
1

SCC.201
Database Management Systems

2023 - Week 4 – Relational Algebra

Uraz C Turker & Ricki Boswell

2

What will you learn today?

• Relational algebra

• Some SQL code.

3

4

Lecture 1 Introduction to the module, Why do we need Databases? Entity Relationship Model

Lecture 2 Entity Relationship Model (ERM) (cont.)

Lecture 1 Relational Model (RM)

Lecture 2 ER to RM

Lecture 1 Relational Model To SQL & SQL scripting

Lecture 2 Review

Lecture 1 Relational Algebra

Lecture 2 Functional Dependencies + 1st, 2nd Normal Forms

Lecture 1 3dr and Boycott normal forms. Advanced SQL queries.

Lecture 2 JDBC

Lecture 1 Physical Storage - record files

Lecture 2 Storage - secondary files

Lecture 1 Record Search - B-Trees

Lecture 2 Search - Hashing

Lecture 1 Access Routines

Lecture 2 Query Optimisation

Lecture 1 Concurrency - Transaction Processing

Lecture 2 Locking

Lecture 1 Advanced SQL - schemas, views, access control

Lecture 2 Review and recap?

Lab Project Grade Phase 2

Lab Project Grade Phase 3

Lab Working on project

Lab Project Grade Phase 1

Lab Functional dependencies and Normalisation.

Lab Functional dependencies and Normalisation + JDBC Example.

Lab ER to Relational Model.

Lab Relational Algebra + SQL + Relational Model To SQL.

Lab A gentle start to the ER diagrams.

Lab ER diagrams.

Query Languages

• For manipulation and retrieval of stored data

• Relational model supports simple yet powerful query languages

• Query languages are not as complex as programming languages

• They are specialized for data manipulation and retrieval

Relational Algebra

• It is a mathematical query language

• Forms the basis of the SQL query language

• Relational Calculus is another mathematical query language but it is
declarative rather than operational

• We will concentrate on relational algebra in this course

Basics of Querying

• A query is applied to relation instances, and the result of a query is also a
relation instance.

eid ename Salary age

28 Eric 90K 35
58 Kyle 100K 33

ename Salary

Eric 90K
Kyle 100K

Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.









Relational Algebra

• Additional operations:

• Intersection,

• Join

• division,

• Renaming

• Each operation returns a relation therefore operations can be composed

Projection

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10


sname rating

S
,

()2

 Input is a single relation instance

 Deletes attributes that are not in

projection list.

 Schema of result contains exactly the

fields in the projection list, with the

same names that they had in the input

relation.

 Projection operator has to eliminate

duplicates (Why??)

 Note: real systems typically don’t
do duplicate elimination unless the

user explicitly asks for it. (Why

not?)

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

Projection

age

35.0
55.5

age S()2

 Input is a single relation instance

 Deletes attributes that are not in

projection list.

 Schema of result contains exactly the

fields in the projection list, with the

same names that they had in the input

relation.

 Projection operator has to eliminate

duplicates (Why??)

 Note: real systems typically don’t
do duplicate elimination unless the

user explicitly asks for it. (Why

not?)

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

Selection


rating

S
8

2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

 Input is a single relation

instance

 Selects rows that satisfy

selection condition.

 No duplicates in result! (Why?)

 Schema of result identical to

schema of input relation.

S2
sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

Selection

sname rating

yuppy 9

rusty 10

 
sname rating rating

S
,

(())
8

2
 Input is a single relation

instance

 Selects rows that satisfy

selection condition.

 No duplicates in result! (Why?)

 Schema of result identical to

schema of input relation.

 Result relation can be the input

for another relational algebra

operation!

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

Union, Intersection, Set-Difference

 All of these operations take two input relations, which must be union-

compatible:

 Same number of fields.

 `Corresponding’ fields have the same type.

Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Intersection

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Set Difference

sid sname rating age

22 dustin 7 45.0
S S1 2

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Cross-Product

 S1 X R1

 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field names `inherited’ if
possible.

