
JavaScript is the programming language of
the Internet, the secret sauce that makes the
Web awesome, your favorite sites interactive,
and online games fun!

JavaScript for Kids is a lighthearted intro-
duction that teaches programming essentials
through patient, step-by-step examples paired
with funny illustrations. You’ll begin with
the basics, like working with strings, arrays,
and loops, and then move on to more advanced
topics, like building interactivity with jQuery
and drawing graphics with Canvas.

Along the way, you’ll write games such as 
Find the Buried Treasure, Hangman, and 

SHELVE IN
:

PROGRAM
M

ING LANGUAGES/JAVASCRIPT

www.nostarch.com

TH E  F I N EST  I N
G E E K  E NTE RTA I N M E NT™

For kids aged 10+ (and their parents)

real programming.

real easy.
REAL Programming.

REAL EASY.

.$34.95 ($36 95 CDN)

Illustrations by Miran Lipovaca

N i c k  M o r g a n

 Java Script
FOR KIDS

JavaScript
FOR KIDS

A Playful Introduction to Programming

With visual examples like bouncing balls,
animated bees, and racing cars, you can really
see what you’re programming. Each chapter
builds on the last, and programming challenges
at the end of each chapter will stretch your
brain and inspire your own amazing programs.
Make something cool with JavaScript today!

ABOUT THE AUTHOR

Nick Morgan is a frontend engineer at
Twitter. He loves all programming languages
but has a particular soft spot for JavaScript.
Nick lives in San Francisco (the foggy part)
with his fiancée and their fluffy dog, Pancake.
He blogs at skilldrick.co.uk.Snake. You’ll also learn how to:

 Create functions to organize and reuse
your code

 Write and modify HTML to create 
dynamic web pages

 Use the DOM and jQuery to make your 

 Use the Canvas element to draw and
animate graphics

 Program real user-controlled games with
collision detection and score keeping

 

web pages react to user input

J
a

v
a

S
c

r
ip

t
 f

o
r

 K
id

s
J

a
v

a
s

c
r

ip
t

 f
o

r
 k

id
s

M
o

r
g

a
n

www.allitebooks.com

http://www.allitebooks.org


JavaScript for Kids

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


JavaScript 
for Kids

A Playful Introduction 
to Programming

By Nick Morgan

San Francisco

www.allitebooks.com

http://www.allitebooks.org


JavaScript for KidS. Copyright © 2015 by Nick Morgan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information storage 
or retrieval system, without the prior written permission of the copyright owner and the publisher. 

Printed in USA

First printing

18 17 16 15 14     1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-408-4
ISBN-13: 978-1-59327-408-5

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Tina Salameh
Illustrator: Miran Lipovac�  a
Developmental Editors: William Pollock and Seph Kramer
Technical Reviewer: Angus Croll
Copyeditor: Rachel Monaghan
Compositor: Riley Hoffman
Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com 
www.nostarch.com

Library of Congress Control Number:  2014953113

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. 
Other product and company names mentioned herein may be the trademarks of their respective 
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are 
using the names only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-
tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to be 
caused directly or indirectly by the information contained in it.

www.allitebooks.com

http://www.allitebooks.org


To Philly 
(and Pancake)

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


About the Author
Nick Morgan is a frontend engineer at Twitter. He loves all pro-
gramming languages but has a particular soft spot for JavaScript. 
Nick lives in San Francisco (the foggy part) with his fiancée and 
their fluffy dog, Pancake. He blogs at skilldrick.co.uk.

About the Illustrator
Miran Lipovaca is the author of Learn You a Haskell for Great 
Good!. He enjoys boxing, playing bass guitar, and, of course, 
 drawing. He has a fascination with dancing skeletons and the 
number 71, and when he walks through automatic doors he pre-
tends that he’s actually opening them with his mind.

About the Technical Reviewer
Angus Croll is the author of If Hemingway Wrote JavaScript, 
and he is obsessed with JavaScript and literature in equal 
measure. He works on Twitter’s UI framework team, where he 
co-authored the Flight framework. He writes the influential 
JavaScript, JavaScript blog and speaks at conferences worldwide. 
He tweets at @angustweets.

www.allitebooks.com

skilldrick.co.uk
https://twitter.com/angustweets
http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


BRIef CoNTeNTS
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Part I: fundamentals
Chapter 1: What Is JavaScript? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Data Types and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3: Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4: Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 5: The Basics of HTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 6: Conditionals and Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7: Creating a Hangman Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 8: Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Part II: Advanced JavaScript
Chapter 9: The DOM and jQuery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 10: Interactive Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 11: Find the Buried Treasure! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Chapter 12: Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . 181

Part III: Canvas
Chapter 13: The canvas Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 14: Making Things Move on the Canvas. . . . . . . . . . . . . . . . . . . . 217

Chapter 15: Controlling Animations with the Keyboard . . . . . . . . . . . . . . 235

Chapter 16: Making a Snake Game: Part 1 . . . . . . . . . . . . . . . . . . . . . . . . 251

Chapter 17: Making a Snake Game: Part 2 . . . . . . . . . . . . . . . . . . . . . . . . 267

Afterword: Where to Go from Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

www.allitebooks.com

http://www.allitebooks.org




CoNTeNTS IN DeTAIl

Acknowledgments xxi

Introduction xxiii
Who Should Read This Book?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiv
How to Read This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiv
What’s in This Book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Have Fun! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvi

Part I: fundamentals

1 
What Is JavaScript? 3
Meet JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Why Learn JavaScript? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Writing Some JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
The Structure of a JavaScript Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 
Data Types and Variables 13
Numbers and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Naming Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Creating New Variables Using Math. . . . . . . . . . . . . . . . . . . . . . . . . 19
Incrementing and Decrementing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
+= (plus-equals) and – = (minus-equals). . . . . . . . . . . . . . . . . . . . . . . 22

Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Joining Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Finding the Length of a String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Getting a Single Character from a String . . . . . . . . . . . . . . . . . . . . . 26
Cutting Up Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Changing Strings to All Capital or All Lowercase Letters . . . . . . . . 28

Booleans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Comparing Numbers with Booleans . . . . . . . . . . . . . . . . . . . . . . . . . 33



xii  Contents in Detail

undefined and null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 
Arrays 39
Why Should You Care About Arrays? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Creating an Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Accessing an Array’s Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Setting or Changing Elements in an Array. . . . . . . . . . . . . . . . . . . . . . . . . . 43
Mixing Data Types in an Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Working with Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Finding the Length of an Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Adding Elements to an Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Removing Elements from an Array . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Adding Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Finding the Index of an Element in an Array  . . . . . . . . . . . . . . . . . 52
Turning an Array into a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Useful Things to Do with Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Finding Your Way Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Decision Maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Creating a Random Insult Generator . . . . . . . . . . . . . . . . . . . . . . . . 59

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

#1: New Insults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
#2: More Sophisticated Insults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
#3: Use + or join? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
#4: Joining Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 
objects 63
Creating Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Keys Without Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Accessing Values in Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Adding Values to Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Adding Keys with Dot Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Combining Arrays and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

An Array of Friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Exploring Objects in the Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Useful Things to Do with Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Keeping Track of Owed Money. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Storing Information About Your Movies . . . . . . . . . . . . . . . . . . . . . . 74

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents in Detail  xiii

Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
#1: Scorekeeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
#2: Digging into Objects and Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 
The Basics of HTMl 77
Text Editors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Our First HTML Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Tags and Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Heading Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
The p Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Whitespace in HTML and Block-Level Elements . . . . . . . . . . . . . . . 81
Inline Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Full HTML Document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
HTML Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Adding Links to Your HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Link Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Title Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 
Conditionals and loops 89
Embedding JavaScript in HTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

if Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
if…else Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Chaining if…else Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
while Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
for Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

#1: Awesome Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
#2: Random String Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
#3: h4ck3r sp34k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 
Creating a Hangman Game 105
Interacting with a Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Creating a Prompt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Using confirm to Ask a Yes or No Question . . . . . . . . . . . . . . . . . . 108
Using Alerts to Give a Player Information . . . . . . . . . . . . . . . . . . . 109
Why Use alert Instead of console.log? . . . . . . . . . . . . . . . . . . . . . . . 109



xiv  Contents in Detail

Designing Your Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Using Pseudocode to Design the Game . . . . . . . . . . . . . . . . . . . . . . 110
Tracking the State of the Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Designing the Game Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Coding the Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Choosing a Random Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Creating the Answer Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Coding the Game Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Ending the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

The Game Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

#1: More Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
#2: Capital Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
#3: Limiting Guesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
#4: Fixing a Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 
functions 123
The Basic Anatomy of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Creating a Simple Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Calling a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Passing Arguments into Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Printing Cat Faces! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Passing Multiple Arguments to a Function. . . . . . . . . . . . . . . . . . . 128

Returning Values from Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Using Function Calls as Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Using Functions to Simplify Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A Function to Pick a Random Word. . . . . . . . . . . . . . . . . . . . . . . . . 132
A Random Insult Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Making the Random Insult Generator into a Function . . . . . . . . . 134

Leaving a Function Early with return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Using return Multiple Times Instead of if...else Statements. . . . . . . . . . . 136
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

#1: Doing Arithmetic with Functions. . . . . . . . . . . . . . . . . . . . . . . . 138
#2: Are These Arrays the Same? . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
#3: Hangman, Using Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Contents in Detail  xv

Part II: Advanced JavaScript

9 
The DoM and jQuery 143
Selecting DOM Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Using id to Identify Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Selecting an Element Using getElementById. . . . . . . . . . . . . . . . . 145
Replacing the Heading Text Using the DOM . . . . . . . . . . . . . . . . . 146

Using jQuery to Work with the DOM Tree . . . . . . . . . . . . . . . . . . . . . . . . . 148
Loading jQuery on Your HTML Page . . . . . . . . . . . . . . . . . . . . . . . 148
Replacing the Heading Text Using jQuery . . . . . . . . . . . . . . . . . . . 148

Creating New Elements with jQuery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Animating Elements with jQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Chaining jQuery Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

#1: Listing Your Friends with jQuery  
(And Making Them Smell!). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

#2: Making a Heading Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
#3: Delaying Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
#4: Using fadeTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10 
Interactive Programming 155
Delaying Code with setTimeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Canceling a Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Calling Code Multiple Times with setInterval . . . . . . . . . . . . . . . . . . . . . . 158
Animating Elements with setInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Responding to User Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Responding to Clicks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
The mousemove Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

#1: Follow the Clicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
#2: Create Your Own Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
#3: Cancel an Animation with a Click . . . . . . . . . . . . . . . . . . . . . . . 166
#4: Make a “Click the Header” Game! . . . . . . . . . . . . . . . . . . . . . . . 166



xvi  Contents in Detail

11 
find the Buried Treasure! 167
Designing the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Creating the Web Page with HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Picking a Random Treasure Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Picking Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Setting the Treasure Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 171

The Click Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Counting Clicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Calculating the Distance Between the Click and the Treasure . . . 172
Using the Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Telling the Player How Close They Are. . . . . . . . . . . . . . . . . . . . . . 175
Checking If the Player Won . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

#1: Increasing the Playing Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
#2: Adding More Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
#3: Adding a Click Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
#4: Displaying the Number of Remaining Clicks . . . . . . . . . . . . . . 179

12 
object-oriented Programming 181
A Simple Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Adding Methods to Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Using the this Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Sharing a Method Between Multiple Objects . . . . . . . . . . . . . . . . . 183

Creating Objects Using Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Anatomy of the Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Creating a Car Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Drawing the Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Testing the drawCar Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Customizing Objects with Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Adding a draw Method to the Car Prototype. . . . . . . . . . . . . . . . . . 191
Adding a moveRight Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Adding the Left, Up, and Down move Methods. . . . . . . . . . . . . . . . 193

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

#1: Drawing in the Car Constructor. . . . . . . . . . . . . . . . . . . . . . . . . 195
#2: Adding a speed Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
#3: Racing Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



Contents in Detail  xvii

Part III: Canvas

13 
The canvas element 199
Creating a Basic Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Drawing on the Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Selecting and Saving the canvas Element. . . . . . . . . . . . . . . . . . . . 201
Getting the Drawing Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Drawing a Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Drawing Multiple Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Changing the Drawing Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Drawing Rectangle Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Drawing Lines or Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Filling Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Drawing Arcs and Circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Drawing a Quarter Circle or an Arc. . . . . . . . . . . . . . . . . . . . . . . . . 210
Drawing a Half Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Drawing a Full Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Drawing Lots of Circles with a Function. . . . . . . . . . . . . . . . . . . . . . . . . . . 212
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

#1: A Snowman-Drawing Function . . . . . . . . . . . . . . . . . . . . . . . . . 214
#2: Drawing an Array of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
#3: Painting with Your Mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
#4: Drawing the Man in Hangman . . . . . . . . . . . . . . . . . . . . . . . . . 215

14 
Making Things Move on the Canvas 217
Moving Across the Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Clearing the Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Drawing the Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Changing the Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Viewing the Animation in the Browser . . . . . . . . . . . . . . . . . . . . . . 219

Animating the Size of a Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A Random Bee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A New circle Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Drawing the Bee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Updating the Bee’s Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Animating Our Buzzing Bee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Bouncing a Ball! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
The Ball Constructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Drawing the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228



xviii  Contents in Detail

Moving the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Bouncing the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Animating the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

#1: Bouncing the Ball Around a Larger Canvas . . . . . . . . . . . . . . . 233
#2: Randomizing this.xSpeed and this.ySpeed . . . . . . . . . . . . . . . . 233
#3: Animating More Balls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
#4: Making the Balls Colorful. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

15 
Controlling Animations with the Keyboard 235
Keyboard Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Setting Up the HTML File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Adding the keydown Event Handler . . . . . . . . . . . . . . . . . . . . . . . . 237
Using an Object to Convert Keycodes into Names . . . . . . . . . . . . . 238

Moving a Ball with the Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Setting Up the Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Defining the circle Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Creating the Ball Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Defining the move Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Defining the draw Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Creating a setDirection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Reacting to the Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Animating the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Running the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

#1: Bouncing Off the Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
#2: Controlling the Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
#3: Flexible Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

16 
Making a Snake Game: Part 1 251
The Game Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
The Structure of the Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Using setInterval to Animate the Game . . . . . . . . . . . . . . . . . . . . . 254
Creating the Game Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Setting Up Keyboard Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Game Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Creating the HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Defining the canvas, ctx, width, and height Variables . . . . . . . . . . 256



Contents in Detail  xix

Dividing the Canvas into Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Defining the score Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Drawing the Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Displaying the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Setting the Text Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Setting the Size and Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Writing the drawScore Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Ending the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

#1: Putting It Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
#2: Animating the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
#3: Adding Text to Hangman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

17 
Making a Snake Game: Part 2 267
Building the Block Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Adding the drawSquare Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Adding the drawCircle Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Adding the equal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Creating the Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Writing the Snake Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Drawing the Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Moving the Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Adding the move Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Adding the checkCollision Method. . . . . . . . . . . . . . . . . . . . . . . . . . 279

Setting the Snake’s Direction with the Keyboard. . . . . . . . . . . . . . . . . . . . 281
Adding the keydown Event Handler . . . . . . . . . . . . . . . . . . . . . . . . 281
Adding the setDirection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Creating the Apple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Writing the Apple Constructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Drawing the Apple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Moving the Apple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
What You Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

#1: Making the Game Bigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
#2: Coloring the Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
#3: Making the Game Speed Up as You Play . . . . . . . . . . . . . . . . . 292
#4: Fixing the apple.move Method . . . . . . . . . . . . . . . . . . . . . . . . . . 292

www.allitebooks.com

http://www.allitebooks.org


xx  Contents in Detail

Afterword 
Where to Go from Here 293
More JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Web Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

HTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
CSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Server-Side Code with Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Graphical Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
SVG Using Raphaël . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

3D Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Programming Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Audio Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Game Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Sharing Your Code Using JSFiddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Glossary 299

Index 305



Acknowledgments
So many thanks to my wonderful fiancée, Philly, for her encour-
agement and support during the past 18 months. I truly couldn’t 
have done it without her. And thanks to Pancake, our dog, for 
graciously allowing me to use him in my code examples.

Thanks to Angus, without whom I wouldn’t be here, in San 
Francisco, writing this book. Angus referred me to Twitter back 
in 2011, and then in 2013 suggested to Bill Pollock that I might 
be interested in writing this book you’re holding. And to top it all, 
he agreed to be the technical reviewer, catching a great number of 
JavaScript faux pas.

Thanks to Bill Pollock, Seph Kramer, Riley Hoffman, Tyler 
Ortman, and everyone else at No Starch Press, who patiently 
guided me through the process of writing this book. Special thanks 
to Bill and Seph for massaging my writing into its current form.

Thanks to the young reviewers River Bradley, Damien Champ, 
and Alex Chu, who had some great feedback on the early PDFs.

Finally, thanks to Miran Lipovaca. I’ve been a fan of Miran 
for years—his book Learn You a Haskell for Great Good is one 
of my favorite programming books, and his illustrations for it 
are amazing. Finding out he’d be illustrating my book was like a 
dream come true. His pictures for this book are better than I could 
have imagined, and I’m humbled to have had the chance to work 
with him.





INTRoDuCTIoN

Welcome to JavaScript for Kids! In this book, you’ll 
learn to program with JavaScript, the language 
of the Web. But more than that, you’ll become a 
programmer—someone who not only uses computers 
but also controls them. Once you learn to program, 
you can bend computers to your will and make them 
do whatever you want!



xxiv  Introduction

JavaScript is a great programming language to learn because 
it’s used everywhere. Web browsers like Chrome, Firefox, and 
Internet Explorer all use JavaScript. With the power of JavaScript, 
web programmers can transform web pages from simple docu-
ments into full-blown interactive applications and games.

But you’re not limited to building web pages. JavaScript can 
run on web servers to create whole websites and can even be used 
to control robots and other hardware!

Who Should Read This Book?
This book is for anyone who wants to learn JavaScript or to start 
programming for the first time. The book is designed to be kid 
friendly, but it can serve as a first programming book for begin-
ners of all ages.

With this book, you’ll build up your knowledge of JavaScript 
gradually, starting with JavaScript’s simple data types, before 
moving onto complex types, control structures, and functions. 
After that you’ll learn how to write code that reacts when the 
user moves the mouse or presses a key on the keyboard. Finally, 
you’ll learn about the canvas element, which lets you use JavaScript 
to draw and animate anything you can imagine!

Along the way, you’ll create a few games to stretch your pro-
gramming skills and put what you’ve learned to good use.

How to Read This Book
First off, read it in order! That might sound like a silly thing to 
say, but lots of people want to jump straight into the fun stuff, like 
making games. But each chapter is meant to build on what was 
covered in earlier chapters, so if you begin at the beginning, you’ll 
have an easier time when you get to the games.

Programming languages are like spoken languages: you have 
to learn the grammar and the vocabulary, and this takes time. 
The only way to improve is by writing (and reading) a lot of code. 
As you write more and more JavaScript, you’ll find certain parts of 
the language become second nature, and eventually you’ll become 
a fluent writer of JavaScript.

As you read, I encourage you to type out and test the code 
examples throughout the book. If you don’t fully understand what’s 



Introduction  xxv

going on, try making small changes to see what effect they have. 
If the changes don’t have the effect you expected, see if you can 
find out why.

Above all, work through the “Try It Out” and “Programming 
Challenges” sections. Typing out the code that appears in the book 
is a good first step, but you’ll understand programming at a deeper 
level when you start writing your own code. If you find a challenge 
interesting, then keep at it! Come up with your own challenges to 
build even more onto the programs you’ve written.

You’ll find sample solutions to the programming challenges (as 
well as the code files for the games and other examples) at http://
nostarch.com/javascriptforkids/. Try looking at the solutions after 
you’ve solved a challenge, so you can compare your approach to 
mine. Or, if you’re stuck, you can check the solution for hints. But 
remember that these are just sample solutions. There are many, 
many different ways to accomplish the same goal in JavaScript, 
so don’t worry if you end up with a completely different solution 
from mine!

If you come across a word and you don’t know what it means, 
check the glossary at the back of the book. The glossary contains 
definitions for many of the programming terms you’ll encounter in 
this book.

What’s in This Book?
chapter 1 gives you a quick introduction to JavaScript and gets 
you started writing JavaScript in Google Chrome.

chapter 2 introduces variables and the basic data types used by 
JavaScript: numbers, strings, and Booleans.

chapter 3 is all about arrays, which are used to hold lists of other 
pieces of data.

chapter 4 is about objects, which contain pairs of keys and values.

chapter 5 is an introduction to HTML, the language used to 
create web pages.

chapter 6 shows you how to gain more control over your code 
using if statements, for loops, and other control structures.

chapter 7 puts together everything you’ve learned so far to create 
a simple Hangman word-guessing game.



xxvi  Introduction

chapter 8 shows you how to write your own functions so you can 
group together and reuse blocks of code.

chapter 9 introduces jQuery, a tool that makes it easy to control 
web pages using JavaScript.

chapter 10 shows you how to use timeouts, intervals, and event 
handlers to make your code more interactive.

chapter 11 uses functions, jQuery, and event handlers to create a 
game called “Find the Buried Treasure!”

chapter 12 teaches a style of programming called object-oriented 
programming.

chapter 13 introduces the canvas element, which allows you to 
draw graphics on a web page with JavaScript.

chapter 14 builds on the animation techniques you learned 
in Chapter 10 so you can create animations with canvas, and 
chapter 15 shows you how to control those canvas animations 
with the keyboard.

In chapters 16 and 17, you’ll program a complete Snake game, 
using everything you learned in the previous 15 chapters!

The afterword gives you some ideas for how to learn even more 
about programming.

The Glossary contains definitions for many of the new words 
you’ll encounter.

Have fun!
One last thing to remember: Have fun! Programming can be a 
playful and creative activity, just like drawing or playing a game 
(in fact, you’ll be drawing and playing games with JavaScript a lot 
in this book). Once you get the hang of how to write code, the only 
limit is your imagination. Welcome to the amazing world of com-
puter programming—I hope you have a blast!



Part I
fundamentals





1
WHAT IS JAVASCRIPT?

Computers are incredibly powerful machines, capable 
of performing amazing feats like playing competitive 
chess, serving thousands of web pages, or making 
millions of complex calculations in less than a few 
seconds. But deep down, computers are actually pretty 
dumb. Computers can only do exactly what we humans 
tell them to do. We tell computers how to behave using 
computer programs, which are just sets of instructions 
for the computers to follow. Without programs, com-
puters can’t do anything at all!

www.allitebooks.com

http://www.allitebooks.org


4  Chapter 1

Meet JavaScript
Even worse, computers can’t understand English or any 
other spoken language. Computer programs are written in a 
programming language like JavaScript. You might not have 
heard of JavaScript before, but you’ve certainly used it. The 
JavaScript programming language is used to write programs 
that run in web pages. JavaScript can control how a web page 
looks or make the page respond when a viewer clicks a button 
or moves the mouse.

Sites like Gmail, Facebook, and Twitter use JavaScript to 
make it easier to send email, post comments, or browse web-
sites. For example, when you’re on Twitter reading tweets from 
@nostarch and you see more tweets at the bottom of the page as 
you scroll down, that’s JavaScript in action. 

You only have to visit a couple of websites to see why 
JavaScript is so exciting. 

• JavaScript lets you play music and create amazing visual 
effects. For example, you can fly through an interactive music 
video created by HelloEnjoy for Ellie Goulding’s song “Lights” 
(http://lights.helloenjoy.com/), as shown in Figure 1-1.

• JavaScript lets you build tools for others to make their own 
art. Patatap (http://www.patatap.com/) is a kind of virtual 
“drum machine” that creates all kinds of cool noises—and cool 
animations to go along with them—as shown in Figure 1-2.



