22/12/2022, 20:12 Tecky CMS

Game of Life Code-Along

We are going to build our game of life step by step today. Here is the resulting product that we are
going to build within this section.

Game of Life

Reset Game

As you can see , we have a large 2-dimensional plane for our 1lives to thrive on. And we have a
button called Reset Game at the bottom left corner.

Here are the list of features that we want to have in this game :

1. A 2-dimensional plane that allows the lives to reproduce, survive and die based on the rules we
mentioned.

2. A Reset Game button that clears everything on the plane

3. Allowing user to click and drag to add new lives manually on the lifeless box.

Live Preview Extension

Before you proceed, we would like you to install an VSCode extension called Live Preview.

Live Prev’iew v0.2.7 | Preview
Microsoft | & 20,256 | % %% %% (5)

Hosts a local server in your workspace for you to preview your webpages on.
Disable % Uninstall v < ¥

This extension is enabled globally.

With this extension, you should be able to serve HTML using the option in the right click menu
directly. It makes working with HTML,CSS and JavaScript files much more easier.

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 112

22/12/2022, 20:12 Tecky CMS

Live Preview: Show Preview

Live Preview: Open Automatically on Server Start

State of the Game

Before we start writing anything, we need to consider what would be the state of the game. A state is
all of the data that is necessary to represent the current game. We need to get the state of the game
right because we would then need to update our user interface using the state of the game.

Here is the state of the game of life that we are going to implement.

« Warning:

Not all codes are require to copy from following sections. Some code sections are only for
explains used. Please take care and watch carefully.

const unitlLength 20;

const boxColor = 150;

const strokeColor = 50;

let columns; /* To be determined by window width */
let rows; /* To be determined by window height */
let currentBoard;

let nextBoard;

Here are the descriptions of all of the states:

1. unitLength: The width and height of a box.

2. boxColor: The color of the box.

3. strokeColor: The color of the stroke of the box.

4. columns: Number of columns in our game of life. It is determined by the width of the container
and unitLength.

5. rows: Number of rows in our game of life. It is determined by the height of the container and
unitLength.

6. currentBoard: The states of the board of the current generation.

7. nextBoard: The states of the board of the next generation. It is determined by the current
generation.

Setup Function

Let's write the setup function for the initialization.

function setup(){
/* Set the canvas to be under the element #canvas*/

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 2/12

22/12/2022, 20:12 Tecky CMS

const canvas = createCanvas(windowWidth, windowHeight - 168);
canvas.parent(document.querySelector('#canvas'));

/*Calculate the number of columns and rows */
columns = floor(width / unitLength);
rows floor(height / unitlLength);

/*Making both currentBoard and nextBoard 2-dimensional matrix that has (columns * row:
currentBoard = [];
nextBoard = [];
for (let 1 = @; i < columns; i++) {
currentBoard[i] = [];
nextBoard[i] = []
}
// Now both currentBoard and nextBoard are array of array of undefined values.
init(); // Set the initial values of the currentBoard and nextBoard

Let's look at some of the magic variables here. The magic variables include windowWidth,
windowHeight, width and height. They are all provided by p5.js to make our life easier.

e windowWidth and windowHeight are the width and height of the viewport.
e width and height are the width and height of the canvas element.

const canvas = createCanvas(windowWidth, windowHeight - 160);
canvas.parent(document.querySelector('#canvas'));

We are calling createCanvas() with windowwidth and windowHeight - 100 to make a canvas that is as
wide as the screen but 100 px shorter than the height. We then use .parent() to insert our canvas
element to the element with id canvas.

/*Calculate the number of columns and rows */
columns = floor(width / unitlLength);
rows = floor(height / unitLength);

We can then calculate the columns and rows using the width,height and the unitLength. We need to
use the floor function because there is no guarantee that the quotients would be an integer.

After that, we can simply initialize currentBoard and nextBoard to be an array of array. Then we run
another function called init to initialize all the boxes' value to 0.

currentBoard = [];

nextBoard = [];

for (let 1 = @; i < columns; i++) {
currentBoard[i] = [];

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 3/12

22/12/2022, 20:12 Tecky CMS

nextBoard[i] = []

}

// Now both currentBoard and nextBoard are array of array of undefined values.
init(); // Set the initial values of the currentBoard and nextBoard

Init function

Let's finish the init() function, the function is simple. We just need loop over both currentBoard
and nextBoard to set all of the boxes' value to e.

/**

* Initialize/reset the board state

*/

function init() {

for (let i = @; i < columns; i++) {
for (let j = 0; j < rows; j++) {

currentBoard[i][j] = ©;
nextBoard[i][j] = ©;

Upon loading the page, every box in the board are ¢ now.

We can also use random input, for example we can use the random function to randomize initial

state of currentBoard.

