{ "cells": [ { "cell_type": "markdown", "id": "e5905a69", "metadata": {}, "source": [ "# CSE6242 - HW3 - Q1" ] }, { "cell_type": "markdown", "id": "09289981", "metadata": {}, "source": [ "Pyspark Imports" ] }, { "cell_type": "code", "execution_count": 1, "id": "139318cb", "metadata": {}, "outputs": [], "source": [ "### DO NOT MODIFY THIS CELL ###\n", "import pyspark\n", "from pyspark.sql import SQLContext\n", "from pyspark.sql.functions import hour, when, col, date_format, to_timestamp, round, coalesce\n", "from pyspark.sql.functions import *" ] }, { "cell_type": "markdown", "id": "3fd9e0f8", "metadata": {}, "source": [ "Initialize PySpark Context" ] }, { "cell_type": "code", "execution_count": 2, "id": "b0c18c6c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Setting default log level to \"WARN\".\n", "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n", "23/10/18 13:38:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n", "/usr/local/lib/python3.9/dist-packages/pyspark/sql/context.py:113: FutureWarning: Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.\n", " warnings.warn(\n" ] } ], "source": [ "### DO NOT MODIFY THIS CELL ###\n", "sc = pyspark.SparkContext(appName=\"HW3-Q1\")\n", "sqlContext = SQLContext(sc)" ] }, { "cell_type": "markdown", "id": "d68ae314", "metadata": {}, "source": [ "Define function for loading data" ] }, { "cell_type": "code", "execution_count": 3, "id": "7e5bbdda", "metadata": {}, "outputs": [], "source": [ "### DO NOT MODIFY THIS CELL ###\n", "def load_data():\n", " df = sqlContext.read.option(\"header\",True) \\\n", " .csv(\"yellow_tripdata_2019-01_short.csv\")\n", " return df" ] }, { "cell_type": "markdown", "id": "0d52409d", "metadata": {}, "source": [ "### Q1.a" ] }, { "cell_type": "markdown", "id": "e43f6e00", "metadata": {}, "source": [ "Perform data casting to clean incoming dataset" ] }, { "cell_type": "code", "execution_count": 4, "id": "11f801b4", "metadata": {}, "outputs": [], "source": [ "def clean_data(df):\n", " '''\n", " input: df a dataframe\n", " output: df a dataframe with the all the original columns\n", " '''\n", " \n", " # START YOUR CODE HERE ---------\n", " from pyspark.sql.types import StructField, StructType, IntegerType, TimestampType, FloatType, StringType\n", "\n", " df = df.withColumn(\"passenger_count\", df[\"passenger_count\"].cast(IntegerType()))\n", " df = df.withColumn(\"total_amount\", df[\"total_amount\"].cast(FloatType()))\n", " df = df.withColumn(\"tip_amount\", df[\"tip_amount\"].cast(FloatType()))\n", " df = df.withColumn(\"trip_distance\", df[\"trip_distance\"].cast(FloatType()))\n", " df = df.withColumn(\"fare_amount\", df[\"fare_amount\"].cast(FloatType()))\n", " df = df.withColumn(\"tpep_pickup_datetime\", df[\"tpep_pickup_datetime\"].cast(TimestampType()))\n", " df = df.withColumn(\"tpep_dropoff_datetime\", df[\"tpep_dropoff_datetime\"].cast(TimestampType()))\n", "\n", " # END YOUR CODE HERE -----------\n", " \n", " return df" ] }, { "cell_type": "markdown", "id": "d4f565d0", "metadata": {}, "source": [ "### Q1.b" ] }, { "cell_type": "markdown", "id": "72b4f712", "metadata": {}, "source": [ "Find rate per person for based on how many passengers travel between pickup and dropoff locations. " ] }, { "cell_type": "code", "execution_count": 6, "id": "4e115152", "metadata": {}, "outputs": [], "source": [ "def common_pair(df):\n", " '''\n", " input: df a dataframe\n", " output: df a dataframe with following columns:\n", " - PULocationID\n", " - DOLocationID\n", " - passenger_count\n", " - per_person_rate\n", " \n", " per_person_rate is the total_amount per person for a given pair.