What Is JavaScript?  5

Figure 1-1: You control the flashing cursor in HelloEnjoy’s “Lights” music 
video.

Figure 1-2: When you visit Patatap, try pressing a bunch of keys to make 
different noises!



6  Chapter 1

• JavaScript lets you play fun games. CubeSlam (https://www 
.cubeslam.com/) is a 3D re-creation of the classic game Pong, 
which looks a little like air hockey. You can play against one 
of your friends or a computer-generated bear, as shown in 
Figure 1-3.

Figure 1-3: The CubeSlam game is programmed entirely in JavaScript!

Why learn JavaScript?
JavaScript isn’t the only programming language out there—in 
fact, there are literally hundreds of programming languages. 
But there are many reasons to learn JavaScript. For one, it’s a 
lot easier (and more fun) to learn than many other programming 
languages. But perhaps best of all, in order to write and run 
JavaScript programs, all you need is a web browser like Internet 
Explorer, Mozilla Firefox, or Google Chrome. Every web browser 
comes with a JavaScript interpreter that understands how to read 
JavaScript programs.

Once you’ve written a JavaScript program, you can send people 
a link to it, and they can run it in a web browser on their computer, 
too! (See “Sharing Your Code Using JSFiddle” on page 297.)



What Is JavaScript?  7

Writing Some JavaScript
Let’s write a bit of simple JavaScript in Google Chrome (http://
www.google.com/chrome/). Install Chrome on your computer (if it’s 
not already installed), and then open it and type about:blank in the 
address bar. Now press enter and you’ll see a blank page, like the 
one in Figure 1-4. 

We’ll begin by coding in Chrome’s JavaScript console, which 
is a secret way programmers can test out short JavaScript pro-
grams. On Microsoft Windows or Linux, hold down the ctrl and 
shift keys and press J. On Mac OS, hold down the command and 
option keys and press J. 

If you’ve done everything correctly, you should see a blank 
web page and, beneath that, a blinking cursor (|) next to a right 
angle bracket (>), as shown in Figure 1-4. That’s where you’ll write 
JavaScript!

NoTe  The Chrome console will color your code text; for example, the text 
you input will be blue, and output will be colored based on its type. 
In this book, we’ll use similar colors for our code text wherever we’re 
using the console.

Figure 1-4: Google Chrome’s JavaScript console

Address bar: This is how you visit web pages, 
like Facebook.com or Google.com. For now, 
we want an empty page, so we’ve navigated 
to about:blank and pressed enter.

JavaScript console: Here’s where 
we’ll test short JavaScript programs.



8  Chapter 1

When you enter code at the cursor and press enter, JavaScript 
should run, or execute, your code and display the result (if any) on 
the next line. For example, type this into the console:

3 + 4;

Now press enter. JavaScript should output the answer (7) to 
this simple bit of addition on the following line:

3 + 4;
7

Well, that’s easy enough. But isn’t JavaScript more than a 
glorified calculator? Let’s try something else. 

The Structure of a JavaScript 
Program

Let’s create something a bit sillier—a JavaScript program to print 
a series of cat faces that look like this:

=^.^=

Unlike our addition program, this 
JavaScript program will take up mul-
tiple lines. To type the program into the 
console, you’ll have to add new lines by 
pressing shift-enter at the end of 
each line. (If you just press enter, 
Chrome will try to execute what you’ve 
written, and the program won’t work as 
expected. I warned you that computers 
were dumb!)

Type this into your browser console:

// Draw as many cats as you want!
var drawCats = function (howManyTimes) {
  for (var i = 0; i < howManyTimes; i++) {
    console.log(i + " =^.^=");
  }
};

drawCats(10); // You can put any number here instead of 10.



What Is JavaScript?  9

At the very end, press enter instead of shift-enter. When you 
do that, you should see the following output:

0 =^.^=
1 =^.^=
2 =^.^=
3 =^.^=
4 =^.^=
5 =^.^=
6 =^.^=
7 =^.^=
8 =^.^=
9 =^.^=

If you made any typos, your output might look very different or 
you might get an error. That’s what I mean when I say computers 
are dumb—even a simple piece of code must be perfect for a com-
puter to understand what you want it to do!

I won’t go through exactly how this code works for now (we’ll 
return to this program in Chapter 8), but let’s look at some of the 
features of this program and of JavaScript programs in general.



10  Chapter 1

Syntax
Our program includes lots of symbols, including parentheses (), 
semicolons ;, curly brackets {}, plus signs +, and a few words that 
might seem mysterious at first (like var and console.log). These are 
all part of JavaScript’s syntax—that is, JavaScript’s rules for how 
to combine symbols and words to create working programs. 

When you’re learning a new programming language, one of 
the trickiest parts is getting used to the rules for how to write 
different kinds of instructions to the computer. When you’re first 
starting out, it’s easy to forget when to include parentheses, or to 
mix up the order in which you need to include certain values. But 
as you practice, you’ll start to get the hang of it. 

In this book, we’ll go slow and steady, introducing new syntax 
little by little so that you can build increasingly powerful programs.

Comments 
The first line in our cats program is this:

// Draw as many cats as you want!

This is called a comment. Programmers use comments to 
make it easier for other programmers to read and understand 
their code. The computer ignores comments completely. Comments 
in JavaScript start with two forward slashes (//). Everything fol-
lowing the slashes (on the same line) is ignored by the JavaScript 
interpreter, so the comments don’t have any effect on how a pro-
gram is executed—they are just there to provide a description. 

In the code in this book, you’ll see comments that describe 
what’s happening in the code. As you write your own code, add your 
own comments. Then when you look at your code later, your com-
ments will remind you how the code works and what’s happening in 
each step. 

There’s another code comment on the last line of our program. 
Remember, everything after that // isn’t run by the computer!

drawCats(10); // You can put any number here instead of 10.

Code comments can be on their own line, or they can come 
after your code. If you put the // at the front, like this: 

// drawCats(10); 



What Is JavaScript?  11

. . . nothing will happen! Chrome sees the whole line as a com-
ment, even if it’s JavaScript. 

Once you start reading JavaScript code out in the wild world, 
you’ll also see comments that look like this: 

/*
Draw as many cats 
as you want!
*/

This is a different style of commenting, which is typically used 
for comments that are longer than one line. But it does the same 
thing: everything between the /* and the */ is a comment that the 
computer won’t run. 

What You learned
In this chapter, you learned a bit about what JavaScript is and 
what it can be used for. You also learned how to run JavaScript 
using the Google Chrome browser and tried out a sample program. 
All of the code examples in this book, unless I say otherwise, can 
(and should!) be used in Chrome’s JavaScript console. Don’t just 
read the code—try typing things out! It’s the only way to learn to 
program.

In the next chapter, you’ll 
start learning the fundamen-
tals of JavaScript, beginning 
with the three basic types 
of information you can work 
with: numbers, strings, and 
Booleans.





2
DATA TYPeS AND VARIABleS

Programming is all about manipulating data, but 
what is data? Data is information that we store in our 
computer programs. For example, your name is a piece 
of data, and so is your age. The color of your hair, how 
many siblings you have, where you live, whether you’re 
male or female—these things are all data.

www.allitebooks.com

http://www.allitebooks.org


14  Chapter 2

In JavaScript, there are three basic types of data: numbers, 
strings, and Booleans. Numbers are used for representing, well, 
numbers! For example, your age can be represented as a number, 
and so can your height. Numbers in JavaScript look like this:

5;

Strings are used to represent text. Your name can be rep-
resented as a string in JavaScript, as can your email address. 
Strings look like this:

"Hi, I'm a string";

Booleans are values that can be true or 
false. For example, a Boolean value about 
you would be whether you wear glasses. 
Another could be whether you like broccoli. 
A Boolean looks like this:

true;

There are different ways to work with each data type. For 
example, you can multiply two numbers, but you can’t multiply 
two strings. With a string, you can ask for the first five characters. 
With Booleans, you can check to see whether two values are both 
true. The following code example illustrates each of these possible 
operations.

99 * 123;
12177
"This is a long string".slice(0, 4);
"This"
true && false;
false

All data in JavaScript is just a combination of these types of 
data. In this chapter, we’ll look at each type in turn and learn dif-
ferent ways to work with each type.

NoTe  You may have noticed that all of these commands end with a 
semicolon (;). Semicolons mark the end of a particular Java Script 
command or instruction (also called a statement), sort of like the 
period at the end of a sentence.



Data Types and Variables  15

Numbers and operators
JavaScript lets you perform basic mathematical operations like 
addition, subtraction, multiplication, and division. To make these 
calculations, we use the symbols +, -, *, and /, which are called 
operators.

You can use the JavaScript console just like a calculator. We’ve 
already seen one example, adding together 3 and 4. Let’s try some-
thing harder. What’s 12,345 plus 56,789?

12345 + 56789;
69134

That’s not so easy to work out in your head, but JavaScript cal-
culated it in no time.

You can add multiple numbers with multiple plus signs:

22 + 33 + 44;
99

JavaScript can also do subtraction . . . 

1000 - 17;
983

and multiplication, using an asterisk . . .

123 * 456;
56088

and division, using a forward slash . . .

12345 / 250;
49.38

You can also combine these simple operations to make some-
thing more complex, like this:

1234 + 57 * 3 - 31 / 4;
1397.25

Here it gets a bit tricky, because the result of this calcula-
tion (the answer) will depend on the order that JavaScript does 



16  Chapter 2

each operation. In math, the rule is 
that multiplication and division always 
take place before addition and subtrac-
tion, and JavaScript follows this rule 
as well.  

Figure 2-1 shows the order Java-
Script would follow. First, JavaScript 
multiplies 57 * 3 and gets 171 (shown 
in red). Then it divides 31 / 4 to get 7.75 
(shown in blue). Next it adds 1234 + 171 
to get 1405 (shown in green). Finally it 
subtracts 1405 - 7.75 to get 1397.25, which 
is the final result.

What if you wanted to do the addi-
tion and the subtraction first, before 
doing the multiplication and division? For example, say you have 
1 brother and 3 sisters and 8 candies, and you want to split the 
candies equally among your 4 siblings? (You’ve already taken your 
share!) You would have to divide 8 by your number of siblings.

Here’s an attempt:

8 / 1 + 3;
11

That can’t be right! You can’t give each sibling 11 candies 
when you’ve only got 8! The problem is that JavaScript does divi-
sion before addition, so it divides 8 by 1 (which equals 8) and then 
adds 3 to that, giving you 11. To fix this and make JavaScript do 
the addition first, we can use 
parentheses:

8 / (1 + 3);
2

That’s more like it! Two 
candies to each of your sib-
lings. The parentheses force 
JavaScript to add 1 and 3 
before dividing 8 by 4.

1397.25

1234 + 171 - 7.75

1234 + 171 - 31 / 4

1234 + 57 * 3 - 31 / 4

1405 - 7.75

Figure 2-1: The order of 
operations: multiplication, 
division, addition, 
subtraction



Data Types and Variables  17

Variables
JavaScript lets you give names to values using variables. You can 
think of a variable as a box that you can fit one thing in. If you put 
something else in it, the first thing goes away.

To create a new variable, use the keyword var, followed by 
the name of the variable. A keyword is a word that has special 
meaning in JavaScript. In this case, when we type var, JavaScript 
knows that we are about to enter the name of a new variable. For 
example, here’s how you’d make a new variable called nick:

var nick;
undefined

We’ve created a new variable called nick. The console spits 
out undefined in response. But this isn’t an error! That’s just 
what JavaScript does whenever a command doesn’t return a 
value. What’s a return value? Well, for example, when you typed 
12345 + 56789;, the console returned the value 69134. Creating a 
variable in JavaScript doesn’t return a value, so the interpreter 
prints undefined.

Try It out!
Let’s say your friend is trying to use JavaScript to work 
out how many balloons to buy. She’s throwing a party and 
wants everyone to have 2 balloons to blow up. There were 
originally 15 people coming, but then she invited 9 more. 
She tries the following code:

15 + 9 * 2;
33

But that doesn’t seem right.
The problem is that the multiplication is happening before 

the addition. How would you add parentheses to make sure 
that JavaScript does the addition first? How many balloons 
does your friend really need?



18  Chapter 2

To give the variable a value, use the equal sign:

var age = 12;
undefined

Setting a value is called assignment (we are assigning the 
value 12 to the variable age). Again, undefined is printed, because 
we’re creating another new variable. (In the rest of my examples, 
I won’t show the output when it’s undefined.)

The variable age is now in our interpreter and set to the value 
12. That means that if you type age on its own, the interpreter will 
show you its value:

age;
12

Cool! The value of the variable isn’t set in stone, though 
(they’re called variables because they can vary), and if you want 
to update it, just use = again:

age = 13;
13

This time I didn’t use the var keyword, because the variable age 
already exists. You need to use var only when you want to create 
a variable, not when you want to change the value of a variable. 
Notice also, because we’re not creating a new variable, the value 13 
is returned from the assignment and printed on the next line.

This slightly more complex example solves the candies problem 
from earlier, without parentheses:

var numberOfSiblings = 1 + 3;
var numberOfCandies = 8;
numberOfCandies / numberOfSiblings;
2

First we create a variable called numberOfSiblings and assign it 
the value of 1 + 3 (which JavaScript works out to be 4). Then we 
create the variable numberOfCandies and assign 8 to it. Finally, we 
write numberOfCandies / numberOfSiblings. Because numberOfCandies is 8 
and numberOfSiblings is 4, JavaScript works out 8 / 4 and gives us 2.



Data Types and Variables  19

Naming Variables
Be careful with your variable names, because it’s easy to misspell 
them. Even if you just get the capitalization wrong, the JavaScript 
interpreter won’t know what you mean! For example, if you acci-
dentally used a lowercase c in numberOfCandies, you’d get an error:

numberOfcandies / numberOfSiblings;
ReferenceError: numberOfcandies is not defined

Unfortunately, JavaScript will only do exactly what you ask it 
to do. If you misspell a variable name, JavaScript has no idea what 
you mean, and it will display an error message.

Another tricky thing about variable names in JavaScript is 
that they can’t contain spaces, which means they can be difficult 
to read. I could have named my variable numberofcandies with no 
capital letters, which makes it even harder to read because it’s not 
clear where the words end. Is this variable “numb erof can dies” or 
“numberofcan dies”? Without the capital letters, it’s hard to tell.

One common way to get around 
this is to start each word with a 
capital letter as in NumberOfCandies. 
(This convention is called camel 
case because it supposedly looks 
like the humps on a camel.) 

The standard practice is to 
have variables start with a lower-
case letter, so it’s common to 
capitalize each word except for the 
first one, like this: numberOfCandies. 
(I’ll follow this version of the camel 
case convention throughout this 
book, but you’re free to do whatever 
you want!)

Creating New Variables using Math
You can create new variables by doing some math on older ones. 
For example, you can use variables to find out how many seconds 
there are in a year—and how many seconds old you are! Let’s start 
by finding the number of seconds in an hour.



20  Chapter 2

Seconds in an Hour
First we create two new variables called secondsInAMinute and 
minutesInAnHour and make them both 60 (because, as we know, 
there are 60 seconds in a minute and 60 minutes in an hour). 
Then we create a variable called secondsInAnHour and set its value 
to the result of multiplying secondsInAMinute and minutesInAnHour. 
At u, we enter secondsInAnHour, which is like saying, “Tell me the 
value of secondsInAnHour right now!” JavaScript then gives you the 
answer: it’s 3600.

var secondsInAMinute = 60;
var minutesInAnHour = 60;
var secondsInAnHour = secondsInAMinute * minutesInAnHour;

u secondsInAnHour;
3600

Seconds in a Day
Now we create a variable called hoursInADay and set 
it to 24. Next we create the variable secondsInADay 
and set it equal to secondsInAnHour multiplied by 
hoursInADay. When we ask for the value secondsInADay 
at u, we get 86400, which is the number of seconds 
in a day.

var hoursInADay = 24;
var secondsInADay = secondsInAnHour * hoursInADay;

u secondsInADay;
86400

Seconds in a Year
Finally, we create the variables daysInAYear and secondsInAYear. 
The daysInAYear variable is assigned the value 365, and the variable 
secondsInAYear is assigned the value of secondsInADay multiplied by 
daysInAYear. Finally, we ask for the value of secondsInAYear, which is 
31536000 (more than 31 million)!

var daysInAYear = 365;
var secondsInAYear = secondsInADay * daysInAYear;
secondsInAYear;
31536000



Data Types and Variables  21

Age in Seconds
Now that you know the number of seconds in a year, you can eas-
ily figure out how old you are in seconds (to the nearest year). For 
example, as I’m writing this, I’m 29:

var age = 29;
age * secondsInAYear;
914544000

To figure out your age in seconds, enter the same code, but 
change the value in age to your age. Or just leave out the age vari-
able altogether and use a number for your age, like this:

29 * secondsInAYear;
914544000

I’m more than 900 million seconds old! How many seconds old 
are you?

Incrementing and Decrementing
As a programmer, you’ll often need to increase or decrease the 
value of a variable containing a number by 1. For example, you 
might have a variable that counts the number of high-fives you 
received today. Each time someone high-fives you, you’d want to 
increase that variable by 1.

Increasing by 1 is called incrementing, and decreasing by 1 is 
called decrementing. You increment and decrement using the oper-
ators ++ and --.

var highFives = 0;
++highFives;
1
++highFives;
2
--highFives;
1

When we use the ++ operator, the value of highFives goes up by 1, 
and when we use the -- operator, it goes down by 1. You can also 
put these operators after the variable. This does the same thing, 
but the value that gets returned is the value before the increment 
or decrement.



22  Chapter 2

highFives = 0;
highFives++;
0
highFives++;
1
highFives;
2

In this example, we set highFives to 
0 again. When we call highFives++, the 
variable is incremented, but the value 
that gets printed is the value before the 
increment happened. You can see at the 
end (after two increments) that if we ask 
for the value of highFives, we get 2.

+= (plus-equals) and  
–= (minus-equals)
To increase the value of a variable by a certain amount, you could 
use this code:

var x = 10;
x = x + 5;
x;
15

Here, we start out with a variable called x, set to 10. Then, we 
assign x + 5 to x. Because x was 10, x + 5 will be 15. What we’re 
doing here is using the old value of x to work out a new value for x. 
Therefore, x = x + 5 really means “add 5 to x.”

JavaScript gives you an easier way of increasing or decreas-
ing a variable by a certain amount, with the += and -= operators. 
For example, if we have a variable x, then x += 5 is the same as 
saying x = x + 5. The -= operator works in the same way, so x -= 9 
would be the same as x = x - 9 (“subtract 9 from x”). Here’s an 
example using both of these operators to keep track of a score 
in a video game:

var score = 10;
score += 7;
17
score -= 3;
14



Data Types and Variables  23

In this example, we start with a score of 10 by assigning the 
value 10 to the variable score. Then we beat a monster, which 
increases score by 7 using the += operator. (score += 7 is the same 
as score = score + 7.) Before we beat the monster, score was 10, and 
10 + 7 is 17, so this operation sets score to 17.

After our victory over the monster, we crash into a meteor 
and score is reduced by 3. Again, score -= 3 is the same as score = 
score - 3. Because score is 17 at this point, score - 3 is 14, and that 
value gets reassigned to score.

Strings
So far, we’ve just been working with numbers. Now let’s look at 
another type of data: strings. Strings in JavaScript (as in most pro-
gramming languages) are just sequences of characters, which can 
include letters, numbers, punctuation, and spaces. We put strings 
between quotes so JavaScript knows where they start and end. For 
example, here’s a classic:

"Hello world!";
"Hello world!"

Try It out!
There are some other operators that are similar to += and -=. 
For example, there are *= and /=. What do you think these 
do? Give them a try:

var balloons = 100;
balloons *= 2;
???

What does balloons *= 2 do? Now try this:

var balloons = 100;
balloons /= 4;
???

What does balloons /= 4 do?

www.allitebooks.com

http://www.allitebooks.org


24  Chapter 2

To enter a string, just type a double quotation mark (") fol-
lowed by the text you want in the string, and then close the string 
with another double quote. You can also use single quotes ('), but 
to keep things simple, we’ll just be using double quotes in this book.

You can save strings into variables, just like numbers:

var myAwesomeString = "Something REALLY awesome!!!";

There’s also nothing stopping you from assigning a string to a 
variable that previously contained a number:

var myThing = 5;
myThing = "this is a string";
"this is a string"

What if you put a number between quotes? Is that a string or 
a number? In JavaScript, a string is a string (even if it happens to 
have some characters that are numbers). For example:

var numberNine = 9;
var stringNine = "9";

numberNine is a number, and stringNine is a string. To see how 
these are different, let’s try adding them together:

numberNine + numberNine;
18
stringNine + stringNine;
"99"

When we add the number values 9 and 9, we get 18. But when 
we use the + operator on "9" and "9", the strings are simply joined 
together to form "99". 



Data Types and Variables  25

Joining Strings
As you just saw, you can use the + operator with strings, but the 
result is very different from using the + operator with numbers. 
When you use + to join two strings, you make a new string with 
the second string attached to the end of the first string, like this:

var greeting = "Hello";
var myName = "Nick";
greeting + myName;
"HelloNick"

Here, we create two variables (greeting and myName) and assign 
each a string value ("Hello" and "Nick", respectively). When we add 
these two variables together, the strings are combined to make a 
new string, "HelloNick".

That doesn’t look right, though—there should be a space 
between Hello and Nick. But JavaScript won’t put a space there 
unless we specifically tell it to by adding a space in one of the 
original strings:

u var greeting = "Hello "; 
var myName = "Nick";
greeting + myName;
"Hello Nick"

The extra space inside the quotes at u puts a space in the final 
string as well.

You can do a lot more with strings other than just adding them 
together. Here are some examples.

finding the length of a String
To get the length of a string, just add .length to the end of it. 

"Supercalifragilisticexpialidocious".length;
34

You can add .length to the end of the actual string or to a vari-
able that contains a string:

var java = "Java";
java.length;
4



26  Chapter 2

var script = "Script";
script.length;
6
var javascript = java + script;
javascript.length;
10

Here we assign the string "Java" to the variable java and the 
string "Script" to the variable script. Then we add .length to the 
end of each variable to determine the length of each string, as well 
as the length of the combined strings.

Notice that I said you can add .length to “the actual string or 
to a variable that contains a string.” This illustrates something 
very important about variables: anywhere you can use a number 
or a string, you can also use a variable containing a number or a 
string.

Getting a Single Character  
from a String
Sometimes you want to get a single character from a string. For 
example, you might have a secret code where the message is made 
up of the second character of each word in a list of words. You’d 
need to be able to get just the second characters and join them all 
together to create a new word.

To get a character from a particular position in a string, use 
square brackets, [ ]. Just take the string, or the variable contain-
ing the string, and put the number of the character you want in 
a pair of square brackets at the end. For example, to get the first 
character of myName, use myName[0], like this:

var myName = "Nick";
myName[0];
"N"
myName[1];
"i"
myName[2];
"c"

Notice that to get the first character of the string, we use 0 
rather than 1. That’s because JavaScript (like many other pro-
gramming languages) starts counting at zero. That means when 



Data Types and Variables  27

you want the first character of a string, you use 0; when you want 
the second one, you use 1; and so on.