// let someVariables = <condictions> : <when_true> : <when_false>;
currentBoard[i][j] = random() > ©.8 ? 1 : @; // one line if
nextBoard[i][j] = @;

Draw Function

As mentioned before, the draw() function is being run for every single frame. Therefore, we need to
draw the state of the current generation to the canvas inside draw() function.

function draw() {
background(255) ;
generate();

for (let 1 = ©; i < columns; i++) {
for (let j = 0; j < rows; j++) {

if (currentBoard[i][j] == 1){
fill(boxColor);
} else {

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 4/12

22/12/2022, 20:12 Tecky CMS

£i11(255);
}
stroke(strokeColor);
rect(i * unitlLength, j * unitlLength, unitLength, unitLength);
}
}
}
background(255) ;

generate();

In the first line, we set the background to white ((255,255,255) is the RGB code of white) with the
function background(). Then we call the function generate() which calculates the next generation
with current generation.

Within the nested for-loop, you can see we are checking if the currentBoard[i][j] == 1.It means
that we are checking if the box has life. If true, then we set the filling color to the boxColor , else we
set it to white. The stroke is set to strokeColor. Then we can call the rect function which
conveniently use the configuration we just set (filling color is boxColor and stroke color is
strokeColor) to make a rect. The parameters i * unitLength, j * unitLength sets the position of
the top left corner of the rectangle and the parameters unitLength, unitLength set the size of the
rectangle.

Generate function

Generate function contains the core business logic of game of life. It basically calculates the next
generation solely with the information of the current generation. Let's look at the implementation of
the generate() function first.

function generate() {
//Loop over every single box on the board
for (let x = 0; x < columns; x++) {
for (lety = 0; y < rows; y++) {
// Count all living members in the Moore neighborhood(8 boxes surrounding)
let neighbors = 0;
for (let i of [-1, 0, 1]) {
for (let j of [-1, @, 1]) {
if(i ==08& j == 0){
// the cell itself is not its own neighbor
continue;
}
// The modulo operator is crucial for wrapping on the edge
neighbors += currentBoard[(x + i + columns) % columns][(y + j + rows)

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 5/12

22/12/2022, 20:12 Tecky CMS

// Rules of Life
if (currentBoard[x][y] == 1 && neighbors < 2) {
// Die of Loneliness
nextBoard[x][y] = 0;
} else if (currentBoard[x][y] == 1 && neighbors > 3) {
// Die of Overpopulation
nextBoard[x][y] = 0;
} else if (currentBoard[x][y] == @ && neighbors == 3) {
// New life due to Reproduction
nextBoard[x][y] = 1;
} else {
// Stasis
nextBoard[x][y]

currentBoard[x][y];

// Swap the nextBoard to be the current Board
[currentBoard, nextBoard] = [nextBoard, currentBoard];

Again , we are going to loop over the every single box in the board. Inside the for-loop , we need to
first count the neighbors of each box.

// Count all living members in the Moore neighborhood(8 boxes surrounding)
let neighbors = 0;
for (let i of [-1, @, 1]) {
for (let j of [-1, ©, 1]) {
if (i == 0 && j ==0) {
// the cell itself is not its own neighbor
continue;

}

// The modulo operator is crucial for wrapping on the edge
neighbors += currentBoard[(x + i + columns) % columns][(y + j + rows) % rows];

As you can we loop over all of the Moore neighborhoods. Except when i == 0 & j == @ (which is
basically the box itself). We add the number of the neighbors' value. Since o represent lifeless, we
will add 1 to neighbors every box with life. Note that we are using (x + i + columns) % columns and
similar code in rows case. Because we don't want our lives hit the edge of our board, we would like
them to wrap to the other side of the board.

The following diagram shows you how wrapping works in our board.

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 6/12

22/12/2022, 20:12 Tecky CMS

Wrapping

How wrapping actually works here ?

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 7112

22/12/2022, 20:12 Tecky CMS

How neighbours are calculated ?

®-1y-1| xy-1 x+1y-1 -1-1 | 0,-1 1-1
relative to (x,y)
X1y | Xy |x+ly » -1.0 0,0 1.0
x-1,y+1| x,y+1 k+1y+1 21 | 81 | 11
Wrapping at the corners
columns = 100 rows = 50
98,48 | 99,48 100,48 (x + i) % columns 9848 099,48 048 |
. | (y +j) % rows | '
98.49 99,49 Elﬂﬂ,ﬂfgj » 98,49 9949 0,49
| | Using modulo [!
! ! operator % !
: 98,50 | 99,50 100,50 1 98,0 | 990 | 00
""" Imaginary " Real
neighbor LthE neighbor
| Cell ;
cell ~ cell
Wrapping at the "0-side” edge
139 | 039 | 139 | (x+i+columns) % columns | 99,39 | 0,39 = 1,39
: i (y + j +rows) % rows
»-1,40 | 0,40 | 1,40 lr 9940 0,40 @ 1,40
; Add columns/rows to avoid
negative index .
041 | 141 |

141 | 041 | 141 19941

As you can see, calculating the neighbors of a cell involves counting all of the neighbors around the

current cell. That is what the nested for-loop here is doing.