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1 R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1 X R1

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1 X R1

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

S1
R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Both S1 and R1 have a field called sid. Which may cause a conflict
when referring to columns

S1 X R1

Renaming Operator

 ((,),)C sid sid S R1 1 5 2 1 1  

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

sid1 sid2

Takes a relation schema and gives a new name

to the schema and the columns

 1 2 3 4 5 6 7

S1 X R1 C

Joins

 Condition Join :

ScR )(SRc 

 Result schema same as that of cross-product.

 Fewer tuples than cross-product, might be able to compute more efficiently

 Sometimes called a theta-join.

Joins

S R
S sid R sid

1 1
1 1


. .

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1
sid bid day

22 101 10/10/96
58 103 11/12/96

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1
sid bid day

22 101 10/10/96
58 103 11/12/96

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

)11(
.1.1

RS
sidRsidS






sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1
sid bid day

22 101 10/10/96
58 103 11/12/96

R1

)11(
.1.1

RS
sidRsidS






(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

Equi-Join: A special case of condition join where the condition c contains only equalities.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

Equi-Join: A special case of condition join where the condition c contains only equalities.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

Equi-Join: A special case of condition join where the condition c contains only equalities.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

Equi-Join: A special case of condition join where the condition c contains only equalities.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

Joins

 Equi-Join: A special case of condition join where the condition c contains only

equalities.

 Result schema similar to cross-product, but only one copy of fields for which equality

is specified.

 Natural Join: Equijoin on all common fields.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

11 RS 

Division

 Not supported as a primitive operator, but useful for expressing queries like:

 Find Players who have played all games.

 Let A have 2 fields, x and y; B have only field y:

 A/B = Keeps x values providing following condition

Division

 Not supported as a primitive operator, but useful for expressing queries like:

 Find Players who have played all games.

 Let A have 2 fields, x and y; B have only field y:

 A/B = Keeps x values providing following condition

 For B there exist x in A such that B X x is a member of A

 i.e., A/B contains all x values (players) such that for every y value (game) in

B, there is an x-y paired value in A.

 Or: If the set of y values (games) associated with an x value (player) in A

contains all y values in B, the x value is in A/B.

 In general, x and y can be any lists of fields; y is the list of fields in B, and x U y is the list of

fields of A.

Division

 Not supported as a primitive operator, but useful for expressing queries like:

 Find Players who have played all games.

 Let A have 2 fields, x and y; B have only field y:

 A/B = Keeps x values providing following condition

 For B there exist x in A such that B X x is a member of A

 i.e., A/B contains all x values (players) such that for every y value (game) in

B, there is an x-y paired value in A.

 Or: If the set of y values (games) associated with an x value (player) in A

contains all y values in B, the x value is in A/B.

 In general, x and y can be any lists of fields; y is the list of fields in B, and x U y is the list of

fields of A.

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

 For B (one attribute) there exist x in A such that B X x is a member of A

Find names of sailors who’ve reserved boat #103

Find names of sailors who’ve reserved boat #103

 sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 sname bid
serves Sailors((Re))

103


Result of Natural Join

Find names of sailors who’ve reserved boat #103

 sname bid
serves Sailors((Re))

103


Result of Selection bid=103

Find names of sailors who’ve reserved boat #103

 sname bid
serves Sailors((Re))

103


Result of Projection on sname

Find names of sailors who’ve reserved boat #103

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


22

31

74

sid

Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat #103

 Solution 1:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved boat
#103

 Solution 1:))Re((
103

Sailorsserves
bidsname 




v Solution 2:  (, Re)Temp serves
bid

1
103

 (,)Temp Temp Sailors2 1

 sname Temp()2

v Solution 3:  sname bid
serves Sailors((Re))

103


Find names of sailors who’ve reserved a red
boat

Find names of sailors who’ve reserved a red
boat

Find names of sailors who’ve reserved a red
boat

Find names of sailors who’ve reserved a red
boat

Find names of sailors who’ve reserved a red
boat

Find names of sailors who’ve reserved a red
boat

22

31

64

Find names of sailors who’ve reserved a red
boat

22

31

64

Find names of sailors who’ve reserved a red
boat

 NOTE: Information about boat colour is only

available in Boats; so need an extra join:

 sname color red
Boats serves Sailors((

' '
) Re)


 

v A more efficient solution:

   sname sid bid color red
Boats s Sailors(((

' '
) Re))


 

Find names of sailors who’ve reserved a red and a

green boat.