\n", " \n", " '''\n", " \n", " # START YOUR CODE HERE ---------\n", " from pyspark.sql import Window\n", "\n", " partition_cols = ['PULocationID','DOLocationID']\n", "\n", " group_by_result = df.groupBy(partition_cols).count()\n", " # group_by_result.show()\n", "\n", " # Filter out any trips that have the same pick-up and drop-off location. \n", " df_temp = df.filter((df.PULocationID != df.DOLocationID))\n", " # group_by_result_difference_location.show()\n", "\n", " # # [4 pts] You will be modifying the function common_pair. \n", " # # Return the top 10 pickup-dropoff location pairs that have the highest number of total passengers who have traveled between them. \n", " # # Sort the location pairs by total passengers. \n", " df_temp = df_temp.withColumn(\"passenger_count\", sum(\"passenger_count\").over(Window.partitionBy(*partition_cols)))\n", " \n", " # # For each location pair, also compute \n", " # # the average amount per passenger over all trips (name this per_person_rate), utilizing total_amount.\n", " df_temp = df_temp.withColumn(\"total_amount_partition\", sum(\"total_amount\").over(Window.partitionBy(*partition_cols)))\n", " df_temp = df_temp.withColumn(\"per_person_rate\",col(\"total_amount_partition\")/col(\"passenger_count\"))\n", " \n", " # # For pairs with the same total passengers, \n", " # # sort them in descending order of per_person_rate.\n", " # # Rename the column for total passengers to passenger_count. \n", " df_temp = df_temp.select(['PULocationID','DOLocationID','passenger_count','per_person_rate']).distinct()\n", " df_joined = group_by_result.join(df_temp, partition_cols)\n", " df_joined = df_joined.orderBy(['passenger_count','per_person_rate'], ascending=False).limit(10)\n", " df_output = df_joined.drop('count')\n", " # END YOUR CODE HERE -----------\n", "\n", " return df_output\n" ] }, { "cell_type": "markdown", "id": "127574ab", "metadata": {}, "source": [ "### Q1.c" ] }, { "cell_type": "markdown", "id": "36a8fd27", "metadata": {}, "source": [ "Find trips which trip distances generate the highest tip percentage." ] }, { "cell_type": "code", "execution_count": 8, "id": "376c981c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-------------+------------------+\n", "|trip_distance| tip_percent|\n", "+-------------+------------------+\n", "| 0.1| 59.45578229670622|\n", "| 2.58| 59.33333331463384|\n", "| 4.69|54.054054054054056|\n", "| 3.46|51.736263652424235|\n", "| 5.44|43.499999046325684|\n", "| 6.39|40.341465647627665|\n", "| 8.58| 38.83333206176758|\n", "| 9.27|36.328358436698345|\n", "| 2.17| 36.04761872972761|\n", "| 13.05| 35.88888910081651|\n", "| 4.53| 35.0|\n", "| 0.26| 34.28571564810617|\n", "| 6.66| 34.19047650836763|\n", "| 3.82| 33.53043514749278|\n", "| 2.99| 33.39130360147227|\n", "+-------------+------------------+\n", "\n" ] } ], "source": [ "def distance_with_most_tip(df):\n", " '''\n", " input: df a dataframe\n", " output: df a dataframe with following columns:\n", " - trip_distance\n", " - tip_percent\n", " \n", " trip_percent is the percent of tip out of fare_amount\n", " \n", " '''\n", " \n", " # START YOUR CODE HERE ---------\n", " # You will be modifying the function distance_with_most_tip . \n", " # Filter the data for trips having fares (fare_amount) \n", " # greater than $2.00 and \n", " # a trip distance (trip_distance) greater than 0. \n", " filtered_df = df.where((df.fare_amount > 2) & (df.trip_distance > 0))\n", " \n", " # Calculate the tip percent (tip_amount * 100 / fare_amount) for each trip. \n", " # Round all trip distances up to the closest mile and find the average tip_percent for each trip_distance.