Let’s try out our secret code, where we hide a message in some 
words’ second characters. Here’s how to find the secret message in 
a sequence of words:

var codeWord1 = "are";
var codeWord2 = "tubas";
var codeWord3 = "unsafe";
var codeWord4 = "?!";
codeWord1[1] + codeWord2[1] + codeWord3[1] + codeWord4[1];
"run!"

Again, notice that to get the second character of each string, 
we use 1.

Cutting up Strings
To “cut off” a piece of a big string, you can use slice. For example, 
you might want to grab the first bit of a long movie review to 
show as a teaser on your website. To use slice, put a period after 
a string (or a variable containing a string), followed by the word 
slice and opening and closing parentheses. Inside the parentheses, 
enter the start and end positions of the slice of the string you want, 
separated by a comma. Figure 2-2 shows how to use slice.

These two numbers 
set the start and end of the slice.

"a string".slice(1, 5)

Figure 2-2: How to use slice to get characters from a string

For example:

var longString = "My long string is long";
longString.slice(3, 14);
"long string"

The first number in parentheses is the number of the charac-
ter that begins the slice, and the second number is the number of 



28  Chapter 2

the character after the last character in the slice. Figure 2-3 shows 
which characters this retrieves, with the start value (3) and stop 
value (14) highlighted in blue.

M  y     l  o  n  g     s  t  r  i  n  g     i  s     l  o  n  g
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2-3: In the example above, slice grabs the characters shown in the 
gray box.

Here we basically tell JavaScript, “Pull a slice out of this lon-
ger string starting at the character at place 3 and keep going until 
you hit place 14.”

If you include only one number in the parentheses after slice, 
the string that it slices will start from that number and continue 
all the way to the end of the string, like this:

var longString = "My long string is long";
longString.slice(3);
"long string is long"

Changing Strings to All Capital or 
All lowercase letters
If you have some text that you just want to shout, try using 
toUpperCase to turn it all into capital letters.

"Hello there, how are you doing?".toUpperCase();
"HELLO THERE, HOW ARE YOU DOING?"

When you use .toUpperCase() on a string, it makes a new string 
where all the letters are turned into uppercase.

You can go the other way around, too:

"hELlo THERE, hOW ARE yOu doINg?".toLowerCase();
"hello there, how are you doing?"

As the name suggests, .toLowerCase() makes all of the charac-
ters lowercase. But shouldn’t sentences always start with a capital 
letter? How can we take a string and make the first letter upper-
case but turn the rest into lowercase? 



Data Types and Variables  29

NoTe  See if you can figure out how to turn "hELlo THERE, hOW ARE yOu 
doINg?" into "Hello there, how are you doing?" using the tools you 
just learned. If you get stuck, review the sections on getting a single 
character and using slice. Once you’re done, come back and have a 
look at how I did it.

Here’s one approach:

u var sillyString = "hELlo THERE, hOW ARE yOu doINg?";
v var lowerString = sillyString.toLowerCase();
w var firstCharacter = lowerString[0];
x var firstCharacterUpper = firstCharacter.toUpperCase();
y var restOfString = lowerString.slice(1);
z firstCharacterUpper + restOfString;

"Hello there, how are you doing?"

Let’s go through this line by 
line. At u, we create a new vari-
able called sillyString and save the 
string we want to modify to that 
variable. At v, we get the lower-
case version of sillyString ("hello 
there how are you doing?") with 
.toLowerCase() and save that in a 
new variable called lowerString.

At w, we use [0] to get the first 
character of lowerString ("h") and 
save it in firstCharacter (0 is used 
to grab the first character). Then, 
at x, we create an uppercase ver-
sion of firstCharacter ("H") and call 
that firstCharacterUpper.

At y, we use slice to get all the 
characters in lowerString, starting from the second character ("ello 
there how are you doing?") and save that in restOfString. Finally, 
at z, we add firstCharacterUpper ("H") to restOfString to get "Hello 
there, how are you doing?".



30  Chapter 2

Because values and variables can be substituted for each other, 
we could turn lines v through z into just one line, like this:

var sillyString = "hELlo THERE, hOW ARE yOu doINg?";
sillyString[0].toUpperCase() + sillyString.slice(1).toLowerCase();
"Hello there, how are you doing?"

It can be confusing to follow along with code written this way, 
though, so it’s a good idea to use variables for each step of a com-
plicated task like this—at least until you get more comfortable 
reading this kind of complex code.

Booleans
Now for Booleans. A Boolean value is simply a value that’s either 
true or false. For example, here’s a simple Boolean expression.

var javascriptIsCool = true;
javascriptIsCool;
true

In this example, we created a new variable called javascriptIsCool 
and assigned the Boolean value true to it. On the second line, we 
get the value of javascriptIsCool, which, of course, is true!

logical operators
Just as you can combine numbers with mathematical operators 
(+, -, *, /, and so on), you can combine Boolean values with Boolean 
operators. When you combine Boolean values with Boolean opera-
tors, the result will always be another Boolean value (either true or 
false). 

The three main Boolean operators in JavaScript are &&, ||, 
and !. They may look a bit weird, but with a little practice, they’re 
not hard to use. Let’s try them out.

&& (and)
&& means “and.” When reading aloud, people call it “and,” “and-
and,” or “ampersand-ampersand.” (Ampersand is the name of the 
character &.) Use the && operator with two Boolean values to see if 
they’re both true.



Data Types and Variables  31

For example, before you go to school, you want to make sure 
that you’ve had a shower and you have your backpack. If both are 
true, you can go to school, but if one or both are false, you can’t 
leave yet.

var hadShower = true;
var hasBackpack = false;
hadShower && hasBackpack;
false

Here we set the variable hadShower to 
true and the variable hasBackpack to false. 
When we enter hadShower && hasBackpack, we 
are basically asking JavaScript, “Are both 
of these values true?” Since they aren’t 
both true (you don’t have your backpack), 
JavaScript returns false (you’re not ready 
for school).

Let’s try this again, with both values 
set to true:

var hadShower = true;
var hasBackpack = true;
hadShower && hasBackpack;
true

Now JavaScript tells us that hadShower 
&& hasBackpack is true. You’re ready for 
school!

|| (or)
The Boolean operator || means “or.” It can be pronounced “or,” or 
even “or-or,” but some people call it “pipes,” because programmers 
call the | character a pipe. You can use this operator with two 
Boolean values to find out whether either one is true.

For example, say you’re still getting ready to go to school 
and you need to take a piece of fruit for lunch, but it doesn’t mat-
ter whether you take an apple or an orange or both. You can use 
JavaScript to see whether you have at least one, like this:

var hasApple = true;
var hasOrange = false;



32  Chapter 2

hasApple || hasOrange;
true

hasApple || hasOrange will be true if either hasApple or hasOrange 
is true, or if both are true. But if both are false, the result will be 
false (you don’t have any fruit).

! (not)
! just means “not.” You can call it “not,” but lots of people call it 
“bang.” (An exclamation point is sometimes called a bang.) Use it 
to turn false into true or true into false. This is useful for working 
with values that are opposites. For example:

var isWeekend = true;
var needToShowerToday = !isWeekend;
needToShowerToday;
false

In this example, we set the variable isWeekend to true. Then 
we set the variable needToShowerToday to !isWeekend. The bang 
converts the value to its opposite—so if isWeekend is true, then 
!isWeekend is not true (it’s false). So when we ask for the value of 
needToShowerToday, we get false (you don’t need to shower today, 
because it’s the weekend).

Because needToShowerToday is false, !needToShowerToday will 
be true:

needToShowerToday;
false
!needToShowerToday;
true

In other words, it’s true that you do not need to shower today.

Combining logical operators
Operators get interesting when you start combining them. For 
example, say you should go to school if it’s not the weekend and 
you’ve showered and you have an apple or you have an orange. We 
could check whether all of this is true with JavaScript, like this:

var isWeekend = false;
var hadShower = true;
var hasApple = false;



Data Types and Variables  33

var hasOrange = true;
var shouldGoToSchool = !isWeekend && hadShower && (hasApple || hasOrange);
shouldGoToSchool;
true

In this case, it’s not the weekend, you have showered, and you 
don’t have an apple but you do have an orange—so you should go 
to school.

hasApple || hasOrange is in parentheses because we want to make 
sure JavaScript works out that bit first. Just as JavaScript calcu-
lates * before + with numbers, it also calculates && before || in logical 
statements. 

Comparing Numbers with Booleans
Boolean values can be used to answer ques-
tions about numbers that have a simple yes 
or no answer. For example, imagine you’re 
running a theme park and one of the rides 
has a height restriction: riders must be at 
least 60 inches tall, or they might fall out! 
When someone wants to go on the ride and 
tells you their height, you need to know if it’s 
greater than this height restriction.

Greater Than
We can use the greater-than operator (>) to 
see if one number is greater than another. 
For example, to see if the rider’s height 
(65 inches) is greater than the height 
restriction (60 inches), we could set the 
variable height equal to 65 and the variable 
heightRestriction equal to 60, and then use > 
to compare the two:

var height = 65;
var heightRestriction = 60;
height > heightRestriction;
true

With height > heightRestriction, we’re asking JavaScript to tell 
us whether the first value is greater than the second. In this case, 
the rider is tall enough! 

www.allitebooks.com

http://www.allitebooks.org


34  Chapter 2

What if a rider were exactly 60 inches tall, though?

var height = 60;
var heightRestriction = 60;
height > heightRestriction;
false

Oh no! The rider isn’t tall enough! But if the height restriction 
is 60, then shouldn’t people who are exactly 60 inches be allowed 
in? We need to fix that. Luckily, JavaScript has another operator, 
>=, which means “greater than or equal to”:

var height = 60;
var heightRestriction = 60;
height >= heightRestriction;
true

Good, that’s better—60 is greater than or equal to 60.

less Than
The opposite of the greater-than operator (>) is the less-than opera-
tor (<). This operator might come in handy if a ride were designed 
only for small children. For example, say the rider’s height is 60 
inches, but riders must be no more than 48 inches tall:

var height = 60;
var heightRestriction = 48;
height < heightRestriction;
false

We want to know if the rider’s height is less than the restric-
tion, so we use <. Because 60 is not less than 48, we get false 
(someone whose height is 60 inches is too tall for this ride). 

And, as you may have guessed, we can also use the operator 
<=, which means “less than or equal to”:

var height = 48;
var heightRestriction = 48;
height <= heightRestriction;
true

Someone who is 48 inches tall is still allowed to go on the ride.



Data Types and Variables  35

equal To
To find out if two numbers are exactly the 
same, use the triple equal sign (===), which 
means “equal to.” But be careful not to con-
fuse === with a single equal sign (=), because 
=== means “are these two numbers equal?” 
and = means “save the value on the right in 
the variable on the left.” In other words, === 
asks a question, while = assigns a value to a 
variable.

When you use =, a variable name has to be on the left and the 
value you want to save to that variable must be on the right. On 
the other hand, === is just used for comparing two values to see if 
they’re the same, so it doesn’t matter which value is on which side.

For example, say you’re running a competition with your 
friends Chico, Harpo, and Groucho to see who can guess your 
secret number, which is 5. You make it easy on your friends by 
saying that the number is between 1 and 9, and they start to 
guess. First you set mySecretNumber equal to 5. Your first friend, 
Chico, guesses that it’s 3 (chicoGuess). Let’s see what happens next:

var mySecretNumber = 5;
var chicoGuess = 3;
mySecretNumber === chicoGuess;
false
var harpoGuess = 7;
mySecretNumber === harpoGuess;
false
var grouchoGuess = 5;
mySecretNumber === grouchoGuess;
true

The variable mySecretNumber stores your secret number. The vari-
ables chicoGuess, harpoGuess, and grouchoGuess represent your friends’ 
guesses, and we use === to see whether each guess is the same as 
your secret number. Your third friend, Groucho, wins by guessing 5.

When you compare two numbers with ===, you get true only 
when both numbers are the same. Because grouchoGuess is 5 and 
mySecretNumber is 5, mySecretNumber === grouchoGuess returns true. The 
other guesses didn’t match mySecretNumber, so they returned false.



36  Chapter 2

You can also use === to compare two strings or two Booleans. If 
you use === to compare two different types—for example, a string 
and a number—it will always return false.

Double equals
Now to confuse things a bit: there’s another JavaScript operator 
(double equals, or ==) that means “equal-ish.” Use this to see whether 
two values are the same, even if one is a string and the other is 
a number. All values have some kind of type. So the number 5 is 
different from the string "5", even though they basically look like 
the same thing. If you use === to compare the number 5 and the 
string "5", JavaScript will tell you they’re not equal. But if you 
use == to compare them, it will tell you they’re the same:

var stringNumber = "5";
var actualNumber = 5;
stringNumber === actualNumber;
false
stringNumber == actualNumber;
true

At this point, you might be thinking to yourself, “Hmm, it 
seems much easier to use double equals than triple equals!” You 
have to be very careful, though, because double equals can be very 
confusing. For example, do you think 0 is equal to false? What 
about the string "false"? When you use double equals, 0 is equal 
to false, but the string "false" is not:

0 == false;
true
"false" == false;
false

This is because when JavaScript tries to compare two values 
with double equals, it first tries to make them the same type. In this 
case, it converts the Boolean into a number. If you convert Booleans 
to numbers, false becomes 0, and true becomes 1. So when you type 
0 == false, you get true!

Because of this weirdness, it’s probably safest to just stick with 
=== for now.



Data Types and Variables  37

undefined and null
Finally, we have two values that don’t fit any particular mold. 
They’re called undefined and null. They’re both used to mean 
“nothing,” but in slightly different ways.

undefined is the value JavaScript uses when it doesn’t have a 
value for something. For example, when you create a new variable, 
if you don’t set its value to anything using the = operator, its value 
will be set to undefined:

var myVariable;
myVariable;
undefined

Try It out!
You’ve been asked by the local movie theater managers to 
implement some JavaScript for a new automated system 
they’re building. They want to be able to work out whether 
someone is allowed into a PG-13 movie or not.

The rules are, if someone is 13 or over, they’re allowed 
in. If they’re not over 13, but they are accompanied by an 
adult, they’re also allowed in. Otherwise, they can’t see the 
movie.

var age = 12;
var accompanied = true;
???

Finish this example using the age 
and accompanied variables to work out 
whether this 12-year-old is allowed 
to see the movie. Try changing the 
values (for example, set age to 13 and 
accompanied to false) and see if your 
code still works out the right answer.



38  Chapter 2

The null value is usually used when you want to deliberately 
say “This is empty.”

var myNullVariable = null;
myNullVariable;
null

At this point, you won’t be using undefined or null very often. 
You’ll see undefined if you create a variable and don’t set its value, 
because undefined is what JavaScript will always give you when 
it doesn’t have a value. It’s not very common to set something to 
undefined; if you feel the need to set a variable to “nothing,” you 
should use null instead.

null is used only when you actually want to say something’s 
not there, which is very occasionally helpful. For example, say 
you’re using a variable to track what your favorite vegetable is. 
If you hate all vegetables and don’t have a favorite, you might set 
the favorite vegetable variable to null.

Setting the variable to null would make it obvious to anyone 
reading the code that you don’t have a favorite vegetable. If it were 
undefined, however, someone might just think you hadn’t gotten 
around to setting a value yet.

What You learned
Now you know all the basic data types in JavaScript—numbers, 
strings, and Booleans—as well as the special values null and 
undefined. Numbers are used for math-type things, strings are used 
for text, and Booleans are used for yes or no questions. The values 
null and undefined are there to give us a way to talk about things 
that don’t exist.

In the next two chapters, we’ll look at arrays and objects, 
which are both ways of joining basic types to create more complex 
collections of values.



3
ARRAYS

So far we’ve learned about numbers and strings, which 
are types of data that you can store and use in your 
programs. But numbers and strings are kind of bor-
ing. There’s not a lot that you can do with a string on 
its own. JavaScript lets you create and group together 
data in more interesting ways with arrays. An array is 
just a list of other JavaScript data values. 



40  Chapter 3

For example, if your friend asked you what your three favor-
ite dinosaurs were, you could create an array with the names of 
those dinosaurs, in order:

var myTopThreeDinosaurs = ["T-Rex", "Velociraptor", "Stegosaurus"];

So instead of giving your friend three separate strings, you 
can just use the single array myTopThreeDinosaurs. 

Why Should You Care About Arrays?
Let’s look at dinosaurs again. Say you want to use a program to 
keep track of the many kinds of dinosaurs you know about. You 
could create a variable for each dinosaur, like this:

var dinosaur1 = "T-Rex";
var dinosaur2 = "Velociraptor";
var dinosaur3 = "Stegosaurus";
var dinosaur4 = "Triceratops";
var dinosaur5 = "Brachiosaurus";
var dinosaur6 = "Pteranodon";
var dinosaur7 = "Apatosaurus";
var dinosaur8 = "Diplodocus";
var dinosaur9 = "Compsognathus";

This list is pretty awkward to use, though, because you have 
nine different variables when you could have just one. Imagine 
if you were keeping track of 1000 dinosaurs! You’d need to create 
1000 separate variables, which would be almost impossible to 
work with.



Arrays  41

It’s like if you had a shopping list, but every item was on a 
different piece of paper. You’d have one piece of paper that said 
“eggs,” another piece that said “bread,” and another piece that said 
“oranges.” Most people would write the full list of things they want 
to buy on a single piece of paper. Wouldn’t it be much easier if you 
could group all nine dinosaurs together in just one place? 

You can, and that’s where arrays come in. 

Creating an Array
To create an array, you just use square brackets, []. In fact, an 
empty array is simply a pair of square brackets, like this:

[];
[]

But who cares about an empty array? Let’s fill it with our 
dinosaurs!

To create an array with values in it, enter the values, sepa-
rated by commas, between the square brackets. We can call the 
individual values in an array items or elements. In this example, 
our elements will be strings (the names of our favorite dinosaurs), 
so we’ll write them with quote marks. We’ll store the array in a 
variable called dinosaurs:

var dinosaurs = ["T-Rex", "Velociraptor", "Stegosaurus", 
"Triceratops", "Brachiosaurus", "Pteranodon", "Apatosaurus", 
"Diplodocus", "Compsognathus"];

NoTe  Because this is a book and the page is only so wide, we can’t actu-
ally fit the whole array on one line. The   is to show where we’ve 
put the code onto an extra line because the page is too narrow. 
When you type this into your computer, you can type it all on 
one line. 

Long lists can be hard to read on one line, but luckily that’s 
not the only way to format (or lay out) an array. You can also for-
mat an array with an opening square bracket on one line, the 



42  Chapter 3

list of items in the array each on a new line, and a closing square 
bracket, like this:

var dinosaurs = [
  "T-Rex",
  "Velociraptor",
  "Stegosaurus",
  "Triceratops",
  "Brachiosaurus",
  "Pteranodon",
  "Apatosaurus",
  "Diplodocus",
  "Compsognathus"
];

If you want to type this into your browser console, you’ll need 
to hold down the shift key when you press the enter key for each 
new line. Otherwise the JavaScript interpreter will think you’re 
trying to execute the current, incomplete, line. While we’re work-
ing in the interpreter, it’s easier to write arrays on one line.

Whether you choose to format the items in an array on one 
line or on separate lines, it’s all the same to JavaScript. However 
many line breaks you use, JavaScript just sees an array—in this 
example, an array containing nine strings.

Accessing an Array’s elements
When it’s time to access elements in an array, you use square 
brackets with the index of the element you want, as you can see 
in the following example: 

dinosaurs[0];
"T-Rex"
dinosaurs[3];
"Triceratops"

An index is the number that corresponds to (or matches) the 
spot in the array where a value is stored. Just as with strings, the 
first element in an array is at index 0, the second is at index 1, 
the third at index 2, and so on. That’s why asking for index 0 
from the dinosaurs array returns "T-Rex" (which is first in the list), 
and index 3 returns "Triceratops" (which is fourth in the list). 



Arrays  43

It’s useful to be able to access individual elements from an 
array. For example, if you just wanted to show someone your abso-
lute favorite dinosaur, you wouldn’t need the whole dinosaurs array. 
Instead you would just want the first element:

dinosaurs[0];
"T-Rex"

Setting or Changing elements  
in an Array

You can use indexes in square brackets to set, change, or even add 
elements to an array. For example, to replace the first element 
in the dinosaurs array ("T-Rex") with "Tyrannosaurus Rex", you could 
do this:

dinosaurs[0] = "Tyrannosaurus Rex";

After you’ve done that, the dinosaurs array would look like this:

["Tyrannosaurus Rex", "Velociraptor", "Stegosaurus", "Triceratops", 
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus", 
"Compsognathus"]

www.allitebooks.com

http://www.allitebooks.org


44  Chapter 3

You can also use square brackets with indexes to add new ele-
ments to an array. For example, here’s how you could create the 
dinosaurs array by setting each element individually with square 
brackets:

var dinosaurs = [];
dinosaurs[0] = "T-Rex";
dinosaurs[1] = "Velociraptor";
dinosaurs[2] = "Stegosaurus";
dinosaurs[3] = "Triceratops";
dinosaurs[4] = "Brachiosaurus";
dinosaurs[5] = "Pteranodon";
dinosaurs[6] = "Apatosaurus";
dinosaurs[7] = "Diplodocus";
dinosaurs[8] = "Compsognathus";

dinosaurs;
["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops", 
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus", 
"Compsognathus"]

First we create an empty array with var dinosaurs = []. Then, 
with each following line we add a value to the list with a series 
of dinosaurs[] entries, from index 0 to index 8. Once we finish the 
list, we can view the array (by typing dinosaurs;). We see that 
JavaScript has stored all the names ordered according to the 
indexes. 

You can actually add an element at any index you want. For 
example, to add a new (made-up) dinosaur at index 33, you could 
write the following:

dinosaurs[33] = "Philosoraptor";

dinosaurs;
["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops", 
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus", 
"Compsognathus", undefined × 24 "Philosoraptor"]

The elements between indexes 8 and 33 will be undefined. 
When you output the array, Chrome helpfully tells you how many 
elements were undefined, rather than listing them all individually.



Arrays  45

Mixing Data Types in an Array
Array elements don’t all have to be the same type. For example, 
the next array contains a number (3), a string ("dinosaurs"), 
an array (["triceratops", "stegosaurus", 3627.5]), and another 
number (10):

var dinosaursAndNumbers = [3, "dinosaurs", ["triceratops", 
"stegosaurus", 3627.5], 10];

To access an individual element in this array’s inner array, 
you would just use a second set of square brackets. For example, 
while dinosaursAndNumbers[2]; returns the entire inner array, 
dinosaursAndNumbers[2][0]; returns only the first element of that 
inner array, which is "triceratops".

dinosaursAndNumbers[2];
["triceratops", "stegosaurus", 3627.5]
dinosaursAndNumbers[2][0];
"triceratops"

When we type dinosaursAndNumbers[2][0];, we tell JavaScript 
to look at index 2 of the array dinosaursAndNumbers, which contains 
the array ["triceratops", "stegosaurus", 3627.5], and to return the 
value at index 0 of that second array. Index 0 is the first value of 
the second array, which is "triceratops". Figure 3-1 shows the index 
positions for this array.

[3, "dinosaurs", ["triceratops", "stegosaurus", 3627.5], 10];

index
[0]

index
[1]

index
[2]

index
[3]

index
[2][0]

index
[2][1]

index
[2][2]

Figure 3-1: The index positions of the main array are labeled in red, and the indexes of the 
inner array are labeled in blue.