))Re)
''

((,(servesBoats
redcolorsid

Tempred 




 sname Tempred Tempgreen Sailors(()) 

  (, ((

' '
) Re))Tempgreen

sid color green
Boats serves




HOW ABOUT THIS ANSWER?

Find names of sailors who’ve reserved a red and a

green boat.

))Re)
''

((,1(servesBoats
redcolorsid

Tmp 




)2()1(SailorsTmpsnameSailorsTmpsname   

))Re)
''

((,2(servesBoats
greencolorsid

Tmp 




HOW ABOUT THIS ONE?

Find the names of sailors who’ve reserved all boats

serves
bidsid

Re
,



Boats
bid



sid bid

22 101

22 102

22 103

22 104

31 102

31 104

64 101

64 102

74 103

bid

101

102

103

104

)(/)Re
,

(Boats
bid

serves
bidsid



sid

22

)|(SailorsDivisionsname 

Division

Find the names of sailors who’ve reserved all boats

 Uses division; schemas of the input relations must

be carefully chosen:

  (, (
,

Re) / ())Tempsids
sid bid

serves
bid

Boats

 sname Tempsids Sailors()

v To find sailors who’ve reserved all ‘Interlake’ boats:

/ (
' '

) 
bid bname Interlake

Boats


.....

75

SCC.201
Database Management Systems

2023 - Week 4 – Relational Algebra – Schema Refinement

Uraz C Turker & Ricki Boswell

76

Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.



Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.




Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.






Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.







Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.

–Join: Theta-Join, Equi-Join, Natural-Join.








sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.

–Join: Theta-Join (conditional), Equi-Join (Selected fields have same
value), Natural-Join (All common fields have same value).









Relational Algebra Operations

Basic operations:
–Selection () Selects a subset of rows from relation.

–Projection () Deletes unwanted columns from relation.

–Cross-product () Combines two relations.

–Set-difference () Tuples in relation 1, but not in relation 2.

–Union () Tuples in relation 1 and in relation 2.

–Join: Theta-Join (conditional), Equi-Join (Selected fields have same
value), Natural-Join (All common fields have same value).

–/ Division!









(Practical)

Relational Algebra-SQL relation.

 A standard for querying relational data

 Basic query structure

 DISTINCT is an optional keyword indicating that duplicates should
be eliminated. (Otherwise duplicate elimination is not done)

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

SQL

 A standard for querying relational data

 Basic query structure

v Conditions (ATTR op CONST or ATTR1 op ATTR2, where op is
one of () combined using AND, OR and NOT.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

     , , , , ,

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:

 Compute the cross-product of relation-list.

 Discard resulting tuples if they do not satisfy the conditions.

 Display attributes that are in attribute-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to compute a query! An optimiser will find more efficient

strategies to compute the same answers.

SELECT [DISTINCT] attribute-list

FROM relation-list

WHERE condition

Example of Conceptual Evaluation
SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid AND Reserves.bid=103

 sname bid
serves Sailors((Re))

103


Query: Find names

of sailors who

Reserved boat

number 103

Range Variables

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND bid=103

Query: Find names

of sailors who

Reserved boat

number 103

SELECT sname

FROM Sailors, Reserves

WHERE Sailors.sid=Reserves.sid AND Reserves.bid=103

Range variables are

necessary when joining a

table with itself !!!

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern matching: Find triples (of ages

of sailors and two new fields defined by expressions) for sailors whose names begin and

end with B and contain at least three characters.

 AS and = are two ways to name fields in result.

 LIKE is used for string matching. `_’ stands for any one character and `%’ stands for 0 or
more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2

FROM Sailors S

WHERE S.sname LIKE ‘B_%B’

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern matching: Find triples (of ages

of sailors and two new fields defined by expressions) for sailors whose names begin and

end with B and contain at least three characters.