\n", " filtered_df = filtered_df.groupBy('trip_distance').agg((mean('tip_amount')*100)/mean('fare_amount'))\n", " \n", " # Sort the result in descending order of tip_percent to obtain the top 15 trip distances which tip the most generously. \n", " # Rename \n", " # the column for rounded trip distances to trip_distance, and \n", " # the column for average tip percents tip_percent . \n", " new_cols = ['trip_distance', 'tip_percent']\n", " df = filtered_df.toDF(*new_cols) \n", " df = df.sort(df.tip_percent.desc()).limit(15)\n", "\n", " # END YOUR CODE HERE -----------\n", " \n", " return df" ] }, { "cell_type": "markdown", "id": "f0172fe6", "metadata": {}, "source": [ "### Q1.d" ] }, { "cell_type": "markdown", "id": "4613c906", "metadata": {}, "source": [ "Determine the average speed at different times of day." ] }, { "cell_type": "code", "execution_count": 9, "id": "abff9e24", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-----------+--------------------+--------------------+\n", "|time_of_day| am_avg_speed| pm_avg_speed|\n", "+-----------+--------------------+--------------------+\n", "| 0|0.002604915610175...| NULL|\n", "| 1|0.003012634281582599|0.001423670640327...|\n", "| 2| NULL| NULL|\n", "| 3| NULL| 0.0|\n", "| 4| NULL| 0.0|\n", "| 5| NULL|1.427127844379092E-4|\n", "| 6| NULL|0.002774957741846557|\n", "| 7| NULL|5.115362636227142E-5|\n", "| 8| NULL|1.439757672971638E-4|\n", "| 9| NULL| NULL|\n", "| 10| NULL|1.707634436841026...|\n", "| 11| NULL|0.001291932857002...|\n", "+-----------+--------------------+--------------------+\n", "\n" ] } ], "source": [ "def time_with_most_traffic(df):\n", " '''\n", " input: df a dataframe\n", " output: df a dataframe with following columns:\n", " - time_of_day\n", " - am_avg_speed\n", " - pm_avg_speed\n", " \n", " trip_percent is the percent of tip out of fare_amount\n", " \n", " '''\n", " \n", " # START YOUR CODE HERE ---------\n", " # from pyspark.sql.functions import dayofweek,date_format, unix_timestamp,format_number\n", " # from pyspark.sql.types import DecimalType\n", " # from pyspark.sql import Window\n", " \n", " # # You will be modifying the function time_with_most_traffic to determine which hour of the day has the most traffic. \n", " \n", " # df = df.withColumn('time_of_day',date_format(col(\"tpep_pickup_datetime\"),\"K\"))\n", " # df = df.withColumn('AM_PM',date_format(col(\"tpep_pickup_datetime\"),\"a\"))\n", " # df = df.withColumn('diff_in_seconds',col(\"tpep_dropoff_datetime\").cast(\"long\") - col('tpep_pickup_datetime').cast(\"long\"))\n", "\n", " # partition_cols = ['time_of_day','AM_PM']\n", " \n", " # # Calculate the traffic for a particular hour using the average speed of all taxi trips which began during that hour. \n", " # # Calculate the average speed as the average trip_distance divided by the average trip time, as distance per hour.\n", " # group_by_result = df.groupBy(partition_cols).count()\n", " \n", " # df = group_by_result.join(df, partition_cols)\n", " \n", " # df = df.withColumn(\"trip_distance_sum\", sum(\"trip_distance\").over(Window.partitionBy(*partition_cols)))\n", " # df = df.withColumn(\"average_trip_distance\",col(\"trip_distance_sum\")/col(\"count\"))\n", "\n", " # df = df.withColumn(\"trip_time_sum_s\", sum(\"diff_in_seconds\").over(Window.partitionBy(*partition_cols)))\n", " # df = df.withColumn(\"average_trip_time_s\",col(\"trip_time_sum_s\")/col(\"count\"))\n", "\n", " # df = df.withColumn(\"average_speed\",col(\"average_trip_distance\")/col(\"average_trip_time_s\"))\n", "\n", " # df = df.select(['time_of_day','AM_PM','average_speed']).distinct()\n", " # df = group_by_result.join(df, partition_cols)\n", " \n", " # # A day with low average speed indicates high levels of traffic. \n", " # # The average speed may be 0, indicating very high levels of traffic.