LECTURE 2 REGRESSION ANALYSIS - SIMPLE LINEAR REGRESSION

AGENDA

- Basic Concepts of Simple Linear Regression
- Data Analysis Using Simple Linear Regression Models
- Measures of Variation and Statistical Inference

ASSOCIATIONS BETWEEN TWO VARIABLES

- To visualize the relationship between two numerical variables
 - Scatter plot (other name: X-Y plot)
- To measure the degree of linear association
 - Coefficient of Correlation (formal name: Pearson's correlation coefficient)
- To forecast one variable for given values of the other
 - Regression models
- Examples
 - Apartment price vs. Gross floor area
 - Weekly sales for chain stores vs. Number of customers

SCATTERPLOT

Linear relationships

Nonlinear relationships

COEFFICIENT OF CORRELATION

(Formal name: Pearson's correlation coefficient)

(Sample) Linear correlation coefficient, r

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- Dimensionless
- -1 < r < +1
- "Sign" indicates the direction (positive / negative) of a linear relationship
- "Magnitude" measures the strength of a linear relationship

LINEAR REGRESSION MODEL

- Input
 - Dependent / response variable, Y
 - The variable we wish to explain or predict
 - Independent / explanatory variable, X
 - The variable used to explain the dependent variable
- Output
 - A linear function that allows us to
 - Model causality*: Explain the variation of the dependent variable that is caused by the independent variable(s)
 - Provide prediction: Estimate the value of the dependent variable based on value(s) of the independent variable(s)

*Two other possibilities of causation even for a successful regression model:

- I. Y is causing variation in X
- 2. There are other variables causing both Y and X to vary

FORMULATION OF SIMPLE LINEAR REGRESSION MODEL

- A simple linear regression model consists of two components
 - Regression line: A straight line that describes the dependence of the average value (conditional mean) of the Y-variable on one X-variable
 - Random error: The unexpected deviation of observed value from the expected value

FORMULATION OF LINEAR REGRESSION MODEL – CONT'D

- b_0 represents the sample intercept
- b_1 represents the sample slope coefficient
- e represents the random error

LEAST SQUARES METHOD

• b_0 and b_1 are estimated using the least squares method, which minimize the sum of squares errors (SSE)

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

LEAST SQUARES METHOD

- The solution to b_0 and b_1 can be obtained by differentiating with respect to b_0 and b_1
- That is to solve for b_0 and b_1 in:

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial b_0} = -2 \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i)) = 0$$

and

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial b_1} = -2 \sum_{i=1}^{n} X_i (Y_i - (b_0 + b_1 X_i)) = 0$$

simultaneously

LEAST SQUARES METHOD

The solutions are

$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = r \frac{\sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} = r (\frac{S_Y}{S_X})$$

and

$$b_0 = \bar{Y} - b_1 \bar{X}$$

EXAMPLE

- How much tips do riders pay their taxi driver in New York City (NYC)?
- Is there any relationship between the taxi fare and the size of the tip?

- Want to look at the relationship between two variables.
- Most common approach: consider a linear relationship between the two variables.
- Suppose our data is of the form (X_i, Y_i) , where:
 - X_i is the pre-tip fare charged to the i-th customer,
 - Y_i is the tips paid by the i-th customer.

13

- Want to find values of b_0 , b_1 such that $Y_i \approx b_0 + b_1 X_i$ for all customers.
- Implication: Tips (Y_i) increase by b_1 for each additional 1 in taxi fare.
 - $b_1 < 0$ implies that tips decrease relative to the taxi fare.
- What are the right values of b_0 , b_1 so that we can represent the data well?

- Regardless of the values of b_0 , b_1 , there will be errors in our model because the data points don't lie on a straight line.
- Suppose we fix some values of b_0 , b_1 .
- Let \widehat{Y}_i = the predicted value tips based on our model: $\widehat{Y}_i = b_0 + b_1 X_i$.
- Then the error/residual for the *i*-th data point is $e_i = Y_i \widehat{Y}_i$.
 - i.e. The true/observed value of the tips is $Y_i = b_0 + b_1 X_i + e_i$.

- Idea: We should minimize the amount of errors e_i when we choose b_0 , b_1 .
- We can't use the sum of e_i ; the negative and positive errors could cancel out.
- Minimize the sum of square-errors: $\min \sum e_i^2 = \min \sum [Y_i (b_0 + b_1 X_i)]^2$.
- Also known as least-squares regression model.

- How can we find b_0 , b_1 ?
- Fast method: Use "trendline" function in Excel.

• $b_1 = 0.1578$; riders pay \$0.16 in tips for every \$1 in fare (15.78%).