 AS and = are two ways to name fields in result.

 LIKE is used for string matching. `_’ stands for any one character and `%’ stands for 0 or
more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2

FROM Sailors S

WHERE S.sname LIKE ‘B_%B’

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern matching: Find triples (of ages

of sailors and two new fields defined by expressions) for sailors whose names begin and

end with B and contain at least three characters.

 AS and = are two ways to name fields in result.

 LIKE is used for string matching. `_’ stands for any one character and `%’ stands for 0 or
more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2

FROM Sailors S

WHERE S.sname LIKE ‘B_%B’

Find sid’s of sailors who’ve reserved a red or a green boat

 UNION: Can be used to compute

the union of any two union-

compatible sets of tuples (which

are themselves the result of SQL

queries).

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND (B.color=‘red’ OR B.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’
UNION

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘green’

BID Colr

b1 red

b2 grn

SID BID

s1 b1

s1 b2

s2 b1

B
R

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’
EXCEPT

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘green’

 EXCEPT : Used to compute the set

difference of two union-compatible

sets of tuples

 What do we get if we replace

UNION with EXCEPT in the previous

SQL query?

BID Colr

b1 red

b2 grn

SID BID

s1 b1

s1 b2

s2 b1

B
R

A

-

B

Example

EMPLOYEE(NAME, SSN, BDATE, ADDRESS, SALARY)

DEPARTMENT(DNAME, DNUMBER, MGRSSN)

(MGRSSN references SSN in EMPLOYEE table)

WORKSIN(ESSN, DNUMBER, HOURS)

(DNUMBER references DNUMBER in DEPARTMENT table)

(ESSN reference SSN in EMPLOYEE table)

Write the relational algebra expressions for the following queries:

1) List the names of employees whose salary is greater than 30000

2) List the names of employees who work in “shoes” department

3) List the names of employees who work in all departments

100

More will be provided after Normalisation

Normal forms

101

 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

1

 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

1 2

 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

1 2

3

 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

1

3

4

2

 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

1

3

4

2

1 2

3

4
 We received a work plan in plain English.

 We derived its ER diagram.

 We created its Relational Schema and ICs.

 We created the tables in a database using DDL statements.

 We insert some tuples.

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

 Anomalies

 Insertion anomalies

 Recording wrong hourly_wages

 Deletion anomalies

 If we delete rating, we also lose the hourly_wages info.

 Modification (update) anomalies

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

 Anomalies

 Insertion anomalies

 Recording wrong hourly_wages

 Deletion anomalies

 If we delete rating, we also lose the hourly_wages info.

 Modification (update) anomalies

341-12-1124 Thomas 54 8 9 23

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

 Anomalies

 Insertion anomalies

 Recording wrong hourly_wages

 Deletion anomalies

 If we delete rating, we also lose the hourly_wages info.

 Modification (update) anomalies

What is the hourly wage when the rating is 5?

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

 Anomalies

 Insertion anomalies

 Recording wrong hourly_wages

 Deletion anomalies

 If we delete rating, we also lose the hourly_wages info.

 Modification (update) anomalies

12

12

12

12

12

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

DECOMPOSITION

ssn name lot rating hourly_wages hours_worked

123-22-3666 Hasan 48 8 10 40

231-31-5368 Robert 22 8 10 30

131-24-3650 Ercan 36 5 7 30

434-26-3751 Fox 38 5 7 32

612-67-4134 Uraz 39 8 10 40

ssn name lot rating hours_worked

123-22-3666 Hasan 48 8 40

231-31-5368 Robert 22 8 30

131-24-3650 Ercan 36 5 30

434-26-3751 Fox 38 5 32

612-67-4134 Uraz 39 8 40

rating hourly_wages

8 10

5 7

Decompositions are done to remove redundant data that can lead to
anomalies.

• There are levels of redundancy which are determined by Normal Forms.

Decomposition

115

 Normal forms are standards for a good DB schema (introduced by Codd in
1972)

 If a relation is in a particular normal form (such as BCNF, 3NF etc.), it is
known that certain kinds of problems are avoided/minimised.