46  Chapter 3

Working with Arrays
Properties and methods help you work with arrays. Properties gen-
erally tell you something about the array, and methods usually do 
something to change the array or return a new array. Let’s have 
a look.

finding the length of an Array
Sometimes it’s useful to know how many elements there are in 
an array. For example, if you kept adding dinosaurs to your dinosaurs 
array, you might forget how many dinosaurs you have.

The length property of an array tells you how many elements 
there are in the array. To find the length of an array, just add 
.length to the end of its name. Let’s try it out. First we’ll make a 
new array with three elements:

var maniacs = ["Yakko", "Wakko", "Dot"];
maniacs[0];
"Yakko"
maniacs[1];
"Wakko"
maniacs[2];
"Dot"

To find the length of the array, add .length to maniacs:

maniacs.length;
3

JavaScript tells us that there are 3 elements in the array, and 
we already know they have the index positions 0, 1, and 2. This 
gives us a useful piece of information: the last index in an array is 
always the same number as the length of the array minus 1. This 
means that there is an easy way to access the last element in an 
array, however long that array is:

maniacs[maniacs.length - 1];
"Dot"



Arrays  47

Here, we’re asking JavaScript for an element from our array. 
But instead of entering an index number in the square brackets, 
we use a little bit of math: the length of the array minus 1. 
JavaScript finds maniacs.length, gets 3, and then subtracts 1 to 
get 2. Then it returns the element from index 2—the last maniac 
in the array, "Dot".

Adding elements to an Array
To add an element to the end of an array, you can use the push 
method. Add .push to the array name, followed by the element you 
want to add inside parentheses, like this:

var animals = [];
animals.push("Cat");
1
animals.push("Dog");
2
animals.push("Llama");
3
animals;
["Cat", "Dog", "Llama"]
animals.length;
3

Here we create an empty array with 
var animals = [];, and then use the push 
method to add "Cat" to the array. Then, 
we use push again to add on "Dog" and 
then "Llama". When we display animals;, 
we see that "Cat", "Dog", and "Llama" were 
added to the array, in the same order we 
entered them. 

The act of running a method in 
computer-speak is known as calling the 
method. When you call the push method, 
two things happen. First, the element 
in parentheses is added to the array. 
Second, the new length of the array is 
returned. That’s why you see those num-
bers printed out every time you call push.



48  Chapter 3

To add an element to the beginning of an array, you can use 
.unshift(element), like this:

animals;
["Cat", "Dog", "Llama"]

u animals[0];
"Cat"
animals.unshift("Monkey");
4
animals;
["Monkey", "Cat", "Dog", "Llama"]
animals.unshift("Polar Bear");
5
animals;
["Polar Bear", "Monkey", "Cat", "Dog", "Llama"]
animals[0];
"Polar Bear"

v animals[2];
"Cat"

Here we started with the 
array that we’ve been using, 
["Cat", "Dog", "Llama"]. Then, 
as we add the elements "Monkey" 
and "Polar Bear" to the begin-
ning of the array with unshift, 
the old values get pushed along 
by one index each time. So 
"Cat", which was originally at 
index 0 u, is now at index 2 v.

Again, unshift returns the 
new length of the array each 
time it is called, just like push.

Removing elements from an Array
To remove the last element from an array, you can pop it off by 
adding .pop() to the end of the array name. The pop method can be 
particularly handy because it does two things: it removes the last 
element, and it returns that last element as a value. For example, 
let’s start with our animals array, ["Polar Bear", "Monkey", "Cat", 
"Dog", "Llama"]. Then we’ll create a new variable called lastAnimal 
and save the last animal into it by calling animals.pop().



Arrays  49

animals;
["Polar Bear", "Monkey", "Cat", "Dog", "Llama"]

u var lastAnimal = animals.pop(); 
lastAnimal;
"Llama"
animals;
["Polar Bear", "Monkey", "Cat", "Dog"]

v animals.pop();
"Dog"
animals;
["Polar Bear", "Monkey", "Cat"]

w animals.unshift(lastAnimal);
4
animals;
["Llama", "Polar Bear", "Monkey", "Cat"]

When we call animals.pop() at u, the last item in the animals 
array, "Llama", is returned and saved in the variable lastAnimal. 
"Llama" is also removed from the array, which leaves us with four 
animals. When we call animals.pop() again at v, "Dog" is removed 
from the array and returned, leaving only three animals in the 
array. 

When we used animal.pop() on "Dog", we didn’t save it into a 
variable, so that value isn’t saved anywhere anymore. The "Llama", 
on the other hand, was saved to the variable lastAnimal, so we can 
use it again whenever we need it. At w, we use unshift(lastAnimal) 
to add "Llama" back onto the front of the array. This gives us a final 
array of ["Llama", "Polar Bear", "Monkey", "Cat"].

Pushing and popping are a useful pair because sometimes you 
care about only the end of an array. You can push a new item onto 
the array and then pop it off when you’re ready to use it. We’ll look 
at some ways to use pushing and popping later in this chapter.

["Polar Bear", "Monkey", "Cat", "Dog",        ]

"Llama"

pop

["Cat", "Dog",        ]
"Llama"

push



50  Chapter 3

To remove and return the first element of an array, use 
.shift():

animals;
["Llama", "Polar Bear", "Monkey", "Cat"]
var firstAnimal = animals.shift();
firstAnimal;
"Llama"
animals;
["Polar Bear", "Monkey", "Cat"]

animals.shift() does the same thing as animals.pop(), but 
the element comes off the beginning instead. At the start of 
this example, animals is ["Llama", "Polar Bear", "Monkey", "Cat"]. 
When we call .shift() on the array, the first element, "Llama", is 
returned and saved in firstAnimal. Because .shift() removes the 
first element as well as returning it, at the end animals is just 
["Polar Bear", "Monkey", "Cat"].

You can use unshift and shift to add and remove items from 
the beginning of an array just as you’d use push and pop to add and 
remove items from the end of an array.

[       , "Polar Bear", "Monkey", "Cat"]

"Llama"

shift

[       , "Polar Bear", "Monkey", "Cat"]

"Llama"

unshift

Adding Arrays
To add two arrays together to make a new, single array, you can 
use firstArray.concat(otherArray). The term concat is short for 
concatenate, a fancy computer science word for joining two values 
together. The concat method will combine both arrays into a new 
array, with the values from firstArray added in front of those from 
otherArray. 



Arrays  51

For example, say we have a list of some 
furry animals and another list of some scaly 
animals, and we want to combine them. If 
we put all of our furry animals in an array 
called furryAnimals and all of our scaly ani-
mals in an array called scalyAnimals, entering 
furryAnimals.concat(scalyAnimals) will create a 
new array that has the values from the first 
array at the beginning and the values from 
the second array at the end.

var furryAnimals = ["Alpaca", "Ring-tailed Lemur", "Yeti"];
var scalyAnimals = ["Boa Constrictor", "Godzilla"];
var furryAndScalyAnimals = furryAnimals.concat(scalyAnimals);
furryAndScalyAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor", "Godzilla"]
furryAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti"]
scalyAnimals;
["Boa Constrictor", "Godzilla"]

Even though firstArray.concat(otherArray) returns an array 
containing all the elements from firstArray and secondArray, neither 
of the original arrays is changed. When we look at furryAnimals and 
scalyAnimals, they’re the same as when we created them.

Joining Multiple Arrays
You can use concat to join more than two arrays together. Just put 
the extra arrays inside the parentheses, separated by commas:

var furryAnimals = ["Alpaca", "Ring-tailed Lemur", "Yeti"];
var scalyAnimals = ["Boa Constrictor", "Godzilla"];
var featheredAnimals = ["Macaw", "Dodo"];
var allAnimals = furryAnimals.concat(scalyAnimals, featheredAnimals);
allAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor", "Godzilla", 
"Macaw", "Dodo"]

Here the values from featheredAnimals get added to the very end 
of the new array, since they are listed last in the parentheses after 
the concat method.

concat is useful when you have multiple arrays that you want 
to combine into one. For example, say you have a list of your favor-
ite books, and your friend also has a list of favorite books, and you 



52  Chapter 3

want to go see if the books are available to buy all at once at the 
bookstore. It would be easier if you had only one list of books. All 
you’d have to do is concat your list with your friend’s, and voilà! 
One list of books.

finding the Index of an element  
in an Array 
To find the index of an element in an array, use .indexOf(element). 
Here we define the array colors and then ask for the index 
positions of "blue" and "green" with colors.indexOf("blue") and 
colors.indexOf("green"). Because the index of "blue" in the array 
is 2, colors.indexOf("blue") returns 2. The index of "green" in the 
array is 1, so colors.indexOf("green") returns 1.

var colors = ["red", "green", "blue"];
colors.indexOf("blue");
2
colors.indexOf("green");
1

indexOf is like the reverse of using square brackets to get 
a value at a particular index; colors[2] is "blue", so colors 
.indexOf("blue") is 2:

colors[2];
"blue"
colors.indexOf("blue");
2

Even though "blue" appears third in the array, its index posi-
tion is 2 because we always start counting from 0. And the same 
goes for "green", of course, at index 1.

If the element whose position you ask for is not in the array, 
JavaScript returns -1. 

colors.indexOf("purple");
-1

This is JavaScript’s way of saying “That doesn’t exist here,” 
while still returning a number.



Arrays  53

If the element appears more than once in the array, the indexOf 
method will return the first index of that element in the array.

var insects = ["Bee", "Ant", "Bee", "Bee", "Ant"];
insects.indexOf("Bee");
0

Turning an Array into a String
You can use .join() to join all the elements in an array together 
into one big string.

var boringAnimals = ["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join();
"Monkey,Cat,Fish,Lizard"

When you call the join method on an array, it returns a string 
containing all the elements, separated by commas. But what if you 
don’t want to use commas as the separator?

You can use .join(separator) to do 
the same thing, but with your own 
chosen separator between each value. 
The separator is whatever string 
you put inside the parentheses. For 
example, we can use three different 
separators: a hyphen with spaces on 
either side, an asterisk, and the word 
sees with spaces on either side. Notice 
that you need quote marks around 
the separator, because the separator 
is a string.

var boringAnimals = ["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join(" - ");
"Monkey - Cat - Fish - Lizard"
boringAnimals.join("*")
"Monkey*Cat*Fish*Lizard"
boringAnimals.join(" sees ")
"Monkey sees Cat sees Fish sees Lizard"

This is useful if you have an array that you want to turn into 
a string. Say you have lots of middle names and you’ve got them 
stored in an array, along with your first and last name. You might 



54  Chapter 3

be asked to give your full name as a string. Using join, with a 
single space as the separator, will join all your names together 
into a single string:

var myNames = ["Nicholas", "Andrew", "Maxwell", "Morgan"];
myNames.join(" ");
"Nicholas Andrew Maxwell Morgan"

If you didn’t have join, you’d have to do something like this, 
which would be really annoying to type out:

myNames[0] + " " + myNames[1] + " " + myNames[2] + " " + myNames[3];
"Nicholas Andrew Maxwell Morgan"

Also, this code would work only if you had exactly two middle 
names. If you had one or three middle names, you’d have to change 
the code. With join, you don’t have to change anything—it prints 
out a string with all of the elements of the array, no matter how 
long the array is.

If the values in the array aren’t strings, JavaScript will con-
vert them to strings before joining them together:

var ages = [11, 14, 79];
ages.join(" ");
"11 14 79"

useful Things to Do with Arrays
Now you know lots of different ways to create arrays and play 
around with them. But what can you actually do with all these 
properties and methods? In this section, we’ll write a few short 
programs that show off some useful things to do with arrays.

finding Your Way Home
Picture this: your friend has come over to your house. Now she 
wants to show you her house. The only problem is that you’ve 
never been to her house before, and later you’ll have to find your 
way back home on your own.

Luckily, you have a clever idea to help you with your prob-
lem: on the way to your friend’s house, you’ll keep a list of all the 
landmarks you see. On the way back, you’ll go through the list in 



Arrays  55

reverse and check items off the end of the list every time you pass 
a landmark so you know where to go next.

Building the Array with push
Let’s write some code that would do exactly that. We start off by 
creating an empty array. The array starts off empty because you 
don’t know what landmarks you’ll see until you actually start 
walking to your friend’s house. Then, for each landmark on the 
way to your friend’s house, we’ll push a description of that land-
mark onto the end of the array. Then, when it’s time to go home, 
we’ll pop each landmark off the array.

var landmarks = [];
landmarks.push("My house");
landmarks.push("Front path");
landmarks.push("Flickering streetlamp");
landmarks.push("Leaky fire hydrant");
landmarks.push("Fire station");
landmarks.push("Cat rescue center");
landmarks.push("My old school");
landmarks.push("My friend's house");

Here we create an empty array named landmarks and then use 
push to store all the landmarks you pass on the way to your friend’s 
house.

Going in Reverse with pop
Once you arrive at your friend’s house, you can inspect your array 
of landmarks. Sure enough, the first item is "My house", followed 
by "Front path", and so on through the end of the array, with the 
final item "My friend's house". When it’s time to go home, all you 
need to do is pop off the items one by one, and you’ll know where 
to go next.

landmarks.pop();
"My friend's house"
landmarks.pop();
"My old school"
landmarks.pop();
"Cat rescue center"
landmarks.pop();
"Fire station"
landmarks.pop();
"Leaky fire hydrant"



56  Chapter 3

landmarks.pop();
"Flickering streetlamp"
landmarks.pop();
"Front path"
landmarks.pop();
"My house"

Phew, you made it home!
Did you notice how the first landmark 

you put in the array was also the last one you 
got out of it? And the last landmark you put 
in the array was the first one that came out? 
You might have thought that you’d always 
want the first item you put in to be the first 
item you get out, but you can see that it’s 
sometimes helpful to go back through an 
array in reverse.

It’s actually very common to use a process like this in larger 
programs, which is why JavaScript makes pushing and popping 
so easy.

NoTe  This technique is known as a stack in computer-speak. Think of 
it like a stack of pancakes. Every time you cook a new pancake, it 
goes on top (like push), and every time you eat one, it comes off the 
top (like pop). Popping a stack is like going back in time: the last 
item you pop is the first one you pushed. It’s the same with pan-
cakes: the last pancake you eat is the first one that was cooked. In 
programming jargon, this is also called Last In, First Out (LIFO). 
The alternative to LIFO is First In, First Out (FIFO). This is also 
known as a queue, because it acts like a queue (or line) of people. 
The first person to join the queue is the first person to be served.

Decision Maker
We can use arrays in JavaScript to build a program to make deci-
sions for us (like a Magic 8-Ball). First, though, we need to find 
out how to get random numbers.



Arrays  57

using Math.random()
We can produce random numbers using a special method called 
Math.random(), which returns a random number between 0 and 1 
each time it’s called. Here’s an example:

Math.random();
0.8945409457664937
Math.random();
0.3697543195448816
Math.random();
0.48314980138093233

It’s important to note that Math.random() always returns a num-
ber less than 1 and will never return 1 itself.

If you want a bigger number, just multiply the result of calling 
Math.random(). For example, if you wanted numbers between 0 and 
10, you would multiply Math.random() by 10:

Math.random() * 10;
7.648027329705656
Math.random() * 10;
9.7565904534421861
Math.random() * 10;
0.21483442978933454

Rounding Down with Math.floor()
We can’t use these numbers as array indexes, though, because 
indexes have to be whole numbers with nothing after the decimal 
point. To fix that, we need another method called Math.floor(). This 
takes a number and rounds it down to the whole number below it 
(basically getting rid of everything after the decimal point).

Math.floor(3.7463463);
3
Math.floor(9.9999);
9
Math.floor(0.793423451963426);
0

We can combine these two techniques to create a random 
index. All we need to do is multiply Math.random() by the length of 



58  Chapter 3

the array and then call Math.floor() on that value. For example, 
if the length of the array were 4, we would do this:

Math.floor(Math.random() * 4);
2 // could be 0, 1, 2, or 3

Every time you call the code above, it returns a random num-
ber from 0 to 3 (including 0 and 3). Because Math.random() always 
returns a value less than 1, Math.random() * 4 will never return 4 or 
anything higher than 4.

Now, if we use that random number as an index, we can select 
a random element from an array:

var randomWords = ["Explosion", "Cave", "Princess", "Pen"];
var randomIndex = Math.floor(Math.random() * 4);
randomWords[randomIndex];
"Cave"

Here we use Math.floor(Math.random() * 4); to pick a random 
number from 0 to 3. Once that random number is saved to the 
variable randomIndex, we use it as an index to ask for a string from 
the array randomWords.

In fact, we could shorten this by doing away with the randomIndex 
variable altogether and just say:

randomWords[Math.floor(Math.random() * 4)];
"Princess"

The Complete Decision Maker
Now let’s create our array of phrases, and we can use this code 
to pick a random one. This is our decision maker! I’m using com-
ments here to show some questions you might want to ask your 
computer.

var phrases = [
  "That sounds good",
  "Yes, you should definitely do that",
  "I'm not sure that's a great idea",
  "Maybe not today?",
  "Computer says no."
];



Arrays  59

// Should I have another milkshake?
phrases[Math.floor(Math.random() * 5)];
"I'm not sure that's a great idea"
// Should I do my homework?
phrases[Math.floor(Math.random() * 5)];
"Maybe not today?"

Here we created an array called phrases that stores different 
pieces of advice. Now, every time we have a question, we can ask 
for a random value from the phrases array, and it will help us make 
a decision!

Notice that because our array of decisions has five items, we 
multiply Math.random() by 5. This will always return one of five 
index positions: 0, 1, 2, 3, or 4.

Creating a Random Insult Generator
We can extend the decision maker example to create a program 
that generates a random insult every time you run it! 

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Pick a random body part from the randomBodyParts array:
u var randomBodyPart = randomBodyParts[Math.floor(Math.random() * 3)];

// Pick a random adjective from the randomAdjectives array:
v var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)]; 

// Pick a random word from the randomWords array:
w var randomWord = randomWords[Math.floor(Math.random() * 5)];

// Join all the random strings into a sentence:
var randomInsult = "Your " + randomBodyPart + " is like a " + 
randomAdjective + " " + randomWord + "!!!";
randomInsult;
"Your Nose is like a Stupid Marmot!!!"

Here we have three arrays, and in 
lines u, v, and w, we use three indexes 
to pull a random word from each array. 
Then, we combine them all in the variable 
randomInsult to create a complete insult. 
At u and v we’re multiplying by 3 because 
randomAdjectives and randomBodyParts both 
contain three elements. Likewise, we’re 
multiplying by 5 at w because randomWords is 



60  Chapter 3

five elements long. Notice that we add a string with a single space 
between randomAdjective and randomWord. Try running this code a 
few times—you should get a different random insult each time!

Here’s another way to build up our random insult:

var randomInsult = ["Your", randomBodyPart, "is", "like", "a", 
randomAdjective, randomWord + "!!!"].join(" ");
"Your Hair is like a Smelly Fly!!!"

In this example, each word of the sentence is a separate 
string in an array, which we join with the space character. There’s 
only one place where we don’t want a space, which is in between 
randomWord and "!!!". In this case, we use the + operator to join 
those two strings without the space.

What You learned
As you’ve seen, JavaScript arrays are a way to store a list of 
values. Now you know how to create and work with arrays, and 
you have many ways of accessing their elements.

Arrays are one of the ways JavaScript gives you to bring mul-
tiple values together into one place. In the next chapter, we’ll look 
at objects, which are another way of storing multiple values as a 
single unit. Objects use string keys to access the elements, rather 
than number indexes.

Try It out!
If you wanted to be really clever, you could replace line w 
with this:

var randomWord = randomWords[Math.floor(Math.random() * 
randomWords.length)];

We know that we always need to multiply Math.random() 
by the length of the array, so using randomWords.length means 
we don’t have to change our code if the length of the array 
changes.



Arrays  61

Programming Challenges
Try out these challenges to practice the skills you learned in 
this chapter.

#1: New Insults
Make your own random insult generator with your own set 
of words.

#2: More Sophisticated Insults
Extend the random insult generator so it generates insults 
like “Your [body part] is more [adjective] than a [animal]’s 
[animal body part].” (Hint: You’ll need to create another 
array.)

#3: use + or join?
Make two versions of your random insult generator: one that 
uses the + operator to create the string, and one that creates 
an array and joins it with " ". Which do you prefer, and why?

#4: Joining Numbers
How could you turn the array [3, 2, 1] into the string "3 is 
bigger than 2 is bigger than 1" using the join method?





4
oBJeCTS

Objects in JavaScript are very similar to arrays, but 
objects use strings instead of numbers to access the 
different elements. The strings are called keys or 
properties, and the elements they point to are called 
values. Together these pieces of information are called 
key-value pairs. While arrays are mostly used to 
represent lists of multiple things, objects are often



64  Chapter 4

used to represent single things with multiple characteristics, or 
attributes. For example, in Chapter 3 we made several arrays 
that listed different animal names. But what if we wanted to 
store different pieces of information about one animal? 

Creating objects
We could store lots of information about a single animal by creat-
ing a JavaScript object. Here’s an object that stores information 
about a three-legged cat named Harmony.

var cat = {
  "legs": 3,
  "name": "Harmony",
  "color": "Tortoiseshell"
};

Here we create a variable called cat 
and assign an object to it with three key-
value pairs. To create an object, we use 
curly brackets, {}, instead of the straight 
brackets we used to make arrays. In 
between the curly brackets, we enter 
key-value pairs. The curly brackets and 
everything in between them are called 
an object literal. An object literal is a 
way of creating an object by writing out 
the entire object at once.

NoTe  We’ve also seen array literals (for example, ["a", "b", "c"]), number 
literals (for example, 37), string literals (for example, "moose"), and 
Boolean literals (true and false). Literal just means that the whole 
value is written out at once, not built up in multiple steps.

For example, if you wanted to make an array with the numbers 
1 through 3 in it, you could use the array literal [1, 2, 3]. Or you 
could create an empty array and then use the push method to add 1, 
2, and 3 to the array. You don’t always know at first what’s going to 
be in your array or object, which is why you can’t always use literals 
to build arrays and objects.



Objects  65

Figure 4-1 shows the basic syn-
tax for creating an object.

When you create an object, the 
key goes before the colon (:), and 
the value goes after. The colon acts 
a bit like an equal sign—the values 
on the right get assigned to the 
names on the left, just like when 
you create variables. In between 
each key-value pair, you have to 
put a comma. In our example, the commas are at the ends of the 
lines—but notice that you don’t need a comma after the last key-
value pair (color: "Tortoiseshell"). Because it’s the last key-value 
pair, the closing curly bracket comes next, instead of a comma.

Keys Without Quotes
In our first object, we put each key in quotation marks, but you 
don’t necessarily need quotes around the keys—this is a valid cat 
object literal as well:

var cat = {
  legs: 3,
  name: "Harmony",
  color: "Tortoiseshell"
};

JavaScript knows that the keys will always be strings, which 
is why you can leave out the quotes. If you don’t put quotes around 
the keys, the unquoted keys have to follow the same rules as vari-
able names: spaces aren’t allowed in an unquoted key, for example. 
If you put the key in quotes, then spaces are allowed:

var cat = {
  legs: 3,
  "full name": "Harmony Philomena Snuggly-Pants Morgan",
  color: "Tortoiseshell"
};

Note that, while a key is always a string (with or without 
quotes), the value for that key can be any kind of value, or even 
a variable containing a value.