\n", "\n", " # # Additionally, you must separate the hours into AM and PM, with hours 0:00-11:59 being AM, and hours 12:00-23:59 being PM. \n", " # # Convert these times to the 12 hour time, so you can match the below output. \n", " # # For example, \n", " # # the row with 1 as time of day, \n", " # # should show the average speed between 1 am and 2 am in the am_avg_speed column, \n", " # # and between 1 pm and 2pm in the pm_avg_speed column.\n", "\n", " # # Use date_format along with the appropriate pattern letters to format the time of day so that it matches the example output below. \n", " \n", " # # Your final table should \n", " # # contain values sorted from 0-11 for time_of_day. \n", " # # There may be data missing for a time of day, and it may be null for am_avg_speed or pm_avg_speed. \n", " # # If an hour has no data for am or pm, there may be missing rows. \n", " # # Do not include any additional rows for times of day which are not represented in the data. \n", "\n", " # df = df.select(['time_of_day','AM_PM','average_speed']).limit(15)\n", " \n", " # from pyspark.sql import SparkSession\n", " # spark = SparkSession.builder.getOrCreate()\n", "\n", " # time_data = [\n", " # [0,None,None],\n", " # [1,None,None],\n", " # [2,None,None],\n", " # [3,None,None],\n", " # [4,None,None],\n", " # [5,None,None],\n", " # [6,None,None],\n", " # [7,None,None],\n", " # [8,None,None],\n", " # [9,None,None],\n", " # [10,None,None],\n", " # [11,None,None]\n", " # ]\n", " \n", " # for i in range(0,len(time_data)):\n", " # time_int_wanted = time_data[i][0]\n", " \n", " # for j in range(0, len(df.collect())):\n", " # time_int = df.collect()[j][0]\n", " # AM_PM = df.collect()[j][1]\n", " # average_speed = df.collect()[j][2]\n", "\n", " # if (time_int == str(time_int_wanted)):\n", " # if (AM_PM ==\"AM\"):\n", " # time_data[int(time_int)][1] = float(average_speed)\n", " # if (AM_PM ==\"PM\"):\n", " # time_data[int(time_int)][2] = float(average_speed)\n", "\n", " # df_output = spark.createDataFrame(data=time_data, schema=[\"time_of_day\",\"am_avg_speed\",\"pm_avg_speed\"])\n", " # END YOUR CODE HERE -----------\n", " \n", " return df_output" ] }, { "cell_type": "markdown", "id": "34cbd7b9", "metadata": {}, "source": [ "### The below cells are for you to investigate your solutions and will not be graded\n", "## Ensure they are commented out prior to submitting to Gradescope to avoid errors" ] }, { "cell_type": "code", "execution_count": 10, "id": "bf9abefb", "metadata": {}, "outputs": [], "source": [ "# df = load_data()\n", "# df = clean_data(df)" ] }, { "cell_type": "code", "execution_count": 11, "id": "cfa96f41", "metadata": {}, "outputs": [], "source": [ "# common_pair(df).show()" ] }, { "cell_type": "code", "execution_count": 12, "id": "8e42b46a", "metadata": {}, "outputs": [], "source": [ "# distance_with_most_tip(df).show()" ] }, { "cell_type": "code", "execution_count": 13, "id": "43e80dba-7407-4c3a-ba27-6cba3d90d21c", "metadata": {}, "outputs": [], "source": [ "# time_with_most_traffic(df).show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" } }, "nbformat": 4, "nbformat_minor": 5 }