• So how to access dictionary elements?
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Access dictionary elements

Access requires [ ], but the key is the 

index!

my_dict={}

– an empty dictionary

my_dict['bill']=25

– added the pair 'bill':25

print(my_dict['bill'])

– prints 25
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Dictionaries are mutable

• Like lists, dictionaries are a mutable data 

structure

– you can change the object via various 

operations, such as index assignment

my_dict = {'bill':3, 'rich':10}

print(my_dict['bill']) # prints 3

my_dict['bill'] = 100

print(my_dict['bill']) # prints 100
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Dictionary keys can be any immutable object

demo = {2: [‘a’,’b’,’c’], (2,4): 27, ‘x’: {1:2.5, ‘a’:3}}

demo 

{‘x’: {‘a’:3, 1:2.5}, 2: [‘a’,’b’,’c’], (2,4): 27}

demo[2]

[‘a’, ‘b’, ‘c’]

demo[(2,4)]

27

demo [‘x’]

{‘a’:3, 1: 2.5}

demo[‘x’][1]

2.5
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again, common operators

Like others, dictionaries respond to these

• len(my_dict)

– number of key:value pairs in the dictionary

• element in my_dict

– boolean, is element a key in the dictionary

• for key in my_dict:

– iterates through the keys of a dictionary
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fewer methods

Only 9 methods in total. Here are some:
• key in my_dict

does the key exist in the dictionary

• my_dict.clear() – empty the dictionary

• my_dict.update(yourDict) – for each key 
in yourDict, updates my_dict with that 
key/value pair

• my_dict.copy - shallow copy

• my_dict.pop(key)– remove key, return value
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Dictionary content methods

• my_dict.items() – all the key/value pairs

• my_dict.keys() – all the keys

• my_dict.values() – all the values

They return what is called a dictionary view.

• the order of the views correspond

• are dynamically updated with changes

• are iterable
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Views are iterable
for key in my_dict:

print(key)

– prints all the keys

for key,value in my_dict.items():

print (key,value)

– prints all the key/value pairs

for value in my_dict.values():

print (value)

– prints all the values
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my_dict = {'a':2, 3:['x', 'y'], 'joe':'smith’}
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Frequency of words in list

3 ways
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membership test
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exceptions
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get method

get method returns the value associated 

with a dict key or a default value provided as 

second argument. Below, the default is 0
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Code Listings 

L10-1.py – L10-4.py

Word Frequency
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4 functions

• add_word(word, word_dict). Add 

word to the dictionary. No return

• process_line(line, word_dict). 

Process line and identify words. Calls 
add_word. No return.

• pretty_print(word_dict). Nice 

printing of the dictionary contents. No 

return

• main(). Function to start the program.
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Passing mutables

• Because we are passing a mutable data 

structure, a dictionary, we do not have to 

return the dictionary when the function 

ends

• If all we do is update the dictionary 

(change the object) then the argument will 

be associated with the changed object.
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sorting in pretty_print
• the sort method works on lists, so if we 

sort we must sort a list

• for complex elements (like a tuple), the 

sort compares the first element of each 

complex element:

(1, 3) < (2, 1)    # True

(3,0) < (1,2,3)     # False

• a list comprehension (commented out) is 

the equivalent of the code below it
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Periodic Table example
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comma separated values (csv)

• csv files are a text format that are used by 

many applications (especially 

spreadsheets) to exchange data as text

• row oriented representation where each 

line is a row, and elements of the row 

(columns) are separated by a comma

• despite the simplicity, there are variations 

and we'd like Python to help
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csv module

• csv.reader takes an opened file object 

as an argument and reads one line at a 

time from that file

• Each line is formatted as a list with the 

elements (the columns, the comma 

separated elements) found in the file
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encodings other than UTF-8

• this example uses a csv file encoded with 

characters other than UTF-8 (our default)

– in particular, the symbol ± occurs

• can solve by opening the file with the 
correct encoding, in this case windows-

1252
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example
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Sets
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Sets, as in Mathematical Sets

• in mathematics, a set is a collection of 

objects, potentially of many different types

• in a set, no two elements are identical. 

That is, a set consists of elements each of 

which is unique compared to the other 

elements

• there is no order to the elements of a set

• a set with no elements is the empty set
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Creating a set
Set can be created in one of two ways:

•constructor: set(iterable) where 
the argument is iterable

my_set = set('abc') 

my_set  {'a', 'b', 'c'}

•shortcut: {}, braces where the 
elements have no colons (to distinguish 
them from dicts)

my_set = {'a', 'b','c'}
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Diverse elements

• A set can consist of a mixture of different 

types of elements

my_set = {'a',1,3.14159,True}

• as long as the single argument can be 

iterated through, you can make a set of it
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no duplicates

• duplicates are automatically removed

my_set = set("aabbccdd")

print(my_set)

 {'a', 'c', 'b', 'd'}
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example

40



common operators

Most data structures respond to these:

• len(my_set)

– the number of elements in a set

• element in my_set

– boolean indicating whether element is in the 
set

• for element in my_set:

– iterate through the elements in my_set
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Set operators

• The set data structure provides some 

special operators that correspond to the 

operators you learned in middle school.