{ "key1": 99 }

The key,
which is always

a string

The value,
which can be
of any type

Figure 4-1: The general syntax 
for creating an object



66  Chapter 4

You can also put the whole object on one line, but it can be 
harder to read like that:

var cat = { legs: 3, name: "Harmony", color: "Tortoiseshell" };

Accessing Values in objects
You can access values in objects using square brackets, just like 
with arrays. The only difference is that instead of the index (a 
number), you use the key (a string).

cat["name"];
"Harmony"

Just as the quotes around keys are optional when you create 
an object literal, the quotes are also optional when you are access-
ing keys in objects. If you’re not going to use quotes, however, the 
code looks a bit different:

cat.name;
"Harmony"

This style is called dot notation. Instead of typing the key 
name in quotes inside square brackets after the object name, we 
just use a period, followed by the key, without any quotes. As with 
unquoted keys in object literals, this will work only if the key 
doesn’t contain any special characters, such as spaces.



Objects  67

Instead of looking up a value by typing its key, say you wanted 
to get a list of all the keys in an object. JavaScript gives you an 
easy way to do that, using Object.keys():

var dog = { name: "Pancake", age: 6, color: "white", bark: "Yip yap 
yip!" };
var cat = { name: "Harmony", age: 8, color: "tortoiseshell" };
Object.keys(dog);
["name", "age", "color", "bark"]
Object.keys(cat);
["name", "age", "color"]

Object.keys(anyObject) returns an array containing all the keys 
of anyObject.

Adding Values to objects
An empty object is just like an empty array, but it uses curly 
brackets, { }, instead of square brackets:

var object = {};

You can add items to an object just as you’d add items to an 
array, but you use strings instead of numbers:

var cat = {};
cat["legs"] = 3;
cat["name"] = "Harmony";
cat["color"] = "Tortoiseshell";
cat;
{ color: "Tortoiseshell", legs: 3, name: "Harmony" }

Here, we started with an empty object named cat. Then we 
added three key-value pairs, one by one. Then, we type cat;, and 
the browser shows the contents of the object. Different browsers 
may output objects differently, though. For example, Chrome (at 
the time I’m writing this) outputs the cat object like this:

While Chrome prints out the keys in that order (legs, name, 
color), other browsers may print them out differently. This is 



68  Chapter 4

because JavaScript doesn’t store objects with their keys in any par-
ticular order.

Arrays obviously have a certain order: index 0 is before index 
1, and index 3 is after index 2. But with objects, there’s no obvi-
ous way to order each item. Should color go before legs or after? 
There’s no “correct” answer to this question, so objects simply store 
keys without assigning them any particular order, and as a result 
different browsers will print the keys in different orders. For this 
reason, you should never write a program that relies on object keys 
being in a precise order.

Adding Keys with Dot Notation
You can also use dot notation when adding new keys. Let’s try 
the previous example, where we started with an empty object and 
added keys to it, but this time we’ll use dot notation:

var cat = {};
cat.legs = 3;
cat.name = "Harmony";
cat.color = "Tortoiseshell";

If you ask for a property that JavaScript doesn’t know about, 
it returns the special value undefined. undefined just means “There’s 
nothing here!” For example:

var dog = {
  name: "Pancake",
  legs: 4,
  isAwesome: true
};
dog.isBrown;
undefined

Here we define three properties for dog: name, legs, and isAwesome. 
We didn’t define isBrown, so dog.isBrown returns undefined. 



Objects  69

Combining Arrays and objects
So far, we’ve looked only at arrays and objects that contain simple 
types like numbers and strings. But there’s nothing stopping you 
from using another array or object as a value in an array or object.

For example, an array of dinosaur objects might look like this:

var dinosaurs = [
  { name: "Tyrannosaurus Rex", period: "Late Cretaceous" },
  { name: "Stegosaurus", period: "Late Jurassic" },
  { name: "Plateosaurus", period: "Triassic" }
];

To get all the information about the first dinosaur, you can use 
the same technique we used before, entering the index in square 
brackets:

dinosaurs[0];
{ name: "Tyrannosaurus Rex", period: "Late Cretaceous" }

If you want to get only the name of the first dinosaur, you can 
just add the object key in square brackets after the array index:

dinosaurs[0]["name"];
"Tyrannosaurus Rex"

Or, you can use dot notation, like this:

dinosaurs[1].period;
"Late Jurassic"

NoTe  You can use dot notation only with objects, not with arrays.

An Array of friends
Let’s look at a more complex example now. We’ll create an array of 
friend objects, where each object also contains an array. First, we’ll 
make the objects, and then we can put them all into an array.

var anna = { name: "Anna", age: 11, luckyNumbers: [2, 4, 8, 16] };
var dave = { name: "Dave", age: 5, luckyNumbers: [3, 9, 40] };
var kate = { name: "Kate", age: 9, luckyNumbers: [1, 2, 3] };



70  Chapter 4

First, we make three objects and save them into variables 
called anna, dave, and kate. Each object has three keys: name, age, 
and luckyNumbers. Each name key has a string value assigned to it, 
each age key has a single number value assigned to it, and each 
luckyNumbers key has an array assigned to it, containing a few dif-
ferent numbers.

Next we’ll make an array of our friends:

var friends = [anna, dave, kate];

Now we have an array saved to the variable friends with three 
elements: anna, dave, and kate (which each refer to objects). You can 
retrieve one of these objects using its index in the array:

friends[1];
{ name: "Dave", age: 5, luckyNumbers: Array[3] }

This retrieves the second object in the array, dave (at index 1). 
Chrome prints out Array[3] for the luckyNumbers array, which is 
just its way of saying, “This is a three-element array.” (You can 
use Chrome to see what’s in that array; see “Exploring Objects in 
the Console” on page 71.) We can also retrieve a value within an 
object by entering the index of the object in square brackets followed 
by the key we want:

friends[2].name
"Kate"

This code asks for the element at index 2, which is the variable 
named kate, and then asks for the property in that object under 
the key "name", which is "Kate". We could even retrieve a value from 
an array that’s inside one of the objects inside the friends array, 
like so:

friends[0].luckyNumbers[1];
4

Figure 4-2 shows each index. friends[0] is the ele-
ment at index 0 in the friends array, which is the object anna. 
friends[0].luckyNumbers is the array [2, 4, 8, 16] from the object 
called anna. Finally, friends[0].luckyNumbers[1] is index 1 in that 
array, which is the number value 4. 



Objects  71

var friends = [anna, dave, kate];

friends[0]

{ name: "Anna", age: 11, luckyNumbers: [2, 4, 8, 16] };

friends[0].luckyNumbers

friends[0].luckyNumbers[1]

Figure 4-2: Accessing nested values

exploring objects in the Console
Chrome will let you dig into objects that you print out in the con-
sole. For example, if you type . . .

friends[1];

Chrome will display the output shown in Figure 4-3.

Figure 4-3: How an object is displayed in the Chrome interpreter

The triangle on the left means that this object can be 
expanded. Click the object to expand it, and you’ll see what’s 
shown in Figure 4-4.

Figure 4-4: Expanding the object



72  Chapter 4

You can expand luckyNumbers, too, by clicking it (see Figure 4-5).

Figure 4-5: Expanding an array within the object

Don’t worry about those __proto__ properties—they have to 
do with the object’s prototype. We’ll look at prototypes later, in 
Chapter 12. Also, you’ll notice that the interpreter shows the value 
of the array’s length property.

You can also view the entire friends array and expand each ele-
ment in the array, as shown in Figure 4-6.

Figure 4-6: All three objects from the friends array, as shown in the Chrome interpreter 

useful Things to Do with objects
Now that you know a few different ways to create objects and add 
properties to them, let’s put what we’ve learned to use by trying 
out some simple programs.

Keeping Track of owed Money
Let’s say you’ve decided to start a bank. You lend your friends 
money, and you want to have a way to keep track of how much 
money each of them owes you.



Objects  73

You can use an object as a way of linking a string and a value 
together. In this case, the string would be your friend’s name, and 
the value would be the amount of money he or she owes you. Let’s 
have a look.

u var owedMoney = {};
v owedMoney["Jimmy"] = 5;
w owedMoney["Anna"] = 7;
x owedMoney["Jimmy"];

5
y owedMoney["Jinen"];

undefined

At u, we create a new empty 
object called owedMoney. At v, we 
assign the value 5 to the key "Jimmy". 
We do the same thing at w, assign-
ing the value 7 to the key "Anna". 
At x, we ask for the value associ-
ated with the key "Jimmy", which 
is 5. Then at y, we ask for the value 
associated with the key "Jinen", 
which is undefined because we didn’t 
set it.

Now let’s imagine that Jimmy 
borrows some more money (say, $3). 
We can update our object and add 3 
to the amount Jimmy owes with the 
plus-equals operator (+=) that you 
saw in Chapter 2.

owedMoney["Jimmy"] += 3;
owedMoney["Jimmy"];
8

This is like saying owedMoney["Jimmy"] = owedMoney["Jimmy"] + 3. 
We can also look at the entire object to see how much money each 
friend owes us:

owedMoney;
{ Jimmy: 8, Anna: 7 }



74  Chapter 4

Storing Information About Your Movies
Let’s say you have a large collection of movies on DVD and Blu-ray. 
Wouldn’t it be great to have the information about those movies on 
your computer so you can find out about each movie easily?

You can create an object to store information about your movies, 
where every key is a movie title, and every value is another object 
containing information about the movie. Values in objects can be 
objects themselves!

var movies = {
  "Finding Nemo": {
    releaseDate: 2003,
    duration: 100,
    actors: ["Albert Brooks", "Ellen DeGeneres", "Alexander Gould"],
    format: "DVD"
  },
  "Star Wars: Episode VI - Return of the Jedi": {
    releaseDate: 1983,
    duration: 134,
    actors: ["Mark Hamill", "Harrison Ford", "Carrie Fisher"],
    format: "DVD"
  },
  "Harry Potter and the Goblet of Fire": {
    releaseDate: 2005,
    duration: 157,
    actors: ["Daniel Radcliffe", "Emma Watson", "Rupert Grint"],
    format: "Blu-ray"
  }
};

You might have noticed that I used quotes for the movie 
titles (the keys in the outer object) but not for the keys in the 
inner objects. That’s because the movie titles need to have 
spaces—otherwise, I’d 
have to type each title like 
StarWarsEpisodeVIReturnOfTheJedi, 
and that’s just silly! I didn’t need 
quotes for the keys in the inner 
objects, so I left them off. It can 
make code look a bit cleaner 
when there aren’t unnecessary 
punctuation marks in it.



Objects  75

Now, when you want information about a movie, it’s easy to find:

var findingNemo = movies["Finding Nemo"];
findingNemo.duration;
100
findingNemo.format;
"DVD"

Here we save the movie information about Finding Nemo into 
a variable called findingNemo. We can then look at the properties of 
this object (like duration and format) to find out about the movie.

You can also easily add new movies to your collection:

var cars = {
  releaseDate: 2006,
  duration: 117,
  actors: ["Owen Wilson", "Bonnie Hunt", "Paul Newman"],
  format: "Blu-ray"
};
movies["Cars"] = cars;

Here we create a new object of movie information about Cars. 
We then insert this into the movies object, under the key "Cars".

Now that you’re building up your collection, you might want to 
find an easy way to list the names of all your movies. That’s where 
Object.keys comes in:

Object.keys(movies);
["Finding Nemo", "Star Wars: Episode VI - Return of the Jedi", "Harry 
Potter and the Goblet of Fire", "Cars"]

What You learned
Now you’ve seen how objects work in JavaScript. They’re a lot like 
arrays, because you can use them to hold lots of pieces of infor-
mation together in one unit. One major difference is that you use 
strings to access elements in an object and you use numbers to 
access elements in an array. For this reason, arrays are ordered, 
while objects are not.

We’ll be doing a lot more with objects in later chapters, once 
we’ve learned about more of JavaScript’s features. In the next 
chapter, we’ll look at conditionals and loops, which are both ways 
of adding structure to our programs to make them more powerful.



76  Chapter 4

Programming Challenges
Try out these challenges to practice working with objects.

#1: Scorekeeper
Imagine you’re playing a game with some friends and you 
want to keep track of the score. Create an object called 
scores. The keys will be the names of your friends, and the 
values will be the scores (which will all start at 0). As the 
players earn points, you must increase their scores. How 
would you increase a player’s score in the scores object?

#2: Digging into objects and Arrays
Say you had the following object:

var myCrazyObject = {
  "name": "A ridiculous object",
  "some array": [7, 9, { purpose: "confusion", number: 123 }, 3.3],
  "random animal": "Banana Shark"
};

How would you get the number 123 out of this object 
using one line of JavaScript? Try it out in the console to see 
if you’re right.



5
THe BASICS of HTMl

The browser-based JavaScript console that we’ve been 
using so far is great for trying out small snippets of 
code, but in order to create actual programs, we’ll need 
something a bit more flexible, like a web page with 
some JavaScript in it. In this chapter, we’ll learn how 
to create a basic HTML web page. 



78  Chapter 5

HTML (HyperText Markup Language) is the language used 
to make web pages. The word HyperText refers to text that is con-
nected by hyperlinks, the links on a web page. A markup language 
is used to annotate documents so that they’re not just plaintext. 
The markup tells software (like a web browser) how to display the 
text and what to do with it.

In this chapter, I’ll show you how to write HTML documents 
in a text editor, a simple program designed for writing plaintext 
files without the formatting you find in word processors like 
Microsoft Word. Word-processed documents contain formatted 
text (with different fonts, type colors, font sizes, etc.), and word 
processors are designed to make it easy to change the formatting 
of the text. Word processors usually allow you to insert images and 
graphics as well.

Plaintext files contain just text, without any 
information about the font, color, size, and so on. 
You can’t put an image in a text file unless you 
make it out of text—like this cat, for example.

Text editors
We’ll write our HTML in the cross-platform (compatible with 
Windows, Mac OS, and Linux) Sublime Text editor. You can 
download and use Sublime Text for free, but after a while you’ll 
be asked to pay for a license. If you don’t like that idea, I’ve listed 
some completely free alternatives below. My instructions in this 
chapter are geared toward Sublime Text, but since text editors are 
relatively simple, the instructions should work pretty much the 
same for any editor.

• Gedit is a cross-platform text editor from the GNOME project 
(https://wiki.gnome.org/Apps/Gedit/). 

• For Microsoft Windows, Notepad++ (http://notepad-plus-plus 
.org/) is another good alternative. 

• On Mac OS, TextWrangler (http://www.barebones.com/
products/textwrangler/) is a good option. 

To install Sublime Text, visit http://www.sublimetext.com/. 
Installation instructions differ for each operating system, but you 
should find them pretty clear. If you run into any problems, try the 
Support section at the Sublime Text home page.

      /\_/\
    =( °w° )=
      )   (  //
     (__ __)//

http://www.barebones.com/products/textwrangler/


The Basics of HTML  79

our first HTMl Document
Once you’ve installed Sublime Text, start the program and create 
a new file with file4New file. Next, choose file4Save to save 
your new, blank file; name it page.html and save it to your desktop.

Now it’s time to write some HTML. Enter the following text 
into your page.html file:

<h1>Hello world!</h1>
<p>My first web page.</p>

Save your updated version of page.html with file4Save. Now 
let’s see what that page would look like in a web browser. Open 
Chrome, choose file4open file, and select page.html from your 
desktop. You should see something like Figure 5-1.

Figure 5-1: Your first HTML page in Chrome

You’ve just created your first HTML document! Although 
you’re viewing it in your web browser, it’s not actually on the 
Internet. Chrome is opening your page locally and just reading 
your markup tags to figure out what to do with its text.

Syntax Highlighting
Sublime Text will color-code your programs with syntax 
highlighting. This is designed to make programs easier for 
programmers to read by assigning different colors to differ-
ent types of code. For example, strings might be green, while 
keywords like var might be orange.

Sublime Text has lots of color schemes to choose from. 
In this book, we’re using the IDLE color scheme, which you 
can match on your screen by going to preferences4color 
Scheme and selecting IDLE.



80  Chapter 5

Tags and elements
HTML documents are made up of elements. An element starts 
with a start tag and ends with an end tag. For example, in our 
document so far we have two elements: h1 and p. The h1 element 
starts with the start tag <h1> and ends with the end tag </h1>. The 
p element starts with the start tag <p> and ends with the end tag 
</p>. Anything between the opening and closing tags is the content 
of the element.

Start tags consist of the element name surrounded by angle 
brackets: < and >. End tags are the same, but they have a forward 
slash (/) before the element name.

Heading elements
Each element has a special meaning and use. For example, the h1 
element means “This is a top-level heading.” The content you put 
in between the opening and closing <h1> tags is displayed by the 
browser on its own line, in a large, bold font.

There are six levels of heading elements in HTML: h1, h2, h3, 
h4, h5, and h6. They look like this:

<h1>First-level heading</h1>
<h2>Second-level heading</h2>
<h3>Third-level heading</h3>
<h4>Fourth-level heading</h4>
<h5>Fifth-level heading</h5>
<h6>Sixth-level heading</h6>

Figure 5-2 shows how the headings look on a web page.

Figure 5-2: The different heading elements



The Basics of HTML  81

The p element
The p element is used to define separate paragraphs of text. Any 
text you put between <p> tags will display in a separate paragraph, 
with some space above and below the paragraph. Let’s try creating 
multiple p elements. Add this new line to your page.html document 
(the old lines are shown in gray):

<h1>Hello world!</h1>
<p>My first web page.</p>
<p>Let's add another paragraph.</p>

Figure 5-3 shows the web page with the new paragraph.

Figure 5-3: The same page but with an extra  
paragraph

Notice that the paragraphs appear on different lines and are 
separated by a bit of space. This is all because of the <p> tags.

Whitespace in HTMl and Block-level 
elements
What would our page look like without the tags? Let’s take a look:

Hello world!
My first web page.
Let's add another paragraph.

Figure 5-4 shows our page without any tags.

Figure 5-4: The same page but with no  
HTML tags



82  Chapter 5

Oh no! Not only have we lost 
the formatting, but everything’s on 
one long line! The reason is that in 
HTML, all whitespace is collapsed 
into a single space. Whitespace 
means any character that results 
in blank space on the page—for 
example, the space character, the 
tab character, and the newline 
character (the character that is 
inserted when you press enter 
or return). Any blank lines you 
insert between two pieces of text 
in an HTML document will get 
collapsed into a single space.

The p and h1 elements are called block-level elements because 
they display their content in a separate block, starting on a new 
line, and with any following content on a new line.

Inline elements
Let’s add two more elements to our document, em and strong:

<h1>Hello world!</h1>
<p>My <em>first</em> <strong>web page</strong>.</p>
<p>Let's add another <strong><em>paragraph</em></strong>.</p>

Figure 5-5 shows what the page looks like with the new tags.

Figure 5-5: The em and strong elements

The em element makes its content italic. The strong element 
makes its content bold. The em and strong elements are both inline 
elements, which means that they don’t put their content onto a new 
line, as block-level elements do.



The Basics of HTML  83

To make content bold and italic, put it inside both tags. Notice 
in the previous example that the bold italic text has the tags in 
this order: <strong><em>paragraph</em></strong>. It’s important to 
properly nest elements. Nesting means that if an element is inside 
another element, its opening and closing tags should both be inside 
the parent element. For example, this is not allowed:

<strong><em>paragraph</strong></em>

In this case, the closing </strong> tag comes before the closing 
</em> tag. Browsers generally won’t tell you when you’ve made a 
mistake like this, but getting nesting wrong can cause your pages 
to break in strange ways.

A full HTMl Document
What we’ve looked at so far is really just a snippet of HTML. A 
full HTML document requires some extra elements. Let’s take a 
look at an example of a complete HTML document and what each 
part means. Update your page.html file with these new elements:

<!DOCTYPE html>
<html>
<head>
    <title>My first proper HTML page</title>
</head>

<body>
    <h1>Hello world!</h1>
    <p>My <em>first</em> <strong>web page</strong>.</p>
    <p>Let's add another <strong><em>paragraph</em></strong>.</p>
</body>
</html>

NoTe  Sublime Text should automatically indent certain lines for you, as 
shown in this example. It’s actually identifying lines based on their 
tags (like <html>, <h1>, and so on) and indenting them according 
to their nesting. Sublime Text doesn’t indent the <head> and <body> 
tags, though some editors do. 



84  Chapter 5

Figure 5-6 shows the complete HTML document.

Figure 5-6: The complete HTML document

Let’s take a walk through the elements in our page.html file. 
The <!DOCTYPE html> tag is just a declaration. It simply says, “This is 
an HTML document.” Next comes the opening <html> tag (the clos-
ing </html> tag is at the very end). All HTML documents must have 
an html element as their outermost element.

There are two elements inside the html element: head and body. 
The head element contains certain information about your HTML 
document, such as the title element, which contains the docu-
ment’s title. For example, notice that in Figure 5-6, the title in the 
browser tab—“My first proper HTML page”—matches what we 
entered in the title element. The title element is contained inside 
the head element, which is contained inside the html element.

The body element contains the content that will be displayed in 
the browser. Here, we’ve just copied the HTML from earlier in the 
chapter.

HTMl Hierarchy
HTML elements have a clear hierarchy, or order, and can be 
thought of as a kind of upside-down tree. You can see how our 
document would look as a tree in Figure 5-7.

<html>

<head> <body>

<title> <h1> <p>

Figure 5-7: The elements from Figure 5-6, 
shown as a tree



The Basics of HTML  85

The top element is the html element. It contains the head and 
body elements. The head contains the title element, and the body 
contains the h1 and p elements. The browser interprets your HTML 
according to this hierarchy. We’ll look at how to change the docu-
ment structure later, in Chapter 9.

Figure 5-8 shows another way of visualizing the HTML hier-
archy, as a set of nested boxes.

html

head

title

body

h1

p

Figure 5-8: The HTML hierarchy, shown  
as nested boxes

Adding links to Your HTMl
Earlier in this chapter, we learned that the HT in HTML stands for 
HyperText, or linked text. HTML documents can contain hyperlinks 
(links for short) that take you to other web pages. The a element (for 
anchor) creates a link element.

Modify your HTML document to match the following example: 
delete the second p element and the <em> and <strong> tags, and then 
add the new colored code to create a link to http://xkcd.com/:

<!DOCTYPE html>
<html>
<head>
    <title>My first proper HTML page</title>
</head>



86  Chapter 5

<body>
    <h1>Hello world!</h1>
    <p>My first web page.</p>
    <p><a href="http://xkcd.com">Click here</a> to read some excellent 
comics.</p>
</body>
</html>

Now save and open your page in your browser, and it should 
look like Figure 5-9.

Figure 5-9: A web page containing a link to  
http://xkcd.com/

If you click that link, your browser should go to the xkcd web-
site, http://xkcd.com/. Once you’ve had your fill of geeky comics, 
click the back button to return to your page.

link Attributes
Let’s take a closer look at how we 
created that HTML link. To tell the 
browser where to go when you click 
the a element, we added something 
called an attribute to the anchor ele-
ment. Attributes in HTML elements 
are similar to key-value pairs in 
JavaScript objects. Every attribute 
has a name and a value. Here’s the 
xkcd link we created again:

<a href="http://xkcd.com">Click here</a>



The Basics of HTML  87

In this case, the attribute name is href and the attribute value 
is "http://xkcd.com". The name href stands for hypertext reference, 
which is a fancy way of saying “web address.”

Figure 5-10 shows all the parts of the link.

<a href="http://xkcd.com">Click here</a>

The opening anchor tag

The web address
in quotes

This text
will appear
as the link.