 Normal forms help us decide if decomposing a relation helps.

Normal Forms

 First Normal Form: No set valued attributes (only atomic values)

sid name phones

1 ali {5332344568,

2165533561}

2 veli …

3 ayse …

4 fatma …

Normal Forms

 2nd Normal form

 Prime attribute: any attribute that is
part of a key WITHIN CANDIDATE KEY

 Non-prime attributes: rest of the
attributes

Let us assume that the Candidate Key of
the relation is {(EMP_ID,PROJECT_ID)}.

Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

And the MANAGER is a NONPRIME
ATTRIBUTE.

Normal Forms

 2nd Normal form

 Prime attribute: any attribute that is
part of a key WITHIN CANDIDATE KEY

 Non-prime attributes: rest of the
attributes

Let us assume that the Candidate Key of
the relation is {(EMP_ID,PROJECT_ID)}.

Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

And the MANAGER is a NONPRIME
ATTRIBUTE.

Normal Forms

 2nd Normal form

 Prime attribute: any attribute that is
part of a key WITHIN CANDIDATE KEY

 Non-prime attributes: rest of the
attributes

Let us assume that the Candidate Key of
the relation is {(EMP_ID,PROJECT_ID)}.

Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

And the MANAGER is a NONPRIME
ATTRIBUTE.

Normal Forms

 2nd Normal form

 Prime attribute: any attribute that is
part of a key WITHIN CANDIDATE KEY

 Non-prime attributes: rest of the
attributes

Let us assume that the Candidate Key of
the relation is {(EMP_ID,PROJECT_ID)}.

Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

And the MANAGER is a NONPRIME
ATTRIBUTE.

Normal Forms

Second Normal Form: Every non-prime attribute
should be fully functionally dependent on the
whole part of every key (i.e., candidate keys).

What does Functional Dependent mean?

Normal Forms

 A functional dependency between attributes X, Y (X Y) holds over relation R if, for

every allowable instance r of R:

 t1 r, t2 r, such that (t1) = (t2) implies (t1) = (t2)

 i.e., given two tuples in r, if the X values agree, then the Y values must also

agree.



   X
 X

 Y Y

Functional Dependencies (FORMAL)

X Y Z

1 a p

2 b q

1 a r

2 b p

t1

t2

Whenever X value of a tuple is 1, Y value of the same tuple is a

Whenever X value of a tuple is 2, Y value of the same tuple is b

X Y Z

1 a p

2 b q

1 a r

3 b p

Does the following relation instance satisfy FD X->Y ?

Functional Dependencies

Functional Dependencies

125

2/14/2023

X Y Z

1 a p

2 b q

1 a p

3 b p

If X is a member of a candidate key, we have FD X -> Y Z (trivial dependency)

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W




S N L R W H
1 100

2 200

3 250

2 300

Did you notice anything wrong with the following instance ?

Example

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W




S N L R W H
1 100

2 200

3 250

2 300

Did you notice anything wrong with the following instance ?

Example

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W




S N L R W H
1 100

2 200

3 250

2 200

Did you notice anything wrong with the following instance ?

Example

Second Normal Form: Every attribute not part of a key (non-prime attribute)
should be fully functionally dependent on the whole part of every key (i.e.,
candidate keys).

A relation is in 2NF if it is in 1NF, and every non-prime attribute of the relation

depends on the whole of every candidate key. Note that it does not restrict the

non-prime to non-prime attribute dependency. (Part of a key should not decide non-prime attribute)

To check:

1 Find the candidate key,

2 Check if a non-prime attribute functionally depends on some parts of a candidate key.

Normal Forms

Second Normal Form: Every attribute not part of a key (non-prime attribute)
should be fully functionally dependent on the whole part of every key (i.e.,
candidate keys).

A relation is in 2NF if it is in 1NF, and every non-prime attribute of the relation

depends on the whole of every candidate key. Note that it does not restrict the

non-prime to non-prime attribute dependency. (Part of a key should not decide non-prime attribute)

To check:

1 Find the candidate key,

2 Check if a non-prime attribute functionally depends on some parts of a candidate key.

Normal Forms

Second Normal Form: Every attribute not part of a key (non-prime attribute)
should be fully functionally dependent on the whole part of every key (i.e.,
candidate keys).