• These are various combinations of set 

contents

• These operations have both a method 

name and a shortcut binary operator
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method: intersection, &

a_set=set("abcd")  b_set=set("cdef")

a_set & b_set  {'c', 'd'}

b_set.intersection(a_set)  {'c', 'd'}

e fa b       c d
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method: difference, -

a_set=set("abcd")  b_set=set("cdef")

a_set – b_set  {'a', 'b'}

b_set.difference(a_set)  {'e', 'f'}

e fa b c d
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method: union, |

a_set=set("abcd")  b_set=set("cdef")

a_set | b_set  {'a', 'b', 'c', 'd', 'e', 'f'}

b_set.union(a_set){'a', 'b', 'c', 'd', 'e', 'f'}

a b    c d       e f
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method: symmetric_difference, ^

a_set=set("abcd");  b_set=set("cdef")

a_set ^ b_set  {'a', 'b', 'e', 'f'}

b_set.symmetric_difference(a_set)  {'a', 'b', 

'e', 'f'}

e fa b c d
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method: issubset, <=

method: issuperset, >=

small_set=set("abc");  big_set=set("abcdef")

small_set <= big_set  True

big_set >= small_set  True

a b c    d e f
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Other Set Operations

• my_set.add("g")

– adds to the set, no effect if item is in the set already

• my_set.clear()

– empties the set

• my_set.remove("g") versus 

my_set.discard("g")

– remove throws an error if "g" isn't there. discard

doesn't care. Both remove "g" from the set

• my_set.copy()

– returns a shallow copy of my_set
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Copy vs. assignment

my_set=set {'a', 'b', 'c'}

my_copy=my_set.copy()

my_ref_copy=my_set

my_set.remove('b')

my_set

my_copy

my_ref_copy

set(['a','c'])

set(['a','b','c'])
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Code Listings 

L10-5.py – L10-8.py

Common/Unique words
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4 functions
• add_word(word, word_set). Add 

word to the set (instead of dict). No return. 

• process_line(line, word_set). 

Process line and identify words. Calls 
add_word. No return. (no change except 

for parameters)

• pretty_print(word_set). Nice 

printing of the various set operations. No 

return

• main(). Function to start the program.
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more complicated pretty print

• the pretty_print function applies the 

various set operators to the two resulting 

sets

• prints, in particular, the intersection in a 

nice format

• should this have been broken up into two 

functions??
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More on Scope
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OK, what is a namespace

• We've had this discussion, but lets' review

• A namespace is an association of a name 

and a value

• It looks like a dictionary, and for the most 

part it is (at least for modules and classes)
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Scope

• What namespace you might be using is 

part of identifying the scope of the 

variables and function you are using

• by "scope", we mean the context, the part 

of the code, where we can make a 

reference to a variable or function
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Multiple scopes

• Often, there can be multiple scopes that 

are candidates for determining a 

reference.

• Knowing which one is the right one (or 

more importantly, knowing the order of 

scope) is important
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Two kinds

• Unqualified namespaces. This is what 

we have pretty much seen so far. 

Functions, assignments etc.

• Qualified namespaces. This is modules 

and classes
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Unqualified

• this is the standard assignment and def we 

have seen so far

• Determining the scope of a reference 

identifies what its true 'value' is
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unqualified follow the LEGB rule
• local, inside the function in which it was 

defined

• if not there, enclosing/encomposing. Is it 

defined in an enclosing function

• if not there, is it defined in the global

namespace

• finally, check the built-in, defined as part 

of the special builtin scope

• else ERROR
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Code Listing 

L10-9.py
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locals() function

Returns a dictionary of the current (presently 

in play) local namespace. Useful for looking 

at what is defined where.
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function local values

• if a reference is assigned in a function, 

then that reference is only available within 

that function

• if a reference with the same name is 

provided outside the function, the 

reference is reassigned
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global is still found

because of the 

sequence of namespace

search
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Code Listing 

L10-10.py
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globals() function

Like the locals() function, the  

globals() function will return as a 

dictionary the values in the global 

namespace
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Global Assignment Rule

A quirk of Python.

If an assignment occurs anywhere in the 

suite of a function, Python adds that variable 

to the local namespace

• means that, even if the variable is 

assigned later in the suite, the variable is 

still local

71



Code Listing 

L10-11.py
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my_var is local (is in the local namespace)

because it is assigned in the suite
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the global statement

You can tell Python that you want the object 
associated with the global, not local 
namespace, using the global statement

• avoids the local assignment rule

• should be used carefully as it is an over-
ride of normal behavior
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Code Listing 

L10-12.py
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my_var is not in the local namespace
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Builtin

• This is just the standard library of Python. 

• To see what is there, look at

import builtin

dir( builtin )
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Enclosed

Functions which define other functions in a 

function suite are enclosed, defined only in 

the enclosing function

• the inner/enclosed function is then part of 

the local namespace of the 

outer/enclosing function

• remember, a function is an object too!
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Code Listing 

L10-13.py
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Building dictionaries faster
• zip creates pairs from two parallel lists

– zip("abc",[1,2,3]) yields

[('a',1),('b',2),('c',3)]

• That's good for building dictionaries. We 
call the dict function which takes a list of 

pairs to make a dictionary

– dict(zip("abc",[1,2,3])) yields

– {'a': 1, 'c': 3, 'b': 2}
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dict and set comprehensions

Like list comprehensions, you can write 

shortcuts that generate either a dictionary or 

a set, with the same control you had with list 

comprehensions

• both are enclosed with {} (remember, list 

comprehensions were in [])

• difference is if the collected item is a : 

separated pair or not
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dict comprehension
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set comprehension
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