The closing anchor tag

Figure 5-10: The basic syntax for creating a hyperlink

The link will take you to whatever web address is entered as 
the value of the href attribute.

Title Attributes
Another attribute we can add to links is the title attribute. This 
attribute sets the text you see when you hover your mouse over a 
link. For example, change the opening <a> tag so it looks like this:

<a href="http://xkcd.com" title="xkcd: Land of geeky comics!">Click here</a>

Now reload the page. When you hover your cursor over the 
link, you should see the text “xkcd: Land of geeky comics!” floating 
above the page, as shown in Figure 5-11.

Figure 5-11: A web page containing a link  
to http://xkcd.com/ with a title attribute



88  Chapter 5

What You learned
In this chapter, you learned the basics of HTML, the language 
used to create web pages. We created a simple page containing a 
link to another page.

In the next chapter, we’ll look at how to embed JavaScript in 
our web page. This will make it much easier to create larger pro-
grams as we explore more features of JavaScript in the next few 
chapters.

This is a book on JavaScript, not HTML, so I’ve introduced 
only the very basics of creating HTML documents. Here are some 
resources where you can learn more about HTML:

• The Mozilla Developer Network’s Introduction to HTML: 
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
Introduction/

• Codecademy’s HTML and CSS course: http://www.codecademy 
.com/tracks/web/

• Mozilla Webmaker: https://webmaker.org/

Try It out!
Make a new file called links.html. It should contain the 
same HTML structure as our page.html, but with a new 
title and heading and three paragraph (p) elements. In each 
paragraph, include a link to one of your favorite websites. 
Make sure all the a elements have href and title attributes.

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
http://www.codecademy.com/tracks/web/


6
CoNDITIoNAlS AND looPS

Conditionals and loops are two of the most important 
concepts in JavaScript. A conditional says, “If some-
thing is true, do this. Otherwise, do that.” For example, 
if you do your homework, you can have ice cream, 
but if you don’t do your homework, you don’t get the 
ice cream. A loop says, “As long as something is true, 
keep doing this.” For example, as long as you are 
thirsty, keep drinking water. 



90  Chapter 6

Conditionals and loops are powerful concepts that are key 
to any sophisticated program. They are called control structures 
because they allow you to control which parts of your code are 
executed when and how often they’re executed, based on certain 
conditions you define.

We first need to go over how to embed JavaScript in our 
HTML file so we can start creating longer programs than we’ve 
looked at so far.

embedding JavaScript in HTMl
Here is the HTML file we created in Chapter 5, with additions in 
color and the existing text in gray. (To make this example a little 
simpler, I’ve also deleted the link to xkcd.)

<!DOCTYPE html>
<html>
<head>
    <title>My first proper HTML page</title>
</head>

<body>
    <h1>Hello world!</h1>
    <p>My first web page.</p>
    <script>
    var message = "Hello world!";
    console.log(message);
    </script>
</body>
</html>

Here we’ve added a new element, called script. This is a spe-
cial element in HTML. With most HTML elements, the content 
between the opening and closing tags is displayed on the page. 
With script, on the other hand, everything between the tags is 
treated as JavaScript and run by the JavaScript interpreter.

Now let’s look at the code inside the script element:

var message = "Hello world!";
u console.log(message);



Conditionals and Loops  91

Running JavaScript in an 
HTML file is quite different from 
running it in the console. When 
you’re using the JavaScript con-
sole, each line you type is run 
as soon as you press enter, and 
the value of that line is printed 
out to the console. In a web page, 
the JavaScript is all run from 
top to bottom at one time, and 
nothing is automatically printed 
to the console, unless we tell the 
browser otherwise. We can use 
console.log to print things out, which will make it easier to see 
what’s going on as we run our programs. The console.log method 
takes any value and prints out, or logs, that value to the console. 
For example, if you load the HTML file from the beginning of this 
section with the JavaScript console open, you’ll see this:

Hello world!

Calling console.log(message) at u caused the string "Hello world!" 
to be printed to the console.

Now that you know how to write longer programs with 
JavaScript, you can start learning about conditionals.

Conditionals
There are two forms of conditional statements in JavaScript: if 
statements and if...else statements. An if statement is used to 
execute a piece of code if something is true. For example, if you’ve 
been good, you get a treat. An if...else statement executes one 
piece of code if something is true and another if not. For example, 
if you’ve been good, you get a treat; else, you get grounded.

if Statements
The if statement is the simplest of JavaScript’s control structures. 
It’s used to run code only if a condition is true. Return to your 



92  Chapter 6

HTML file and replace the two lines inside the script element 
with this:

u var name = "Nicholas";
v console.log("Hello " + name);
w if (name.length > 7) {
x   console.log("Wow, you have a REALLY long name!");

}

First, at u we create a variable called name and set its value 
to the string "Nicholas". Then we use console.log to log the string 
"Hello Nicholas" at v.

At w we use an if statement to check whether the length of 
name is greater than 7. If it is, the console will display "Wow, you have 
a REALLY long name!", using console.log at x.

As Figure 6-1 shows, an if statement has two main parts: the 
condition and the body. The condition should be a Boolean value. 
The body is one or more lines of JavaScript code, which are exe-
cuted if the condition is true.

if (condition) {
  console.log("Do something");
}

Some code to run
if the condition is true,

called the body

The if statement
checks whether this

condition is true.

Figure 6-1: The general structure of an if statement

When you load your HTML page with this JavaScript in it, 
you should see the following in the console:

Hello Nicholas
Wow, you have a REALLY long name!

Because the name Nicholas has eight characters, name.length 
returns 8. Therefore, the condition name.length > 7 is true, which 
causes the body of the if statement to be run, resulting in this 



Conditionals and Loops  93

somewhat startling message being logged. To avoid triggering the 
if condition, change the name Nicholas to Nick (leaving the rest of 
the code as is):

var name = "Nick";

Now save the file and reload the page. This time, the condi-
tion name.length > 7 is not true, because name.length is 4. That means 
that the body of the if statement is not run and all that gets printed 
to the console is this:

Hello Nick

The body of an if statement is executed only if the condition is 
true. When the condition is false, the interpreter simply skips over 
the if statement and moves on to the next line.

if…else Statements
As I said before, an if statement will execute its body only if the 
condition is true. If you want something else to happen when 
the condition is false, you need to use an if...else statement.

Let’s extend the example from earlier:

var name = "Nicholas";
console.log("Hello " + name);
if (name.length > 7) {
  console.log("Wow, you have a REALLY long name!");
} else {
  console.log("Your name isn't very long.");
}

This does the same thing as before, except 
that if the name isn’t longer than seven charac-
ters, it prints out an alternative message.

As Figure 6-2 shows, if...else statements 
look like if statements, but with two bodies. The 
keyword else is placed between the two bodies. 
In an if...else statement, the first body is run 
if the condition is true; otherwise, the second 
body is run.



94  Chapter 6

if (condition) {
  console.log("Do something");
} else {
  console.log("Do something else!");
}

Some code to run if the
condition is true

Something that is 
either true or false

Some code to run
if the condition is false

Figure 6-2: The general structure of an if...else statement

Chaining if…else Statements
Often we need to check a sequence of conditions and do something 
when one of them is true. For example, say you’re ordering Chinese 
food and you’re choosing what to eat. Your favorite Chinese dish 
is lemon chicken, so you’ll have that if it’s on the menu. If it’s 
not, you’ll have beef with black bean sauce. If that’s not on the 
menu, you’ll have sweet and sour pork. In the rare case that none 
of those options is available, you’ll have egg fried rice, because you 
know all the Chinese restaurants you go to will have that.

var lemonChicken = false;
var beefWithBlackBean = true;
var sweetAndSourPork = true;

if (lemonChicken) {
  console.log("Great! I'm having lemon chicken!");
} else if (beefWithBlackBean) {
  console.log("I'm having the beef.");
} else if (sweetAndSourPork) {
  console.log("OK, I'll have the pork.");
} else {
  console.log("Well, I guess I'll have rice then.");
}

To create a chain of if...else statements, start with a nor-
mal if statement and, after the closing brace of its body, enter the 
keywords else if, followed by another condition and another body. 
You can keep doing this until you run out of conditions; there’s no 



Conditionals and Loops  95

limit to the number of conditions. The final else section will run if 
none of the conditions is true. Figure 6-3 shows a generic chain of 
if...else statements.

if (condition1) {
  console.log("Do this if condition 1 is true");
} else if (condition2) {
  console.log("Do this if condition 2 is true");
} else if (condition3) {
  console.log("Do this if condition 3 is true");
} else {
  console.log("Do this otherwise");
}

Each condition has code to run
if the condition is true.

Some code to run
if all the conditions are false

Figure 6-3: Chaining multiple if...else statements

You can read this as follows:

1. If the first condition is true, execute the first body.

2. Otherwise, if the second condition is true, execute the 
second body.

3. Otherwise, if the third condition is true, execute the third body.

4. Otherwise, execute the else body.

When you have a chain of if...else statements like this with 
a final else section, you can be sure that one (and only one) of the 
bodies will be run. As soon as a true condition is found, its asso-
ciated body is run, and none of the 
other conditions is checked. If we run 
the code in the previous example, I'm 
having the beef will be printed to the 
console, because beefWithBlackBean is 
the first condition that’s found to be 
true in the if...else chain. If none of 
the conditions is true, the else body 
is run.



96  Chapter 6

There’s one other thing to note: you don’t necessarily have to 
include the final else. If you don’t, though, and none of the conditions 
is true, then nothing inside the if...else chain will be executed.

var lemonChicken = false;
var beefWithBlackBean = false;
var sweetAndSourPork = false;

if (lemonChicken) {
  console.log("Great! I'm having lemon chicken!");
} else if (beefWithBlackBean) {
  console.log("I'm having the beef.");
} else if (sweetAndSourPork) {
  console.log("OK, I'll have the pork.");
} 

In this example, we’ve left out the final else section. Because 
none of your favorite foods is available, nothing gets printed out 
(and it looks like you’re not going to have anything to eat!).

loops
As we’ve seen, conditionals allow you to run a piece of code 
once if a condition is true. Loops, on the other hand, allow you to 
run a piece of code multiple times, depending on whether a condi-
tion remains true. For example, 
while there’s food on your plate, 
you should keep eating; or, 
while you still have dirt on your 
face, you should keep washing.

Try It out!
Write a program with a name variable. If name is your name, 
print out Hello me!; otherwise, print Hello stranger!. (Hint: 
Use === to compare name to your name.)

Next, rewrite the program so it’ll say hi to your dad if 
name is set to your dad’s name or hi to your mom if name is 
your mom’s name. If it’s neither of them, say Hello stranger! 
as before.



Conditionals and Loops  97

while loops
The simplest kind of loop is a while loop. A while loop repeatedly 
executes its body until a particular condition stops being true. By 
writing a while loop, you are saying, “Keep doing this while this 
condition is true. Stop when the condition becomes false.” 

As Figure 6-4 shows, while loops start with the while key-
word, followed by a condition in parentheses and then a body 
in braces.

while (condition) {
  console.log("Do something");
  i++;
} Some code to run and repeat

as long as the condition is true
(something in here should change things

so the condition is eventually false)

This condition is checked
each time the loop repeats.

Figure 6-4: The general structure of a while loop

Like an if statement, the body of a while loop is executed if the 
condition is true. Unlike an if statement, after the body is executed, 
the condition is checked again, and if it’s still true, the body runs 
again. This cycle goes on until the condition is false.

Counting Sheep with a while loop
Say you’re having trouble sleeping and you want to count sheep. 
But you’re a programmer, so why not write a program to count 
sheep for you?

var sheepCounted = 0;
u while (sheepCounted < 10) {
v console.log("I have counted " + sheepCounted + " sheep!");

  sheepCounted++;
}
console.log("Zzzzzzzzzzz");



98  Chapter 6

We create a variable called sheepCounted and set its value 
to 0. When we reach the while loop u, we check to see whether 
sheepCounted is less than 10. Because 0 is less than 10, the code 
inside the braces (the body of the loop) v runs, and "I have 
counted " + sheepCounted + " sheep!" is logged as “I have counted 
0 sheep!” Next, sheepCounted++ adds 1 to the value of sheepCounted, 
and we go back to the start of the loop, over and over:

I have counted 0 sheep!
I have counted 1 sheep!
I have counted 2 sheep!
I have counted 3 sheep!
I have counted 4 sheep!
I have counted 5 sheep!
I have counted 6 sheep!
I have counted 7 sheep!
I have counted 8 sheep!
I have counted 9 sheep!
Zzzzzzzzzzz

This repeats until sheepCounted becomes 10, at which point the 
condition becomes false (10 is not less than 10), and the program 
moves on to whatever comes after the loop. In this case, it prints 
Zzzzzzzzzzz.

Preventing Infinite loops
Keep this in mind when you’re using loops: if the condition you 
set never becomes false, your loop will loop forever (or at least 
until you quit your browser). For example, if you left out the line 
sheepCounted++;, then sheepCounted would remain 0, and the output 
would look like this:

I have counted 0 sheep!
I have counted 0 sheep!
I have counted 0 sheep!
I have counted 0 sheep!
... 



Conditionals and Loops  99

Because there’s nothing to stop it, the program would keep 
doing this forever! This is called an infinite loop.

for loops
for loops make it easier to write loops that create a variable, loop 
until a condition is true, and update the variable at the end of 
each turn around the loop. When setting up a for loop, you create 
a variable, specify the condition, and say how the variable should 
change after each cycle—all before you reach the body of the loop. 
For example, here’s how we could use a for loop to count sheep:

for (var sheepCounted = 0; sheepCounted < 10; sheepCounted++) {
  console.log("I have counted " + sheepCounted + " sheep!");
}
console.log("Zzzzzzzzzzz");

As Figure 6-5 shows, there are three parts to this for loop, 
separated by semicolons: the setup, condition, and increment.

for (setup; condition; increment) {
  console.log("Do something");
}

Some code to run
as long as the

condition is true

Something that is 
either true or false

This code runs
before the loop starts.

Something to run
after each repetition

of the loop body

Figure 6-5: The general structure of a for loop

The setup (var sheepCounted = 0) is run before the loop starts. 
It’s generally used to create a variable to track the number of times 
the loop has run. Here we create the variable sheepCounted with an 
initial value of 0. 

The condition (sheepCounted < 10) is checked before each run 
of the loop body. If the condition is true, the body is executed; 
if it’s false, the loop stops. In this case, the loop will stop once 
sheepCounted is no longer less than 10. 

The increment (sheepCounted++) is run after every execution of 
the loop body. It’s generally used to update the looping variable. 
Here, we use it to add 1 to sheepCounted each time the loop runs.



100  Chapter 6

for loops are often used to do something a set number of times. 
For example, this program will say Hello! three times.

var timesToSayHello = 3;
for (var i = 0; i < timesToSayHello; i++) {
  console.log("Hello!");
}

Here is the output:

Hello!
Hello!
Hello!

If we were the JavaScript interpreter running this code, we 
would first create a variable called timesToSayHello and set it to 
3. When we reach the for loop, we run the setup, which creates a 
variable i and sets it to 0. Next, we check the condition. Because 
i is equal to 0 and timesToSayHello is 3, the condition is true, so we 
enter the loop body, which simply outputs the string "Hello!". We 
then run the increment, which increases i to 1.

Now we check the condition again. It’s still true, so we run 
the body and increment again. This happens repeatedly until i is 
equal to 3. At this point, the condition is false (3 is not less than 3), 
so we exit the loop.

using for loops with Arrays and Strings
One very common use of for loops is to do something with every 
element in an array or every character in a string. For example, 
here is a for loop that prints out the animals in a zoo:

var animals = ["Lion", "Flamingo", "Polar Bear", "Boa Constrictor"];

for (var i = 0; i < animals.length; i++) {
  console.log("This zoo contains a " + animals[i] + ".");
}

In this loop, i starts at 0 and goes up to one less than 
animals.length, which in this case is 3. The numbers 0, 1, 2, 
and 3 are the indexes of the animals in the animals array. This 



Conditionals and Loops  101

means that every time around 
the loop, i is a different index, 
and animals[i] is another animal 
from the animals array. When i is 
0, animals[i] is "Lion". When i is 1, 
animals[i] is "Flamingo", and so on.

Running this would output:

This zoo contains a Lion.
This zoo contains a Flamingo.
This zoo contains a Polar Bear.
This zoo contains a Boa Constrictor.

As you saw in Chapter 2, you can access individual characters 
in a string in the same way you can access individual elements in 
an array, using square brackets. This next example uses a for loop 
to print out the characters in a name:

var name = "Nick";

for (var i = 0; i < name.length; i++) {
  console.log("My name contains the letter " + name[i] + ".");
}

This would output:

My name contains the letter N.
My name contains the letter i.
My name contains the letter c.
My name contains the letter k.

other Ways to use for loops
As you might imagine, you don’t always have to start the looping 
variable at 0 and increment it by 1. For example, here’s a way to 
print all the powers of 2 below the number 10,000:

for (var x = 2; x < 10000; x = x * 2) {
  console.log(x);
}



102  Chapter 6

We set x to 2 and increment the value of x using x = x * 2;, 
which will double the value of x each time the loop runs. The result 
gets big very quickly, as you can see:

2
4
8
16
32
64
128
256
512
1024
2048
4096
8192

And voilà! This short for loop prints out all the powers of 2 
below 10,000.

What You learned
In this chapter, you learned about conditionals and loops. 
Conditionals are used to run code only when a certain condition 
is true. Loops are used to run code multiple times and to keep 
running that code as long as a certain condition is true. You can 
use conditionals to make sure that the right code is run at the 
right time, and you can use loops to keep your program running 
as long as necessary. Having the ability to do these two things 
opens up a whole new world of programming possibilities.

In the next chapter, we’ll use the power of conditionals and 
loops to make our first real game!

Try It out!
Write a loop to print the powers of 3 under 10,000 (it should 
print 3, 9, 27, etc.).

Rewrite this loop with a while loop. (Hint: Provide the 
setup before the loop.)



Conditionals and Loops  103

Programming Challenges
Try out these challenges to practice 
working with conditionals and loops.

#1: Awesome Animals
Write a for loop that modifies an 
array of animals, making them 
awesome! For example, if your 
starting array is . . .

var animals = ["Cat", "Fish",  
"Lemur", "Komodo Dragon"];

then after you run your loop, it 
should look like this:

["Awesome Cat", "Awesome Fish", "Awesome Lemur", "Awesome  
Komodo Dragon"]

Hint: You’ll need to reassign values to the array at each 
index. This just means assigning a new value at an existing 
position in the array. For example, to make the first animal 
awesome, you could say:

animals[0] = "Awesome " + animals[0];

#2: Random String Generator
Make a random string generator. You’ll need to start with a 
string containing all the letters in the alphabet:

var alphabet = "abcdefghijklmnopqrstuvwxyz";

To pick a random letter from this string, you can 
update the code we used for the random insult generator in 
Chapter 3: Math.floor(Math.random() * alphabet.length). This 
will create a random index into the string. You can then use 
square brackets to get the character at that index.

(continued)



104  Chapter 6

To create the random string, start with an empty string 
(var randomString = ""). Then, create a while loop that will 
continually add new random letters to this string, as long 
as the string length is less than 6 (or any length you choose). 
You could use the += operator to add a new letter to the end 
of the string. After the loop has finished, log it to the console 
to see your creation!

#3: h4ck3r sp34k 
Turn text into h4ck3r sp34k! A lot of people on the Internet 
like to replace certain letters with numbers that look like 
those letters. Some numbers that look like letters are 4 for 
A, 3 for E, 1 for I, and 0 for O. Even though the numbers look 
more like capital letters, we’ll be replacing the lowercase 
versions of those letters. To change normal text to h4ck3r 
sp34k, we’ll need an input string and a new empty string:

var input = "javascript is awesome";
var output = "";

You’ll then need to use a for loop to go through all the 
letters of the input string. If the letter is "a", add a "4" to the 
output string. If it’s "e", add a "3". If it’s "i", add a "1", and 
if it’s "o", add a "0". Otherwise, just add the original letter 
to the new string. As before, you can use += to add each new 
letter to the output string.

After the loop, log the output string to the console. If it 
works correctly, you should see it log "j4v4scr1pt 1s 4w3s0m3".



7
CReATING A HANGMAN GAMe

In this chapter we’ll build a Hangman game! We’ll 
learn how to use dialogs to make the game interactive 
and take input from someone playing the game. 

Hangman is a word-guessing game. One player 
picks a secret word, and the other player tries to 
guess it. 



106  Chapter 7

For example, if the word were TEACHER, the first player 
would write:

_ _ _ _ _ _ _

The guessing player tries to guess the letters in the word. 
Each time they guess a letter correctly, the first player fills in the 
blanks for each occurrence of that letter. For example, if the guess-
ing player guessed the letter E, the first player would fill in the Es 
in the word TEACHER like so:

_ E _ _ _ E _

When the guessing player guesses a letter that isn’t in the 
word, they lose a point and the first player draws part of a stick-
man for each wrong guess. If the first player completes the 
stickman before the guessing 
player guesses the word, the 
guessing player loses.

In our version of Hangman, 
the JavaScript program will 
choose the word and the human 
player will guess letters. We 
won’t be drawing the stickman, 
because we haven’t yet learned 
how to draw in JavaScript 
(we’ll learn how to do that in 
Chapter 13).

Interacting with a Player
To create this game, we have to have some way for the guessing 
player (human) to enter their choices. One way is to open a pop-up 
window (which JavaScript calls a prompt) that the player can 
type into.

Creating a Prompt
First, let’s create a new HTML document. Using file4Save as, 
save your page.html file from Chapter 5 as prompt.html. To create 



Creating a Hangman Game  107

a prompt, enter this code between the <script> tags of prompt.html 
and refresh the browser:

var name = prompt("What's your name?");
console.log("Hello " + name);

Here we create a new variable, called name, and assign to it 
the value returned from calling prompt("What's your name?"). When 
prompt is called, a small window (or dialog) is opened, which should 
look like Figure 7-1.

Figure 7-1: A prompt dialog

Calling prompt("What's your name?") pops up a window with 
the text “What’s your name?” along with a text box for input. 
At the bottom of the dialog are two buttons, Cancel and OK. In 
Chrome, the dialog has the heading JavaScript, to inform you 
that JavaScript opened the prompt.

When you enter text in the box and click OK, that text 
becomes the value that is returned by prompt. For example, if I 
were to enter my name into the text box and click OK, JavaScript 
would print this in the console:

Hello Nick

Because I entered Nick in the text box and clicked OK, the 
string "Nick" is saved in the variable name and console.log prints 
"Hello " + "Nick", which gives us "Hello Nick".

NoTe  The second time you open any kind of dialog in Chrome, it adds an 
extra line to the dialog with a checkbox saying, “Prevent this page 
from creating additional dialogs.” This is Chrome’s way of protect-
ing users from web pages with lots of annoying pop-ups. Just leave 
the box unchecked for the exercises in this chapter.



108  Chapter 7

What Happens If You Click Cancel?
If you click the Cancel button, prompt returns the value null. 
In Chapter 2, we learned that you can use null to indicate 
when something is intentionally empty.

Click Cancel at the dialog, and you should see this:

Hello null

Here, null is printed as a string by console.log. Normally, 
null isn’t a string, but since only strings can be printed 
to the console and you told JavaScript to print "Hello " + 
null, JavaScript turns the value null into the string "null" 
so it can be printed. When JavaScript converts a value into 
another type, it’s called coercion. 

