
Basic Compression

Rynson W.H. Lau

CS4185 Multimedia Technologies and Applications

Need for Compression
 As we have discussed in Sampling, the size of a

single 4-minute song is about 40MB and that of a 90-
minute HDTV movie is about 782GB.

 This is a lot to store or to transmit.

 Apart from audio and video files, we may also have
other file types, such as text and image files.

 We can save memory if we compress these files to
smaller sizes before we store or transmit them.

Rynson W.H. Lau: 2

Data Compression
 Data Compression is the process of encoding a

digital file using less memory.

 A Codec is an encoder/decoder scheme.

Encoder
(Compression)

Decoder
(Decompression)

storage or
network

transmission

Original
data

Codes /
Codewords

Decoded
data

A general data compression scheme

Rynson W.H. Lau: 3

 Compression Ratio is defined as the ratio between
the input data size (in terms of bits) to the output
data size (in terms of bits).

 B0 = Total number of bits required to represent the data
before compression

 B1 = Total number of bits required to represent the data after
compression

Rynson W.H. Lau: 4

Encoder
(Compression)

Original
data

Codes /
Codewords

B0 bits B1 bits
1

0

B
B

 Ratio nCompressio 

Rynson W.H. Lau: 5

Lossless vs. Lossy Compression
 With lossless compression, if a compressed file

is uncompressed, the output file will be exactly
the same as the file before compression.

Examples: winzip and winrar

Rynson W.H. Lau: 6

 The advantage of lossless compression is that
there is no information loss during the
compression process.

 The limitation is that the amount of compression
is usually small.

 Lossless compression methods are usually used
for compressing text and data files, where any
information loss is not acceptable.

Rynson W.H. Lau: 7

 With lossy compression, redundant and less
important information are thrown away in order
to obtain a smaller output file size.

Examples: JPEG, MPEG and MP3

Rynson W.H. Lau: 8

 The advantage of lossy compression is that the
compression ratio can be very high. Therefore,
the output file size can be very small.

 The disadvantage is that it throws away some
information. Hence, information is lost during the
compression process, and cannot be recovered.

 Lossy compression methods are usually used for
compressing images and videos.

Yes

Encoder
(Compression)

Original
data

Codes /
Codewords Decoder

(Decompression)

Decoded
data

No

Lossless
Compression

Lossy
Compression

Are they
identical ?

Summary:

Rynson W.H. Lau: 9

Rynson W.H. Lau: 10

Basic Information Theory
 In information theory, Entropy is used to indicate the

amount of information available from a given file.

 Entropy is computed as:

 The term indicates the amount of information
in si (or the number of bits needed to encode si).

 











n

i
ii

n

i i
i

pp

p
pSH

1
2

1
2

log

1log)( Alphabet S
(Set of symbols)

s1 s2 …… sn

Probability p1 p2 …… pn

ipip
1

2log

A coin has two sides, i.e.,
two symbols, ST and SH

A dice has six sides, i.e.,
six symbols, S1, S2, S3, S4,
S5, and S6

Rynson W.H. Lau: 12

 Entropy is essentially a measure of disorder (or
unpredictability).

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

4 +5 +3 11 +6 +3 5 5 +11 5 4

What is next?

What is next?

Rynson W.H. Lau: 13

 Entropy is essentially a measure of disorder (or
unpredictability).

More predictable,
smaller entropy

Less predictable,
larger entropy

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

4 +5 +3 11 +6 +3 5 5 +11 5 4 +1

Rynson W.H. Lau: 14

 Example 1

1
2
1log

2
1

2
1log

2
1log)(22

1
2  



n

i
ii ppSH

i

p
i

0.5

1

50 200

Symbol S1 S2

Probability
2
1

2
1

S1 S2

Note that log2(x) = log10(x) / log10(2)