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md

8/12

22/12/2022, 20:12 Tecky CMS

for (let i of [-1, 0, 1]) {
for (let j of [-1, @, 1]) {
if (i == 0 && j == 0) {
// the cell itself is not its own neighbor
continue;

}
// rest of the code.

The continue here is for skipping the o, ¢ since it is essentially the element itself.

It becomes a problem since we are having a trouble at the edge.We may have our array out of
bound.

There are two cases we need to cater:

¢ cell at the corners
e cell at the '0-sided' edge

To cater for the cells at the corners, we need to use the module operator % to limit our index
between e(inclusive) and columns/rows(exclusive).

To cater for the cells at the 0-sided, we need to use add columns/rows to the index to make them
positive before using the modulo operator.

El Hints:

We can add columns/rows to the index as we wish because "-1 % 7" is the same as "6 % 7" which is
also the same as "13 % 7".

Implementing the rules of game of life

The remaining code is basically the rules of the Game of Life.

// Rules of Life

if (currentBoard[x][y] == 1 && neighbors < 2) {
// Die of Loneliness
nextBoard[x][y] = ©;

} else if (currentBoard[x][y] == 1 && neighbors > 3) {
// Die of Overpopulation
nextBoard[x][y] = ©;

} else if (currentBoard[x][y] == @ && neighbors == 3) {
// New life due to Reproduction
nextBoard[x][y] = 1;

} else {

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 9/12

22/12/2022, 20:12 Tecky CMS

// Stasis
nextBoard[x][y] = currentBoard[x][y];

At the end, we need to swap currentBoard and nextBoard . Making the calculated next generation to
be the current generation.

// Swap the nextBoard to be the current Board
[currentBoard, nextBoard] = [nextBoard, currentBoard];

This is it. You should have a working Game of Life with random lifes appearing everything you load
the page.

Mouse Interaction

It would not feel complete if the users cannot interact with our board. Let's add some mouse events
handler. Luckily, p5.js already provides useful function like mouseDragged(), mousePressed() and
mouseReleased() for us to implement event handler. As their name suggested, they are invoked

when the mouse is dragged , pressed and released.

Let's look at how we implement it.

/**

* When mouse is dragged

*/

function mouseDragged() {
/**

* If the mouse coordinate is outside the board

*/
if (mouseX > unitLength * columns || mouseY > unitLength * rows) {
return;

}

const x = .floor(mouseX / unitlLength);

const y = .floor(mouseY / unitlLength);

currentBoard[x][y] = 1;

fill(boxColor);

stroke(strokeColor);

rect(x * unitLength, y * unitlLength, unitLength, unitLength);
}
/**

* When mouse is pressed

*/

function mousePressed() {
nolLoop () ;
mouseDragged() ;

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 10/12

22/12/2022, 20:12 Tecky CMS

¥

/**

* When mouse is released

*/

function mouseReleased() {
Loop();

As you can see, we run nolLoop() for mousePressed(). It means that we want ps. s to stop running
draw() whenever our mouse is pressed. We also resume the loop of running draw() when the mouse
is released. So the game pauses when the user pressed on the canvas and resume when the mouse is
released. We also reuse mouseDragged in mousePressed function.

function mouseDragged() {
/*%

* If the mouse coordinate is outside the board

*/
if (mouseX > unitlLength * columns || mouseY > unitLength * rows) {
return;
}
const x = .floor(mouseX / unitlLength);
const y = .floor(mouseY / unitlLength);
currentBoard[x][y] = 1;
fill(boxColor);

stroke(strokeColor);
rect(x * unitLength, y * unitlLength, unitLength, unitLength);

In our mouseDragged function , we first check if the coordinate of the cursor (mousex and mouseY) is
out of the board(Remember the floor function?). Then we calculate which box our cursor is

currently above and we set the box to have a life. Then we paint the box directly because we are
now pausing the draw() function.

Now you can add new life by pressing and dragging on the canvas!

Reset Button

How about the reset button at the bottom left corner. We can easily make the reset behavior with a
simple event handler and a call to init().

document.querySelector('#reset-game")
.addEventListener('click', function() {
init();
1)

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 11/12

22/12/2022, 20:12 Tecky CMS

« Warning:

You cannot use mouseClicked or mousePressed here. Because the reset button is outside the
canvas. So p5.js does not manage this button.

https://cms.tecky.io/course/map-v24/WEF008?p=02-Game-of-Life-code-along.md 12/12