Coercion is an example of JavaScript trying to be clever. 
There isn’t any way to combine a string and null using the 
+ operator, so JavaScript does its best with the situation. In 
this case, it knows it needs two strings. The string version 
of null is "null", which is why you see the string "Hello null" 
printed.

using confirm to Ask a  
Yes or No Question
The confirm function is a way to take user 
input without a text box by asking for a 
yes or no (Boolean) answer. For example, 
here we use confirm to ask the user if they 
like cats (see Figure 7-2). If so, the vari-
able likesCats is set to true, and we respond 
with “You’re a cool cat!” If they don’t like 
cats, likesCats is set to false, so we respond 
with “Yeah, that’s fine. You’re still cool!”

var likesCats = confirm("Do you like cats?");
if (likesCats) {
  console.log("You're a cool cat!");
} else {
  console.log("Yeah, that's fine. You're still cool!");
}



Creating a Hangman Game  109

Figure 7-2: A confirm dialog

The answer to the confirm prompt is returned as a Boolean 
value. If the user clicks OK in the confirm dialog shown in 
Figure 7-2, true is returned. If they click Cancel, false is 
returned. 

using Alerts to Give a Player 
Information
If you want to just give the player some information, you can 
use an alert dialog to display a message with an OK button. For 
example, if you think that JavaScript is awesome, you might use 
this alert function:

alert("JavaScript is awesome!");

Figure 7-3 shows what this simple alert dialog would look like.

Figure 7-3: An alert dialog

Alert dialogs just display a message and wait until the user 
clicks OK.

Why use alert Instead of console.log?
Why use an alert dialog in a game instead of using console.log? 
First, because if all you want to do is tell the player something, 
using alert means the player doesn’t have to interrupt game play 
to open the console to see a status message. Second, calling alert 
(as well as prompt and confirm) pauses the JavaScript interpreter 



110  Chapter 7

until the user clicks OK (or Cancel, 
in the case of prompt and confirm). 
That means the player has time to 
read the alert. On the other hand, 
when you use console.log, the text 
is displayed immediately and the 
interpreter moves on to the next 
line in your program. 

Designing Your Game
Before we start writing the 
Hangman game, let’s think about 
its structure. There are a few 
things we need our program to do:

1. Pick a random word.

2. Take the player’s guess.

3. Quit the game if the player wants to.

4. Check that the player’s guess is a valid letter.

5. Keep track of letters the player has guessed.

6. Show the player their progress.

7. Finish when the player has guessed the word.

Apart from the first and last tasks (picking a word for the 
player to guess and finishing the game), these steps all need to 
happen multiple times, and we don’t know how many times (it 
depends on how well the player guesses). When you need to do the 
same thing multiple times, you know you’ll need a loop. 

But this simple list of tasks doesn’t really give us any idea of 
what needs to happen when. To get a better idea of the structure 
of the code, we can use pseudocode.

using Pseudocode to Design the Game
Pseudocode is a handy tool that programmers often use to design 
programs. It means “fake code,” and it’s a way of describing how a 
program will work that looks like a cross between written English 
and code. Pseudocode has loops and conditionals, but other than 



Creating a Hangman Game  111

that, everything is just plain English. Let’s look at a pseudocode 
version of our game to get an idea:

Pick a random word

While the word has not been guessed {
  Show the player their current progress 
  Get a guess from the player

  If the player wants to quit the game {
    Quit the game
  }
  Else If the guess is not a single letter {
    Tell the player to pick a single letter
  }
  Else {
    If the guess is in the word {
      Update the player's progress with the guess
    }
  }
}

Congratulate the player on guessing the word

As you can see, none of this is real code, and no computer could 
understand it. But it gives us an idea of how our program will be 
structured, before we get to actually writing the code and having 
to deal with the messy details, like how we’re going to pick a ran-
dom word.

Tracking the State of the Word
In the previous pseudocode, one of the first lines says, “Show 
the player their current progress.” For the Hangman game, this 
means filling in the letters that the player has guessed correctly 
and showing which letters in the secret word are still blank. How 
are we going to do this? We can actually keep track of the player’s 
progress in a similar way to how traditional Hangman works: 
by keeping a collection of blank spaces and filling them in as the 
player guesses correct letters.

In our game, we’ll do this using an array of blanks for each 
letter in the word. We’ll call this the answer array, and we’ll fill it 
with the player’s correct guesses as they’re made. We’ll represent 
each blank with the string "_".



112  Chapter 7

The answer array will start out as a group of these empty 
entries equal in number to the letters in the secret word. For 
example, if the secret word is fish, the array would look like this: 

["_", "_", "_", "_"]

If the player correctly guessed the letter i, we’d change the sec-
ond blank to an i:

["_", "i", "_", "_"]

Once the player guesses all the correct letters, the completed 
array would look like this: 

["f", "i", "s", "h"]

We’ll also use a variable to keep track of the number of 
remaining letters the player has to guess. For every occurrence 
of a correctly guessed letter, this variable will decrease by 1. 
Once it hits 0, we know the player has won.

Designing the Game loop
The main game takes place inside a while loop (in our pseudo-
code, this loop begins with the line “While the word has not been 
guessed”). In this loop we display the current state of the word 
being guessed (beginning with all blanks); ask the player for a 
guess (and make sure it’s a valid, single-letter guess); and update 
the answer array with the chosen letter, if that letter appears 
in the word.



Creating a Hangman Game  113

Almost all computer games are built around a loop of some 
kind, often with the same basic structure as the loop in our 
Hangman game. A game loop generally does the following:

1. Takes input from the player

2. Updates the game state

3. Displays the current state of the game to the player

Even games that are constantly changing follow this 
same kind of loop—they just do it really fast. In the case of our 
Hangman game, the program takes a guess from the player, 
updates the answer array if the guess is correct, and displays 
the new state of the answer array.

Once the player guesses all letters in the word, we show the 
completed word and a congratulatory message telling them that 
they won.

Coding the Game
Now that we know the general structure of our game, we can start 
to go over how the code will look. The following sections will walk 
you through all the code in the game. After that, you’ll see the whole 
game code in one listing so you can type it up and play it yourself.

Choosing a Random Word
The first thing we have to do is to choose a random word. Here’s 
how that will look:

u var words = [
  "javascript",
  "monkey",
  "amazing",
  "pancake"
];

v var word = words[Math.floor(Math.random() * words.length)];

We begin our game at u by creating an array of words 
(javascript, monkey, amazing, and pancake) to be used as the 
source of our secret word, and we save the array in the words 
variable. The words should be all lowercase. At v we use 
Math.random and Math.floor to pick a random word from the array, 
as we did with the random insult generator in Chapter 3.



114  Chapter 7

Creating the Answer Array
Next we create an empty array called answerArray and fill it with 
underscores (_) to match the number of letters in the word.

var answerArray = [];
u for (var i = 0; i < word.length; i++) {

  answerArray[i] = "_";
}

var remainingLetters = word.length;

The for loop at u creates a looping variable i that starts at 0 
and goes up to (but does not include) word.length. Each time around 
the loop, we add a new element to answerArray, at answerArray[i]. 
When the loop finishes, answerArray will be the same length as word. 
For example, if word is "monkey" (which has six letters), answerArray 
will be ["_", "_", "_", "_", "_", "_"] (six underscores).

Finally, we create the variable remainingLetters and set it to 
the length of the secret word. We’ll use this variable to keep track 
of how many letters are left to be guessed. Every time the player 
guesses a correct letter, this value will be decremented (reduced) 
by 1 for each instance of that letter in the word.

Coding the Game loop
The skeleton of the game loop looks like this:

while (remainingLetters > 0) {
  // Game code goes here
  // Show the player their progress
  // Take input from the player
  // Update answerArray and remainingLetters for every correct guess
}

We use a while loop, which 
will keep looping as long as 
remainingLetters > 0 remains true. 
The body of the loop will have 
to update remainingLetters for every 
correct guess the player makes. Once 
the player has guessed all the letters, 
remainingLetters will be 0 and the loop 
will end.



Creating a Hangman Game  115

The following sections explain the code that will make up the 
body of the game loop.

Showing the Player’s Progress
The first thing we need to do inside the game loop is to show the 
player their current progress:

alert(answerArray.join(" "));

We do that by joining the elements of answerArray into a string, 
using the space character as the separator, and then using alert 
to show that string to the player. For example, let’s say the word 
is monkey and the player has guessed m, o, and e so far. The 
answer array would look like this ["m", "o", "_", "_", "e", "_"], 
and answerArray.join(" ") would be "m o _ _ e _". The alert dialog 
would then look like Figure 7-4.

Figure 7-4: Showing the player’s progress  
using alert

Handling the Player’s Input
Now we have to get a guess from the player and ensure that it’s a 
single character.

u var guess = prompt("Guess a letter, or click Cancel to stop playing.");
v if (guess === null) {

  break;
w } else if (guess.length !== 1) {

  alert("Please enter a single letter.");
} else {

x   // Update the game state with the guess
}

At u, prompt takes a guess from the player and saves it to the 
variable guess. One of four things will happen at this point.



116  Chapter 7

First, if the player clicks the Cancel button, then guess will be 
null. We check for this condition at v with if (guess === null). If 
this condition is true, we use break to exit the loop.

NoTe  You can use the break keyword in any loop to immediately stop loop-
ing, no matter where the program is in the loop or whether the while 
condition is currently true.

The second and third possibilities are that the player enters 
either nothing or too many letters. If they enter nothing but click 
OK, guess will be the empty string "". In this case, guess.length 
will be 0. If they enter anything more than one letter, guess.length 
will be greater than 1.

At w, we use else if (guess.length !== 1) to check for these 
conditions, ensuring that guess is exactly one letter. If it’s not, 
we display an alert saying, “Please enter a single letter.”

The fourth possibility is that the player enters a valid guess of 
one letter. Then we have to update the game state with their guess 
using the else statement at x, which we’ll do in the next section.

updating the Game State
Once the player has entered a valid guess, we must update the 
game’s answerArray according to the guess. To do that, we add the 
following code to the else statement:

u for (var j = 0; j < word.length; j++) {
v   if (word[j] === guess) {

    answerArray[j] = guess;
w     remainingLetters--;

  }
}

At u, we create a for loop with a new looping variable called j, 
which runs from 0 up to word.length. (We’re using j as the variable 
in this loop because we already used i in the previous for loop.) We 
use this loop to step through each letter of word. For example, let’s 
say word is pancake. The first time around this loop, when j is 0, 
word[j] will be "p". The next time, word[j] will be "a", then "n", "c", 
"a", "k", and finally "e". 

At v, we use if (word[j] === guess) to check whether the cur-
rent letter we’re looking at matches the player’s guess. If it does, 
we use answerArray[j] = guess to update the answer array with 



Creating a Hangman Game  117

the current guess. For each letter in the word that matches guess, 
we update the answer array at the corresponding point. This 
works because the looping variable j can be used as an index for 
answerArray just as it can be used as an index for word, as you can 
see in Figure 7-5.

["_", "_", "_", "_", "_", "_", "_"]

Index (j)

word

answerArray

  0    1    2    3    4    5    6

" p    a    n    c    a    k    e "

Figure 7-5: The same index can be used for both word  
and answerArray.

For example, imagine we’ve just started playing the game and 
we reach the for loop at u. Let’s say word is "pancake", guess is "a", 
and answerArray currently looks like this:

["_", "_", "_", "_", "_", "_", "_"]

The first time around the for loop at u, j is 0, so word[j] 
is "p". Our guess is "a", so we skip the if statement at v (because 
"p" === "a" is false). The second time around, j is 1, so word[j] 
is "a". This is equal to guess, so we enter the if part of the state-
ment. The line answerArray[j] = guess; sets the element at index 
1 (the second element) of answerArray to guess, so answerArray now 
looks like this:

["_", "a", "_", "_", "_", "_", "_"]

The next two times around the loop, word[j] is "n" and then 
"c", which don’t match guess. However, when j reaches 4, word[j] 
is "a" again. We update answerArray again, this time setting the 
element at index 4 (the fifth element) to guess. Now answerArray 
looks like this:

["_", "a", "_", "_", "a", "_", "_"]

The remaining letters don’t match "a", so nothing happens the 
last two times around the loop. At the end of this loop, answerArray 
will be updated with all the occurrences of guess in word.



118  Chapter 7

For every correct guess, in addition to updating answerArray, 
we also need to decrement remainingLetters by 1. We do this at w 
using remainingLetters--;. Every time guess matches a letter in word, 
remainingLetters decreases by 1. Once the player has guessed all the 
letters correctly, remainingLetters will be 0.

ending the Game
As we’ve already seen, the main game loop condition is 
remainingLetters > 0, so as long as there are still letters to 
guess, the loop will keep looping. Once remainingLetters 
reaches 0, we leave the loop. We end with the following code:

alert(answerArray.join(" "));
alert("Good job! The answer was " + word);

The first line uses alert to show the 
answer array one last time. The second 
line uses alert again to congratulate the 
winning player.

The Game Code
Now we’ve seen all the code for the game, 
and we just need to put it together. What 
follows is the full listing for our Hangman 
game. I’ve added comments throughout to 
make it easier for you to see what’s happen-
ing at each point. It’s quite a bit longer than 
any of the code we’ve written so far, but 
typing it out will help you to become more 
familiar with writing JavaScript. Create a 
new HTML file called hangman.html and 
type the following into it:

<!DOCTYPE html>
<html>
<head>
    <title>Hangman!</title>
</head>



Creating a Hangman Game  119

<body>
    <h1>Hangman!</h1>

    <script>
    // Create an array of words
    var words = [
      "javascript",
      "monkey",
      "amazing",
      "pancake"
    ];

    // Pick a random word
    var word = words[Math.floor(Math.random() * words.length)];

    // Set up the answer array
    var answerArray = [];
    for (var i = 0; i < word.length; i++) {
      answerArray[i] = "_";
    }

    var remainingLetters = word.length;

    // The game loop
    while (remainingLetters > 0) {
      // Show the player their progress
      alert(answerArray.join(" "));

      // Get a guess from the player
      var guess = prompt("Guess a letter, or click Cancel to stop 
playing.");
      if (guess === null) {
        // Exit the game loop
        break;
      } else if (guess.length !== 1) {
        alert("Please enter a single letter.");
      } else {
        // Update the game state with the guess
        for (var j = 0; j < word.length; j++) {
          if (word[j] === guess) {
            answerArray[j] = guess;
            remainingLetters--;
          }
        }
      }



120  Chapter 7

    // The end of the game loop
    }

    // Show the answer and congratulate the player
    alert(answerArray.join(" "));
    alert("Good job! The answer was " + word);
    </script>
</body>
</html>

If the game doesn’t run, make sure that you typed in every-
thing correctly. If you make a mistake, the JavaScript console 
can help you find it. For example, if you misspell a variable name, 
you’ll see something like Figure 7-6 with a pointer to where you 
made your mistake.

Figure 7-6: A JavaScript error in the Chrome console

If you click hangman.html:30, 
you’ll see the exact line where 
the error is. In this case, it’s 
showing us that we misspelled 
remainingLetters as remainingLetter 
at the start of the while loop.

Try playing the game a few 
times. Does it work the way you 
expected it to work? Can you 
imagine the code you wrote run-
ning in the background as you 
play it?

What You learned
In just a few pages, you’ve created your first JavaScript game! 
As you can see, loops and conditionals are essential for creating 
games or any other interactive computer program. Without these 
control structures, a program just begins and ends.

In Chapter 8, we’ll use functions to package up code so you can 
run it from different parts of your programs.



Creating a Hangman Game  121

Programming Challenges
Here are some challenges to build on and improve the 
Hangman game you created in this chapter.

#1: More Words
Add your own words to the words array. Remember to enter 
words in all lowercase.

#2: Capital letters
If a player guesses a capital letter, it won’t match a lowercase 
letter in the secret word. To address this potential problem, 
convert the player’s guess to lowercase. (Hint: You can use 
the toLowerCase method to convert a string to lowercase.)

#3: limiting Guesses
Our Hangman game gives a player unlimited guesses. Add 
a variable to track the number of guesses and end the game 
if the player runs out of guesses. (Hint: Check this variable in 
the same while loop that checks whether remainingLetters > 0. 
As we did in Chapter 2, you can use && to check whether two 
Boolean conditions are true.)

#4: fixing a Bug
There’s a bug in the game: if you keep guessing the same 
correct letter, remainingLetters will keep decrementing. Can 
you fix it? (Hint: You could add another condition to check 
whether a value in answerArray is still an underscore. If it’s 
not an underscore, then that letter must have been guessed 
already.)





8
fuNCTIoNS

A function is a way to bundle code so that it can be 
reused. Functions allow us to run the same piece of 
code from multiple places in a program without hav-
ing to copy and paste the code repeatedly. Also, by 
hiding long bits of code in a function and giving it 
an easy-to-understand name, you’ll be better able to 
plan out your code because you can focus on organiz-
ing your functions rather than all of the little code 



124  Chapter 8

details that make them up. Splitting up your code into smaller, 
more manageable pieces allows you to see the bigger picture and 
think about how your programs are structured at a higher level.

You’ll find functions really useful when you need to repeatedly 
perform a calculation or action throughout a program. Earlier in 
the book, you used various functions such as Math.random, Math.floor, 
alert, prompt, and confirm. In this chapter, you’ll learn how to create 
your own functions.

The Basic Anatomy of a function
Figure 8-1 shows how a function is built. The code between the 
curly brackets is called the function body, just as the code between 
the curly brackets in a loop is called the loop body.

function () {
    console.log("Do something");
}

The function body
goes between curly brackets.

Figure 8-1: The syntax for creating a function

Creating a Simple function
Let’s create a simple function that prints Hello world!. Enter the 
following code in the browser console. Use shift-enter to start 
each new line without executing the code.

var ourFirstFunction = function () {
  console.log("Hello world!");
};

This code creates a new function and saves it in the variable 
ourFirstFunction. 



Functions  125

Calling a function
To run the code inside a function (the 
function body), we need to call the func-
tion. To call a function, you enter its 
name followed by a pair of opening and 
closing parentheses, as shown here.

ourFirstFunction();
Hello world!

Calling ourFirstFunction executes the body of the function, 
which is console.log("Hello world!");, and the text we asked to be 
printed is displayed on the next line: Hello world!.

But if you call this function in your browser, you’ll notice that 
there’s a third line, with a little left-facing arrow, as shown in 
Figure 8-2. This is the return value of the function.

Figure 8-2: Calling a function  
with an undefined return value

A return value is the value that a function outputs, which can 
then be used elsewhere in your code. In this case, the return value 
is undefined because we didn’t tell the function to return any par-
ticular value in the body of the function. All we did was ask it to 
print a message to the console, which is not the same as returning 
a value. A function always returns undefined unless there is some-
thing in the function body that tells it to return a different value. 
(We’ll look at how to specify a return value in “Returning Values 
from Functions” on page 129.)

NoTe  In the Chrome console and in the code listings throughout this 
book, return values are always color-coded based on data type, 
while text printed with console.log is always plain black. 



126  Chapter 8

Passing Arguments into functions
ourFirstFunction just prints the same line of text every time you call 
it, but you’ll probably want your functions to be more flexible than 
that. Function arguments allow us to pass values into a function in 
order to change the function’s behavior when it’s called. Arguments 
always go between the function parentheses, both when you create 
the function and when you call it. 

The following sayHelloTo function uses an argument (name) to 
say hello to someone you specify.

var sayHelloTo = function (name) {
  console.log("Hello " + name + "!");
};

We create the function in the first line and assign it to the 
variable sayHelloTo. When the function is called, it logs the string 
"Hello " + name + "!", replacing name with whatever value you pass 
to the function as an argument. 

Figure 8-3 shows the syntax for a function with one argument.

function ( argument ) {
   console.log("My argument was: " + argument);
}

This function body can 
use the argument.

An argument name

Figure 8-3: The syntax for creating a function with one argument

To call a function that takes an argument, place the value 
you’d like to use for the argument between the parentheses fol-
lowing the function name. For example, to say hello to Nick, you 
would write:

sayHelloTo("Nick");
Hello Nick!



Functions  127

Or, to say hello to Lyra, write:

sayHelloTo("Lyra");
Hello Lyra!

Each time we call the function, the argument we pass in for 
name is included in the string printed by the function. So when we 
pass in "Nick", the console prints "Hello Nick!", and when we pass 
in "Lyra", it prints "Hello Lyra!".

Printing Cat faces!
One reason to pass an argument 
into a function might be to tell it 
how many times to do something. 
For example, the function drawCats 
prints cat faces (like this: =^.^=) to 
the console. We tell the function 
how many cats to print using the 
argument howManyTimes:

var drawCats = function (howManyTimes) {
  for (var i = 0; i < howManyTimes; i++) {
    console.log(i + " =^.^=");
  }
};

The body of the function is a for loop that loops as many times 
as the howManyTimes argument tells it to (since the variable i starts 
at 0 and repeats until it increments to howManyTimes minus 1). Each 
time through the loop, the function logs the string i + " =^.^=".

Here’s what happens when we call this function with the argu-
ment 5 for howManyTimes:

drawCats(5);
0 =^.^=
1 =^.^=
2 =^.^=
3 =^.^=
4 =^.^=

Try it out with howManyTimes equal to 100 to print 100 cat faces!



128  Chapter 8

Passing Multiple Arguments to a 
function
You can pass more than one value into a function using mul-
tiple arguments. To add another argument, enter the arguments 
between the parentheses after the function keyword, separating 
them by commas. Figure 8-4 shows the syntax for a function with 
two arguments.

function (argument1, argument2) {
   console.log("My first argument was: " + argument1);
   console.log("My second argument was: " + argument2);
}

The function body can 
use both arguments.

Each argument name is
separated by a comma.

Figure 8-4: The syntax for creating a function with two arguments

The following function, printMultipleTimes, is like drawCats 
except that it has a second argument called whatToDraw.

var printMultipleTimes = function (howManyTimes, whatToDraw) {
  for (var i = 0; i < howManyTimes; i++) {
    console.log(i + " " + whatToDraw);
  }
};

The printMultipleTimes function prints 
the string you enter for whatToDraw as many 
times as you specify with the argument 
howManyTimes. The second argument tells the 
function what to print, and the first argu-
ment tells the function how many times 
to print it. 

When calling a function with multiple 
arguments, insert the values you wish to 
use between the parentheses following 
the function name, separated by commas. 



Functions  129

For example, to print out cat faces using this new printMultipleTimes 
function, you’d call it like this:

printMultipleTimes(5, "=^.^=");
0 =^.^=
1 =^.^=
2 =^.^=
3 =^.^=
4 =^.^=

To have printMultipleTimes print a happy face four times, you 
could do this:

printMultipleTimes(4, "^_^");
0 ^_^
1 ^_^
2 ^_^
3 ^_^

When we call printMultipleTimes, we pass in the arguments 4 
for howManyTimes and "^_^" for whatToDraw. As a result, the for loop 
loops four times (with i incrementing from 0 to 3), printing i + " " 
+ "^_^" each time.

To draw the character (>_<) two times, you could write:

printMultipleTimes(2, "(>_<)");
0 (>_<)
1 (>_<)

In this case, we pass in 2 for howManyTimes and "(>_<)" for 
whatToDraw.