Rynson W.H. Lau: 15

 Example 2

Symbol S1 S2

Probability 3
1

3
2

92.0
3
2log

3
2

3
1log

3
1log)(22

1
2  



n

i
ii ppSH

i

p
i

1

50 200

2/3

1/3

S1 S2

Rynson W.H. Lau: 16

 Example 3

2
4
1log

4
1log)(

4

1
2

1
2  

 i

n

i
ii ppSH

Symbol 1 2 3 4

Probability
4
10.25

1 2 3 4

pi

i

4
1

4
1

4
1

Rynson W.H. Lau: 17

 Example 4

Symbol 1 2 3 4

Probability 0.1 0.2 0.3 0.4

85.14.0log4.03.0log3.02.0log2.01.0log1.0

log)(

2222

1
2



 


n

i
ii ppSH

0.4
0.3
0.2
0.1

1 2 3 4

pi

i

Rynson W.H. Lau: 18

 Shannon’s Coding Theorem states that the
entropy is the lower bound for the average number
of bits to encode each symbol in S, i.e.,

where is the average length of the codeword
(measured in terms of bits) produced by the encoder.





Rynson W.H. Lau: 19

Lossless Compression
Run-Length Encoding (RLE)

 Run-length encoding works by detecting repeating
symbols in the input file.

 In general, each repeating symbol, called a run, can
be encoded using two bytes. The first byte indicates
the number of occurrences of the symbol in the run
and the second byte is the symbol.

 For example, we may encode the following input data
as:

aaaaacfffffff  5a1c7f Try an exercise

Rynson W.H. Lau: 20

 This method is good at compressing binary images and
traditional cartoon images, where large portions of the
image have same pixel values.

 RLE encoding is used in most bitmap file formats, such as
TIFF and BMP.

Rynson W.H. Lau: 21

Lossless Compression
Lempel-Ziv-Welch (LZW)

 LZW works by detecting patterns. It stores each pattern
in a table only once.

 When we encounter the same pattern again, we may
replace the pattern with the table index (or a code).

 For example, we may have a Word file that contains the
following two sentences:

Dictionary

Rynson W.H. Lau: 22

Compression Algorithm:

s = next input character; /* read first character */
while not EOF {

c = next input character; /* read next character */
if s + c exists in the dictionary

s = s + c; /* append character c to end of string s */
else {

output the code for s;
add string s + c to the dictionary with a new code;
s = c;

}
}
output the code for s;

Dictionary
code string

1 A
2 B

s c o/p 3 C
------------- -----------
A B

 Example: consider encoding “ABABBABC”

A B A B B A B C

Input: ABABBABC
standard
section

application
section

Compression Algorithm:

s = next input character;
while not EOF {

c = next input character;
if s + c exists in the dictionary

s = s + c;
else {

output the code for s;
add string s + c to the

dictionary with a new code;
s = c;

}
}
output the code for s;

Dictionary
code string

1 A
2 B

s c o/p 3 C
------------- -----------
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB
B A
BA B 5 7 BAB
B C 2 8 BC
C EOF 3

 Example: consider encoding “ABABBABC”

A B A B B A B C

A B A B B A B C

A B A B B A B C

A B A B B A B C

A B A B B A B C

A B A B B A B C

A B A B B A B C

A B A B B A B C

Input: ABABBABC
standard
section

application
section

Output: 1 2 4 5 2 3

Compression Algorithm:

s = next input character;
while not EOF {

c = next input character;
if s + c exists in the dictionary

s = s + c;
else {

output the code for s;
add string s + c to the

dictionary with a new code;
s = c;

}
}
output the code for s;

Rynson W.H. Lau: 25

Decompression Algorithm:

s = NIL;
while not EOF {

k = next input code;
entry = dictionary entry for k;

/* exception handling */
if (entry == NULL)

entry = s + s[0];

output entry;

/* reconstruct the dictionary */
if (s != NIL)

add string s + entry[0] to
dictionary with a new code;

s = entry;
}

Rynson W.H. Lau: 26

s k entry code string

1 A
2 B
3 C

NIL 1 A

A 2 B 4 AB

B 4 AB 5 BA

AB 5 BA 6 ABB

BA 2 B 7 BAB

B 3 C 8 BC

C EOF

A B A B B A B C

1 2 4 5 2 3

Output

Input

1 2 4 5 2 3

1 2 4 5 2 3

1 2 4 5 2 3

1 2 4 5 2 3

1 2 4 5 2 3

1 2 4 5 2 3

Decompression Algorithm:

s = NIL;
while not EOF {

k = next input code;
entry = dictionary entry for k;