A relation is in 2NF if it is in 1NF, and every non-prime attribute of the relation

depends on the whole of every candidate key. Note that it does not restrict the

non-prime to non-prime attribute dependency. (Part of a key should not decide non-prime attribute)

To check:

1 Find the candidate key,

2 Check if a non-prime attribute functionally depends on some parts of a candidate key.

Normal Forms

Second Normal Form: Every attribute not part of a key (non-prime attribute)
should be fully functionally dependent on the whole part of every key (i.e.,
candidate keys).

A relation is in 2NF if it is in 1NF, and every non-prime attribute of the relation

depends on the whole of every candidate key. Note that it does not restrict the

non-prime to non-prime attribute dependency.

To check:

1 Find the candidate key,

2 Check if a non-prime attribute functionally depends on some parts of a candidate key.

Normal Forms

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

133

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

134

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

135

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

136

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

137

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• There is PARTIAL DEPENDENCY, so the
relation is not in the 2nd Normal Form.

138

2nd Normal form

• Let us assume that the Candidate Key of the
relation is {(EMP_ID,PROJECT_ID)}.

• Therefore EMP_ID and PROJECT_ID are
PRIME ATTRIBUTEs.

• And the MANAGER is a NONPRIME
ATTRIBUTE.

• Observe:
• If PROJECT_ID = {45} or {23}, MANAGER is

Mr.X,
• Else If PROJECT_ID=67, MANAGER is Mr.Z,
• Else If PROJECT_ID=78, MANAGER is Mr.Y.

• So Project_Id->Manager. There is PARTIAL
DEPENDENCY, so the relation is not in the
2nd Normal Form.

139

Normalise

140

PROJECT_ID MANAGER

23 Mr.X

45 Mr.X

78 Mr.Y

67 Mr.Z

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
one part of a candidate key.

• S -> L

•Not in 2nd normal form.

141

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
one part of a candidate key.

• S -> L

•Not in 2nd normal form.

142

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
one part of a candidate key.

• S -> L

•Not in 2nd normal form.

143

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
one part of a candidate key.

• S -> L

•Not in 2nd normal form.

144

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
some parts of a candidate key.

• S -> L

•Not in 2nd normal form.

145

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
some parts of a candidate key.

• S -> L

•Not in 2nd normal form.

146

2nd Normal Form

• Is this in 1st Normal Form?
• Yes

• Find Candidate KEY
• { (S,P) }

• Check if a non-prime attribute
is functionally dependent on
some parts of a candidate key.

• S -> L

•Not in 2nd normal form.

147

Normalise

• As a part (S) of a candidate key
(S,P) implies NON-PRIME
ATTRIBUTE {L}, we need to
normalise the relation by
introducing relations (S,P,St) and
(S,L).

148

 Relation R is in 3NF if it is in 2NF and for all X A
 A X (called a trivial FD), or

 X contains a key for R, or

 A is part of some key for R.

 In other words, there should not be the case that another non-prime attribute
determines a non-prime attribute.

 If R is in 3NF, some redundancy still is possible. i.e. a part of a key
determines some other attribute.




Third Normal Form (3NF)

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by a key in the candidate
key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

150

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by a key in the candidate
key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

151

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by part of a key in the
candidate key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

152

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by part of a key in the
candidate key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

153

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by part of a key in the
candidate key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

154

3NF

• E# is the key and Candidate key is {(E#)}.

• Every attribute is atomic, and there does
not exist a non-prime attribute that is
partially implied by part of a key in the
candidate key (So it is in 2nd NF).

• How about FDs of non-prime attributes?

• M#->MTEL# (or MTEL#->M#)

• So it is not in 3NF.

155

3NF

• To normalise, for every FD we
create a new table.

• M#->MTEL# (or MTEL#->M#)

• E#-> N,A,J#,M#

156