- Is the model "good"?
- Better/more informative method to find b_0 , b_1 : Use Regression tool in Excel.
- One-time step: File \rightarrow Options \rightarrow Add-ins \rightarrow Analysis Toolpak (check and click OK).
- Subsequent access: Data → Analyze → Data Analysis → Regression.

t-Test: Two-Sample Assuming Unequal Variances

• Fill in the pop-up box:

Check this box if you have headers in your table.

You can choose to output on the same worksheet or on a new worksheet.

Excel's Output:

Α	В	С	D	E	F	G	Н	T
SUMMARY OUTPU	Т							
Regression :	Statistics							
Multiple R	0.743850822							
R Square	0.553314046							
Adjusted R Square	0.553311779							
Standard Error	1.624035606							
Observations	197103							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	643945.8062	643945.8062	244150.8416	0			
Residual	197101	519852.2419	2.637491651					
Total	197102	1163798.048						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.32631227	0.005744657	56.80273722	0	0.315052879	0.337571661	0.315052879	0.337571661
Pre-tip amount	0.157828366	0.000319415	494.1162227	0	0.157202319	0.158454412	0.157202319	0.158454412
	Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 R Square 0.553314046 Adjusted R Square 0.553311779 Standard Error 1.624035606 Observations 197103 ANOVA df Regression 1 Residual 197101 Total 197102 Coefficients Intercept 0.32631227	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 R Square 0.553314046 Adjusted R Square 0.553311779 Standard Error 1.624035606 Observations 197103 ANOVA df SS Regression 1 643945.8062 Residual 197101 519852.2419 Total 197102 1163798.048 Coefficients Standard Error Intercept 0.32631227 0.005744657	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 R Square 0.553314046 Adjusted R Square 0.553311779 Standard Error 1.624035606 Observations 197103 ANOVA SS MS Regression 1 643945.8062 643945.8062 Residual 197101 519852.2419 2.637491651 Total 197102 1163798.048 Coefficients Standard Error t Stat Intercept 0.32631227 0.005744657 56.80273722	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 R Square 0.553314046 Adjusted R Square 0.553311779 Standard Error 1.624035606 Observations 197103 ANOVA F Regression 1 643945.8062 643945.8062 244150.8416 Residual 197101 519852.2419 2.637491651 Total 197102 1163798.048 Coefficients Standard Error t Stat P-value Intercept 0.32631227 0.005744657 56.80273722 0	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 Regression R Square 0.553314046 Adjusted R Square 0.553311779 Standard Error 1.624035606 Observations 197103 ANOVA ANOVA F Significance F Regression 1 643945.8062 643945.8062 244150.8416 0 Residual 197101 519852.2419 2.637491651 0 Total 197102 1163798.048 Testat P-value Lower 95% Intercept 0.32631227 0.005744657 56.80273722 0 0.315052879	SUMMARY OUTPUT	SUMMARY OUTPUT Regression Statistics Multiple R 0.743850822 0.553314046 Adjusted R Square 0.553311779 0.553311779 Standard Error 1.624035606 0.0053311779 Observations 197103 0.005744657 ANOVA 0.005744657 0.005744657 ANOVA 0.005744657 0.005744657 Coefficients 0.005744657 0.005744657

Sample intercept (b₀) and sample slope coefficient (b₁)

Sample estimates of the population intercept (β_0) and population slope (β_1)

SUMMARY OUTPU	JT			
Regression	Statistics			
Multiple R	0.743850822			
R Square	0.553314046			
Adjusted R Square	0.553311779			
Standard Error	1.624035606			
Observations	197103			
ANOVA				
	df	SS	MS	F
Regression	1	643945.8062	643945.8062	244150
Residual	197101	519852.2419	2.637491651	
Total	197102	1163798.048		
	Coefficients	Standard Error	t Stat	P-valu
Intercept	0.32631227	0.005744657	56.80273722	
Pre-tip amount	0.157828366	0.000319415	494.1162227	

- Multiple R*: Absolute value of Linear correlation coefficient "r".
- $-1 \le r \le 1$, no dimension or unit.
- r > 0: positive correlation (as X increases, then Y also increases).
- r < 0: negative correlation.
- Magnitude of r (without +/-) indicates the strength of the relationship.
 - $|r| \rightarrow 1$ means a stronger relationship.