/* exception handling */
if (entry == NULL)

entry = s + s[0];

output entry;

/* reconstruct the dictionary */
if (s != NIL)

add string s + entry[0] to
dictionary with a new code;

s = entry;
}

s k entry code string

1 A
2 B
3 C

NIL 1 A

A 2 B 4 AB

B 4 AB 5 BA

AB 5 BA 6 ABB

BA 2 B 7 BAB

B 3 C 8 BC

C EOF

Rynson W.H. Lau: 27

Decompression

s c output code string

1 A
2 B
3 C

A B 1 4 AB

B A 2 5 BA

A B

AB B 4 6 ABB

B A

BA B 5 7 BAB

B C 2 8 BC

C EOF 3

Compression

Comparing the two dictionaries:

What is the compression ratio here?

Rynson W.H. Lau: 28

 LZW is most suitable for compressing text files.

 It is used in several image file formats, such as GIF
and TIFF, for lossless compression. However, the
compression ratio can be low if there are not too
many repeating sequences.

 Some compression programs, such as compress
and pkzip, use a method similar to LZW for
compression.

Try an exercise

Rynson W.H. Lau: 29

Lossless Compression
Huffman Encoding

 Unlike the previous methods, Huffman encoding
is a variable-length coding method, i.e., symbols
are mapped to codes with different code lengths.

 It assigns a code of a certain code length
according to the probability of occurrence of the
symbol.

 It is a type of entropy coding.

Rynson W.H. Lau: 30

Algorithm:

1. Initialization: Put all symbols on a list sorted according to the
frequency count (descending order).

2. Repeat the following steps until there is only one symbol left:

• Remove two symbols with the lowest frequency count from the list.

• Using these two symbols to form child nodes of a Huffman subtree.

• Assign the sum of frequency counts of the two symbols to the parent
and insert the parent to the list. Keep the list in order.

3. Assign a codeword for each leaf node based on the path from
the root.

Rynson W.H. Lau: 31

Example: To construct codewords for “SEMESTER”.
List: E(3), S(2), M(1), T(1), R(1)

List: E(3), P1(2), S(2), M(1)

List: E(3), P2(3), P1(2)

List: P3(5), E(3)

List: P4(8)

T(1) R(1)

P1(2)

S(2) M(1)

P2(3)

P2(3) P1(2)

P3(5)

P3(5) E(3)

P4(8)

P2(3) P1(2)

S(2) M(1) T(1) R(1)

0 1 10

10

P3(5) E(3)

P4(8)
10

Total number of bits to code “SEMESTER”:
= 3+1+3+1+3+3+1+3 = 18 bits

Number of bits 1 3 3 3 3

Codeword 1 000 001 010 011

Symbol E S M T R

Count 3 2 1 1 1

Rynson W.H. Lau: 32

 Properties of Huffman Coding:
1. Prefix Code: No Huffman code is a prefix of another

Huffman code. This is to prevent any ambiguity in
decoding.

Example 1 (prefix code):

Example 2 (non-prefix code):

Codeword 0 10 110 111

Symbol L H E O

Symbol L H E O

Codeword 0 1 01 111

If code=01, then is the original message “E” or “LH” ?

If code=111, then is the original message “O” or “HHH” ?

Rynson W.H. Lau: 33

2. Optimality: minimum redundancy code
 This means that one cannot find another set of codes for

coding individual symbols that would result in a smaller
average code length than that of the Huffman codes.

 The two symbols with lowest frequent counts have the same
length for their Huffman codes, differing only at the last bit.

 Symbols that occur more frequently have Huffman codes no
longer than symbols that occur less frequently.

 The average code length for a given application, S, is strictly

less than  + 1. Therefore:
1  

Rynson W.H. Lau: 34

Using the last example, since we have five symbols, we could use
3 bits to represent different symbols. As “SEMESTER” contains 8
characters, the input file size = 8 * 3 bits = 24 bits.

Try an exercise

Hence, the compression ratio = 24 / 18 = 1.333

 holds1  

= െଷ
଼
𝑙𝑜𝑔ଶ

ଷ
଼
െ ଶ

଼
𝑙𝑜𝑔ଶ

ଶ
଼
െ ଵ

଼
𝑙𝑜𝑔ଶ

ଵ
଼
െ ଵ

଼
𝑙𝑜𝑔ଶ

ଵ
଼
െ ଵ

଼
𝑙𝑜𝑔ଶ

ଵ
଼

= 2.156

= 18 / 8 = 2.25





Lossless Compression
Morse Code

 This is a method for transmitting text information as a
series of on-off tones, lights or clicks that can be directly
understood by a skilled listener or observer without
special equipment.

 It is also a variable-length coding method, according to
the probability of occurrence of each symbol.

 It contains two symbols, dot and dash. A dot is one unit.
A dash is three units.

Rynson W.H. Lau: 36

 Morse Code Length Probability
A 2 0.08167
B 4 0.01492
C 4 0.02782
D 3 0.04253
E 1 0.12702
F 4 0.02228
G 3 0.02015
H 4 0.06094
I 2 0.06966
J 4 0.00153
K 3 0.00772
L 4 0.04025
M 2 0.02406
N 2 0.06749
O 3 0.07507
P 4 0.01929
Q 4 0.00095
R 3 0.05987
S 3 0.06327
T 1 0.09056
U 3 0.02758
V 4 0.00978
W 3 0.02360
X 4 0.00150
Y 4 0.01974
Z 4 0.00074

Lossless Compression
CCITT Group 3 1D Compression

 This compression method is primary used in facsimile.

 It is based on Huffman encoding with length of a codeword
depending on its probability of occurrence.

 The method considers the fact that a fax page consists of
scanlines. Each scanline consists of a white line followed
by a black line, then a white line, etc..

 This method replaces a white or black line of a certain
number of pixels by a codeword as shown in the following
table.

Rynson W.H. Lau: 38

White Run Length Code Word Black Run Length Code Word
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
...

00110101
000111
0111
1000
1011
1100
1110
1111
10011
10100
00111
01000
001000
000011
110100

...

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
...

0000110111
010
11
10
011
0011
0010
00011
000101
000100
0000100
0000101
0000111
00000100
00000111

...

Rynson W.H. Lau: 39

Consider a typical black-and-
white page that we may fax to a
friend:

Rynson W.H. Lau: 43

 Advantages:

 Simple to implement in both hardware and software

 Worldwide standard for fax machines. It allows document
imaging applications to incorporate fax documents easily.

 Disadvantages:

 1D encoding only – does not consider the similarity between
consecutive scanlines.

 No error protection mechanism.

Rynson W.H. Lau: 44

Lossless Compression
CCITT Group 3 2D Compression

 This method is a refinement of the last method by
combining a 1D coding scheme with a 2D coding scheme.

 The 2D coding scheme works by considering the fact that
consecutive scanlines differ very little statistically.

 This method uses a “K” factor where the image is divided
into groups of K lines.

 The first line of each group is encoded using the CCITT
Group 3 1D method.

Rynson W.H. Lau: 45

 The first line is then used as a reference line for the
second line of the group and so on.

 Only the change in positions of the black and white
transitions between any two consecutive lines need to be
store.

 The major reason for dividing the image into groups is to
allow the first line of each group to be the synchronizing
line in the event of a transmission error, i.e., for error
recovery.

Rynson W.H. Lau: 46

 Advantages:

 It is also a worldwide fax standard for document imaging
applications.

 It has a higher compression ratio (between 10 to 20) than the
CCITT Group 3 1D method.

 Disadvantages:

 It has a lower compression ratio than the next method.

 It is slightly more complex to decompress than the CCITT
Group 3 1D method.

Rynson W.H. Lau: 47

Lossless Compression
CCITT Group 4 Compression

 This method is similar to the CCITT Group 3D 2D method,
but without dividing the image into groups of lines.

 An all-white line is used as a reference line to encode the
first scanline of the image.

 The first scanline is then used as a reference line to
encode the second scanline and so on.

 Each successive scanline is encoded relative to the
previous scanline for the complete image.

Rynson W.H. Lau: 48

 Advantages:

 It has a higher compression ratio than the previous methods.

 Disadvantages:

 A single error can destroy the rest of the image.

 It sacrifices the error recovery mechanism of the CCITT
Group 3 2D method (in order to achieve a higher
compression ratio).