MEASURES OF VARIATION

Total variation of the Y-variable is made up of two parts

$$SST = SSR + SSE$$

where

Sum Squares Total,
$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Variation of the Y_i values around their mean, \overline{Y}

Sum Squares Regression,
$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

Variation of the Y_i values explained by the regression equation relating Y with X

Sum Squares Errors,
$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Variation attributable to factors other than those considered in the regression equation

SUMMARY OUTPU	Т	
Regression	Statistics	
Multiple R	0.743850822	
R Square	0.553314046	
Adjusted R Square	0.553311779	
Standard Error	1.624035606	
Observations	197103	
ANOVA		
	df	SS
Regression	1	SSR643945.8062
Residual	197101	SSE 519852.2419
Total	197102	SST1163798.048
	Coefficients	Standard Error
Intercept	0.32631227	0.005744657
Pre-tip amount	0.157828366	0.000319415

SUMMARY OUTPU	Т			
	o: .:			
Regression	Statistics			
Multiple R	0.743850822			
R Square	0.553314046			
Adjusted R Square	0.553311779			
Standard Error	1.624035606			
Observations	197103			
ANOVA				
	df	SS	MS	F
Regression	1	SSR 643945.8062	643945.8062	244150
Residual	197101	SSE 519852.2419	2.637491651	
Total	197102	SST1163798.048		
	Coefficients	Standard Error	t Stat	P-valu
Intercept	0.32631227	0.005744657	56.80273722	
Pre-tip amount	0.157828366	0.000319415	494.1162227	

- R Square: Coefficient of determination $= r^2$.
- $0 \le r^2 \le 1$.
- $r^2 \rightarrow 1$ means a stronger relationship.
- In fact, let $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ (average).

$$r^2 = \frac{\sum (\widehat{Y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

MEASURES OF VARIATION

• Coefficient of determination, r^2

$$r^2 = \frac{SSR}{SST}$$

- $0 \le r^2 \le 1$
- Measures the proportion of variation of the Y_i values that is explained by the regression equation with the independent variable X
- Measures the goodness of fit of the regression model

SUMMARY OUTPU	IT							
Regression	Statistics							
Multiple R	0.743850822							
R Square	0.553314046							
Adjusted R Square	0.553311779							
Standard Error	1.624035606							
Observations	197103							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	643945.8062	643945.8062	244150.8416	0			
Residual	197101	519852.2419	2.637491651					
Total	197102	1163798.048						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.32631227	0.005744657	56.80273722	0	0.315052879	0.337571661	0.315052879	0.337571661
Pre-tip amount	0.157828366	0.000319415	494.1162227	0	0.157202319	0.158454412	0.157202319	0.158454412

INFERENCE ABOUT THE PARAMETERS

t-test for a slope coefficient

$$H_0$$
: $\beta_1 = 0$ (no linear relationship)

 $H_1: \beta_1 \neq 0$ (linear relationship exists)

$$t = \frac{b_1 - \beta_1}{S_{b_1}}$$
 with $(n-2)$ degrees of freedom (d.f.)

where S_{b_1} = standard error* of the slope

I. Rejection region approach

Reject
$$H_0$$
 if $|t| > C$. $V = t_{\alpha/2}(n-2)$

or

2. **p-value** approach

p-value =
$$P(t \ge |t|)$$

Reject H_0 if **p-value** < α

INFERENCE ABOUT THE PARAMETERS

• S_{b_1} measures the variation in the slope of regression lines from different possible samples

$$S_{b_1} = \sqrt{\frac{S_e^2}{\sum (X_i - \bar{X})^2}}$$

where S_e = variation of the errors around the regression line

SUMMARY OUTPU	JT							
Dannasian	Canadiania							
Regression								
Multiple R	0.743850822							
R Square	0.553314046							
Adjusted R Square	0.553311779							
Standard Error	1.624035606							
Observations	197103							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	643945.8062	643945.8062	244150.8416	0			
Residual	197101	519852.2419	2.637491651					
Total	197102	1163798.048						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.32631227	0.005744657	56.80273722	0	0.315052879	0.337571661	0.315052879	0.337571661
Pre-tip amount	0.157828366	0.000319415	494.1162227	0	0.157202319	0.158454412	0.157202319	0.158454412

Confidence interval estimate

for slope coefficient

$$b_1 \pm t \alpha_{/_2,n-2} S_{b_1}$$

= [0.1572, 0.1585]

CONFIDENCE INTERVAL

Confidence interval estimate for slope coefficient

$$b_1 \pm t \alpha_{/2,n-K-1} S_{b_1}$$

- Implication
 - The CI for slope coefficient does not include zero, indicating the independent variable significantly affects the dependent variable
 - Both boundaries of the CI are positive (negative), telling that the independent variable
 is very likely to be positively (negatively) related to the dependent variable

SUMMARY

- Scatter plot
- Coefficient of correlation
- Simple linear regression model
 - Model building
 - Model evaluation (coefficient of determination; t-test, confidence interval for slope coefficient)
- Next week: Multiple regression