Returning Values from functions
The functions we’ve looked at so far have all printed text to the 
console using console.log. That’s an easy and useful way to make 
JavaScript display values, but when we log a value to the console, 
we aren’t able to use that value later in the program. What if you 
want your function to output that value so that you can keep using 
it in other parts of your code?



130  Chapter 8

As mentioned earlier in this chap-
ter, the output of a function is called 
the return value. When you call a 
function that returns a value, you can 
use that value in the rest of your code 
(you could save a return value in a 
variable, pass it to another function, 
or simply combine it with other code). 
For example, the following line of code 
adds 5 to the return value of the call to 
Math.floor(1.2345):

5 + Math.floor(1.2345);
6

Math.floor is a function that returns the number you pass to 
it, rounded down to the nearest whole number. When you see a 
function call like Math.floor(1.2345), imagine replacing it with the 
return value of that function call, which is the number 1.

Let’s create a function that returns a value. The function double 
takes the argument number and returns the result of number * 2. In 
other words, the value returned by this function is twice the number 
supplied as its argument.

var double = function (number) {
u   return number * 2;

};

To return a value from a function, use the keyword return, 
followed by the value you want to return. At u, we use the return 
keyword to return the value number * 2 from the double function.

Now we can call our double function to double numbers:

double(3);
6

Here, the return value (6) is shown on the second line. Even 
though functions can take multiple arguments, they can return 
only one value. If you don’t tell the function to return anything, it 
will return undefined.



Functions  131

using function Calls as Values
When you call a function from within a larger piece of code, the 
function’s return value is used wherever that function call was 
placed. For example, let’s use our double function to determine the 
result of doubling two numbers and then adding the results:

double(5) + double(6);
22

In this example, we call the double function twice and add the 
two return values together. You can think of the call double(5) as 
the value 10 and the call double(6) as the value 12.

You can also pass a function call into another function as an 
argument, and the function call will be substituted with its return 
value. In this next example we call double, passing the result of 
calling double with 3 as an argument. We replace double(3) with 6 
so that double(double(3)) simplifies to double(6), which then simpli-
fies to 12.

double(double(3));
12

Here’s how JavaScript calculates this:

12

double(6)

double( 3 * 2 )

double( double(3) );

6 * 2

�

�

�

�

The body of the double function returns number * 2, so at u 
we replace double(3) with 3 * 2. At v we replace 3 * 2 with 6. 
Then at w, we do the same thing and replace double(6) with 6 * 2. 
Finally, at x, we can replace 6 * 2 with 12.



132  Chapter 8

using functions to Simplify Code
In Chapter 3, we used the methods Math.random and Math.floor to 
pick random words from arrays and generate random insults. In 
this section, we’ll re-create our insult generator and simplify it by 
creating functions.

A function to Pick a Random Word
Here is the code we used in Chapter 3 to choose a random word 
from an array:

randomWords[Math.floor(Math.random() * randomWords.length)];

If we turn this code into a function, we can reuse it to pick a 
random word from an array without having to enter the same code 
each time. For example, here’s how we could define a pickRandomWord 
function.

var pickRandomWord = function (words) {
  return words[Math.floor(Math.random() * words.length)];
};

All we’re doing here is wrapping the previous code in a func-
tion. Now, we can create this randomWords array . . .

var randomWords = ["Planet", "Worm", "Flower", "Computer"];

and pick a random word from this array using the pickRandomWord 
function, like this:

pickRandomWord(randomWords);
"Flower"

We can use this same function on any array. For example, 
here’s how we would pick a random name from an array of 
names:

pickRandomWord(["Charlie", "Raj", "Nicole", "Kate", "Sandy"]);
"Raj"



Functions  133

A Random Insult Generator
Now let’s try re-creating our random insult generator, using our 
function that picks random words. First, here’s a reminder of what 
the code from Chapter 3 looked like:

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Pick a random body part from the randomBodyParts array:
var randomBodyPart = randomBodyParts[Math.floor(Math.random() * 3)];
// Pick a random adjective from the randomAdjectives array:
var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)]; 
// Pick a random word from the randomWords array:
var randomWord = randomWords[Math.floor(Math.random() * 5)];
// Join all the random strings into a sentence:
var randomString = "Your " + randomBodyPart + " is like a " + 
randomAdjective + " " + randomWord + "!!!";
randomString;
"Your Nose is like a Stupid Marmot!!!"

Notice that we end up repeating words[Math.floor(Math.random() 
* length)] quite a few times in this code. Using our pickRandomWord 
function, we could rewrite the program like this:

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:
var randomString = "Your " + pickRandomWord(randomBodyParts) + 
" is like a " + pickRandomWord(randomAdjectives) + 
" " + pickRandomWord(randomWords) + "!!!";
 
randomString;
"Your Nose is like a Smelly Marmot!!!"

There are two changes here. First, we 
use the pickRandomWord function when we 
need a random word from an array, instead 
of using words[Math.floor(Math.random() * 
length)] each time. Also, instead of sav-
ing each random word in a variable before 
adding it to the final string, we’re adding 
the return values from the function calls 



134  Chapter 8

directly together to form the string. A call to a function can be 
treated as the value that the function returns. So really, all we’re 
doing here is adding together strings. As you can see, this version 
of the program is a lot easier to read, and it was easier to write 
too, since we reused some code by using a function.

Making the Random Insult Generator 
into a function
We can take our random insult generator one step further by 
creating a larger function that produces random insults. Let’s 
take a look:

generateRandomInsult = function () {
  var randomBodyParts = ["Face", "Nose", "Hair"];
  var randomAdjectives = ["Smelly", "Boring", "Stupid"];
  var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

  // Join all the random strings into a sentence:
  var randomString = "Your " + pickRandomWord(randomBodyParts) + 
  " is like a " + pickRandomWord(randomAdjectives) + 
  " " + pickRandomWord(randomWords) + "!!!";
 

u   return randomString;
};

generateRandomInsult();
"Your Face is like a Smelly Stick!!!"
generateRandomInsult();
"Your Hair is like a Boring Stick!!!"
generateRandomInsult();
"Your Face is like a Stupid Fly!!!"

Our new generateRandomInsult function is just the code from 
before placed inside a function with no arguments. The only addi-
tion is at u, where we have the function return randomString at the 
end. You can see a few sample runs of the preceding function, and 
it returns a new insult string each time.

Having the code in one function means we can keep calling 
that function to get a random insult, instead of having to copy and 
paste the same code every time we want a new insult.



Functions  135

leaving a function early with return
As soon as the JavaScript interpreter reaches return in a func-
tion, it leaves the function, even if more code remains in the 
function body. 

One common way to use 
return is to leave a function early 
if any of the arguments to the 
function are invalid; that is, if 
they’re not the kind of arguments 
the function needs in order to run 
properly. For example, the fol-
lowing function returns a string 
telling you the fifth character of 
your name. If the name passed 
to the function has fewer than 
five characters, the function uses 
return to leave the function imme-
diately. This means the return 
statement at the end, which tells 
you the fifth letter of your name, 
is never executed.

var fifthLetter = function (name) {
u   if (name.length < 5) {
v     return;

  }

  return "The fifth letter of your name is " + name[4] + ".";
};

At u we check to see whether the length of the input name is 
less than five. If it is, we use return at v to exit the function early.

Let’s try calling this function. 

fifthLetter("Nicholas");
"The fifth letter of your name is o."

The name Nicholas is longer than five characters, so 
fifthLetter completes and returns the fifth letter in the name 



136  Chapter 8

Nicholas, which is the letter o. Let’s try calling it again on a 
shorter name:

fifthLetter("Nick");
undefined

When we call fifthLetter with the name Nick, the function 
knows that the name isn’t long enough, so it exits early with the 
first return statement at v. Because there is no value specified 
after the return at v, the function returns undefined. 

using return Multiple Times Instead 
of if...else Statements

We can use multiple return keywords 
inside different if statements in a 
function body to have a function 
return a different value depending 
on the input. For example, say you’re 
writing a game that awards players 
medals based on their score. A score 
of 3 or below is a bronze medal, scores 
between 3 and 7 are silver, and any-
thing above 7 is gold. You could use a 
function like medalForScore to evaluate 
a score and return the right kind of 
medal, as shown here:

var medalForScore = function (score) {
  if (score < 3) {

u     return "Bronze";
  }

v   if (score < 7) {
    return "Silver";
  }

w   return "Gold";
};

At u we return "Bronze" and exit the function if the score is 
less than 3. If we reach v we know that score must be at least 3, 
because if it was less than 3, we would have returned already 



Functions  137

(that is, we would have exited the function when we reached the 
return keyword in the first test). Finally, if we reach w, we know 
that score must be at least 7, so there’s nothing left to check, and 
we can just return "Gold".

Although we’re checking multiple conditions, we don’t need to 
use chained if...else statements. We use if...else statements to 
ensure that only one of the options is executed. When each of the 
options has its own return statement, this also ensures that only 
one of the options will be executed (because functions can return 
only once).

Shorthand for Creating functions
There’s a longhand way and a shorthand way to write 
functions. I’m using the longhand way because it shows 
more clearly how a function is stored as a variable. Still, you 
should know what the shorthand looks like because lots of 
JavaScript code uses it. Once you’re used to how functions 
work, you might want to use the shorthand version, too.

Here’s an example of a longhand function:

var double = function (number) {
  return number * 2;
};

The shorthand version looks like this:

function double(number) {
  return number * 2;
}

As you can see, in the longhand version, we explicitly 
create a variable name and assign the function to the 
variable, so double appears before the function keyword. 
By contrast, the function keyword appears first in the 
shorthand version, followed by the function name. In this 
version, the variable double is created by JavaScript behind 
the scenes.

In technical terms, the longhand version is known as 
a function expression. The shorthand version is known as a 
function declaration.



138  Chapter 8

What You learned
Functions allow us to reuse blocks of code. They can do differ-
ent things depending on the arguments passed to them, and they 
can return values to the location in the code where the function 
was called. Functions also make it possible to give a piece of 
code a meaningful name. For example, the name of the function 
pickRandomWord makes clear that the function has something to do 
with picking a random word.

In the next chapter, we’ll learn how to write JavaScript that 
can manipulate HTML documents. 

Programming Challenges
Here are some challenges for you to practice working with 
functions.

#1: Doing Arithmetic with functions
Create two functions, add and multiply. Each should take 
two arguments. The add function should sum its arguments 
and return the result, and multiply should multiply its 
arguments.

Using only these two functions, solve this simple 
mathematical problem:

36325 * 9824 + 777

#2: Are These Arrays the Same?
Write a function called areArraysSame that takes two arrays 
of numbers as arguments. It should return true if the two 
arrays are the same (that is, they have the same numbers 
in the same order) and false if they’re different. Try running 
the following code to make sure your functions are working 
correctly:

areArraysSame([1, 2, 3], [4, 5, 6]);
false



Functions  139

areArraysSame([1, 2, 3], [1, 2, 3]);
true
areArraysSame([1, 2, 3], [1, 2, 3, 4]);
false

Hint 1: you’ll need to use a for loop to go through each of 
the values in the first array to see whether they’re the same 
in the second array. You can return false in the for loop if 
you find a value that’s not equal.

Hint 2: you can leave the function early and skip the for 
loop altogether if the arrays are different lengths.

#3: Hangman, using functions
Go back to your Hangman game from Chapter 7. We’re going 
to rewrite it using functions.

I’ve rewritten the final Hangman code here, but with 
certain parts of the code replaced by function calls. All you 
need to do is write the functions! 

// Write your functions here

var word = pickWord();
var answerArray = setupAnswerArray(word);
var remainingLetters = word.length;

while (remainingLetters > 0) {
  showPlayerProgress(answerArray);
  var guess = getGuess();
  if (guess === null) {
    break;
  } else if (guess.length !== 1) {
    alert("Please enter a single letter.");
  } else {
    var correctGuesses = updateGameState(guess, word, answerArray);
    remainingLetters -= correctGuesses;
  }
}

showAnswerAndCongratulatePlayer(answerArray);

(continued)



140  Chapter 8

This version of the code using functions is almost as 
simple as the pseudocode version from Chapter 7. This should 
give you some idea of how useful functions can be for making 
code easier to understand.

Here are the functions you need to fill in:

var pickWord = function () {
  // Return a random word
};

var setupAnswerArray = function (word) {
  // Return the answer array
};

var showPlayerProgress = function (answerArray) {
  // Use alert to show the player their progress
};

var getGuess = function () {
  // Use prompt to get a guess
};

var updateGameState = function (guess, word, answerArray) {
  // Update answerArray and return a number showing how many
  // times the guess appears in the word so remainingLetters
  // can be updated
};

var showAnswerAndCongratulatePlayer = function (answerArray) {
  // Use alert to show the answer and congratulate the player
};



Part II
Advanced 

JavaScript





9
THe DoM AND JQueRY

So far, we’ve been using JavaScript to do relatively 
simple things like print text to the browser console or 
display an alert or prompt dialog. But you can also use 
JavaScript to manipulate (control or modify) and inter-
act with the HTML you write in web pages. In this 
chapter, we’ll discuss two tools that will allow you to 
write much more powerful JavaScript: the DOM and 
jQuery.



144  Chapter 9

The DOM, or document object 
model, is what allows JavaScript to 
access the content of a web page. Web 
browsers use the DOM to keep track of 
the elements on a page (such as para-
graphs, headings, and other HTML 
elements), and JavaScript can manipu-
late DOM elements in various ways. For 
example, you’ll soon see how you can use 
JavaScript to replace the main heading 
of the HTML document with input from 
a prompt dialog.

We’ll also look at a useful tool called jQuery, which makes it 
much easier to work with the DOM. jQuery gives us a set of func-
tions that we can use to choose which elements to work with and to 
make changes to those elements.

In this chapter, we’ll learn how to use the DOM and jQuery to 
edit existing DOM elements and create new DOM elements, giving 
us full control over the content of our web pages from JavaScript. 
We’ll also learn how to use jQuery to animate DOM elements—for 
example, fading elements in and out.

Selecting DoM elements
When you load an HTML document into a browser, the browser 
converts the elements into a tree-like structure. This tree is known 
as the DOM tree. Figure 9-1 shows a simple DOM tree—the same 
tree we used in Chapter 5 to illustrate the hierarchy of HTML. The 
browser gives JavaScript programmers a way to access and modify 
this tree structure using a collection of methods called the DOM.

<html>

<head> <body>

<title> <h1> <p>

Figure 9-1: The DOM tree for a simple HTML  
document, like the one we made in Chapter 5



The DOM and jQuery  145

using id to Identify elements
The HTML id attribute lets you assign a unique name, or identifier, 
to an HTML element. For example, this h1 element has an id 
attribute:

<h1 id="main-heading">Hello world!</h1>

In this example, the id of "main-heading" will let us identify, and 
eventually change, this particular heading without affecting other 
elements or even other h1 headings.

Selecting an element using 
getelementById
Having uniquely identified an element with id (each id must have a 
unique value), we can use the DOM method document.getElementById 
to return the "main-heading" element:

var headingElement = document.getElementById("main-heading");

By calling document.getElementById("main-heading"), we tell the 
browser to look for the element with the id of "main-heading". This 
call returns a DOM object that corresponds to the id, and we save 
this DOM object to the variable headingElement. 

Once we’ve selected an element, 
we can manipulate it with JavaScript. 
For example, we can use the innerHTML 
property to retrieve and replace the 
text inside the selected element:

headingElement.innerHTML;

This code returns the HTML con-
tents of headingElement—the element 
we selected using getElementById. In 
this case, the content of this element 
is the text Hello world! that we entered 
between the <h1> tags.



146  Chapter 9

Replacing the Heading Text using 
the DoM
Here’s an example of how to replace heading text using the DOM. 
First, we create a new HTML document called dom.html contain-
ing this code:

<!DOCTYPE html>
<html>
<head>
    <title>Playing with the DOM</title>
</head>

<body>
    <h1 id="main-heading">Hello world!</h1>

    <script>
u     var headingElement = document.getElementById("main-heading");
v     console.log(headingElement.innerHTML);
w     var newHeadingText = prompt("Please provide a new heading:");
x     headingElement.innerHTML = newHeadingText;

    </script>
</body>
</html>

At u we use document.getElementById to get the h1 element (with 
the id of "main-heading") and save it into the variable headingElement. 
At v we print the string returned by headingElement.innerHTML, which 
prints Hello world! to the console. At w we use a prompt dialog to 
ask the user for a new heading and save the text the user enters in 
the variable newHeadingText. Finally, at x we set the innerHTML prop-
erty of headingElement to the text saved in newHeadingText.



The DOM and jQuery  147

When you load this page, you should see a prompt dialog like 
the one shown in Figure 9-2.

Figure 9-2: Our page with the dialog open

Enter the text JAVASCRIPT IS AWESOME into the dialog and click 
oK. The heading should update instantly with the new text, as 
shown in Figure 9-3.

Figure 9-3: Our page after the heading change

Using the innerHTML property, we can change the content of any 
DOM element using JavaScript.



148  Chapter 9

using jQuery to Work with the 
DoM Tree

The built-in DOM methods are great, but they’re not very easy 
to use. Because of this, many developers use a set of tools called 
jQuery to access and manipulate the DOM tree. jQuery is a 
JavaScript library—a collection of related tools (mostly func-
tions) that gives us, in this case, a simpler way to work with DOM 
elements. Once we load a library onto our page, we can use its 
functions and methods in addition to those built into JavaScript 
and those provided by the browser.

loading jQuery on Your HTMl Page
To use the jQuery library, we first tell the browser to load it with 
this line of HTML:

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

Notice that the <script> tag here has no contents, and it has a 
src attribute. The src attribute lets us insert a JavaScript file into 
our page by including its URL (web address). In this case, https://
code.jquery.com/jquery-2.1.0.js is the URL for a specific version of 
jQuery (version 2.1.0) on the jQuery website. 

To see the jQuery library, visit that URL; you’ll see the 
JavaScript that will be loaded when this <script> tag is added. 
The entire library is over 9,000 lines of complicated JavaScript, 
though, so don’t expect to understand it all right now!

Replacing the Heading Text using 
jQuery
In “Replacing the Heading Text Using the DOM” on page 146, 
you learned how to replace text using the built-in DOM methods. 
In this section, we’ll update that code to use jQuery to replace 
the heading text instead. Open dom.html and make the changes 
shown.

https://code.jquery.com/jquery-2.1.0.js


The DOM and jQuery  149

<!DOCTYPE html>
<html>
<head>
    <title>Playing with the DOM</title>
</head>

<body>
    <h1 id="main-heading">Hello world!</h1>

u     <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
    var newHeadingText = prompt("Please provide a new heading:");

v     $("#main-heading").text(newHeadingText);
    </script>
</body>
</html>

At u we add a new <script> tag to the page to load jQuery. 
With jQuery loaded, we use the jQuery function $ to select an 
HTML element. 

The $ function takes one argument, called a selector string, 
which tells jQuery which element or elements to select from the 
DOM tree. In this case, we entered "#main-heading" as the argu-
ment. The # character in a selector string means “ID,” so our 
selector string "#main-heading" means “the element with an id of 
main-heading.”

The $ function returns a jQuery object that represents 
the elements you selected. For example, $("#main-heading") 
returns a jQuery object for the h1 element (which has an id of 
"main-heading").

We now have a jQuery object representing the h1 element. We 
can modify its text by calling the text method on the jQuery object 
at v, passing in the new text for that element, and replacing the 
text of the heading with the user input saved to the variable new-
HeadingText. As before, when you load this page, a dialog should 
prompt you to enter replacement text for the old text in the h1 
element.



150  Chapter 9

Creating New elements with jQuery
In addition to manipulating elements with jQuery, we can also use 
jQuery to create new elements and add them to the DOM tree. To 
do so, we call append on a jQuery object with a string containing 
HTML. The append method converts the string to a DOM element 
(using the HTML tags in the string) and adds the new element to 
the end of the original one.

For example, to add a p element to the end of the page, we 
could add this to our JavaScript:

$("body").append("<p>This is a new paragraph</p>");

The first part of this statement uses the $ function with the 
selector string "body" to select the body of our HTML document. 
The selector string doesn’t have to be an id. The code $("body") 
selects the body element. Likewise, we could use the code $("p") 
to select all the p elements.

Next, we call the append method on the object returned by 
$("body"). The string passed to append is turned into a DOM ele-
ment, and it is added inside the body element, just before the closing 
tag. Figure 9-4 shows what our revised page would look like.

Figure 9-4: Our document with a new element

We could also use append to add multiple elements in a for loop 
like this:

for (var i = 0; i < 3; i++) {
  var hobby = prompt("Tell me one of your hobbies!");
  $("body").append("<p>" + hobby + "</p>");
}

This loops three times. Each time through a loop, a prompt 
appears, asking users to enter one of their hobbies. Each hobby is 



The DOM and jQuery  151

then put inside a set of <p> tags and passed to the append method, 
which adds the hobby to the end of the body element. Try adding 
this code to your dom.html document, and then load it in a browser 
to test it. It should look like Figure 9-5.

Figure 9-5: Extra elements added in a loop

Animating elements with jQuery
Lots of websites use animations to show and hide content. For 
example, if you were adding a new paragraph of text to your page, 
you might want to fade it in slowly so it doesn’t appear all of a 
sudden.

jQuery makes it easy to animate elements. For example, 
to fade an element out, we can use the fadeOut method. To test 
this method, replace the contents of the second script element in 
dom.html with this:

$("h1").fadeOut(3000);

We use the $ function to select all h1 elements. Because 
dom.html has only one h1 element (the heading containing the 
text Hello world!), that heading is selected as a jQuery object. By 
calling .fadeOut(3000) on this jQuery object, we make the heading 
fade away until it disappears, over the course of 3 seconds. (The 
argument to fadeOut is in milliseconds, or thousandths of a second, 
so entering 3000 makes the animation last 3 seconds.)

As soon as you load the page with this code, the h1 element 
should start to fade away.



152  Chapter 9

Chaining jQuery Animations
When you call a method on a jQuery object, the method usually 
returns the original object that it was called on. For example, 
$("h1") returns a jQuery object representing all h1 elements, 
and $("h1").fadeOut(3000) returns the same jQuery object repre-
senting all h1 elements. To change the text of the h1 element and 
fade it out, you could enter: 

$("h1").text("This will fade out").fadeOut(3000);

Calling multiple methods in a row like this is known as 
chaining.

We can chain multiple animations on the same element. For 
example, here’s how we could chain a call to the fadeOut and fadeIn 
methods to fade an element out and then immediately fade it in 
again:

$("h1").fadeOut(3000).fadeIn(2000);

The fadeIn animation makes an invisible element fade back in. 
jQuery is smart enough to know that when you chain two anima-
tions in a row like this, you probably want them to happen one 
after the other. Therefore, this code 
fades the h1 element out over the course 
of 3 seconds and then fades it back in 
over 2 seconds.

jQuery provides two additional 
animation methods similar to fadeOut 
and fadeIn, called slideUp and slideDown. 
The slideUp method makes elements 
dis appear by sliding them up, and 
slideDown makes them reappear by slid-
ing them down. Replace the second 
script element in the dom.html docu-
ment with the following, and reload the 
page to try it out:

$("h1").slideUp(1000).slideDown(1000);

Here we select the h1 element, slide it up over 1 second, and 
then slide it down over 1 second until it reappears.



The DOM and jQuery  153

What You learned
In this chapter, you learned how to update HTML pages using 
JavaScript by manipulating DOM elements. As you’ve seen, jQuery 
gives us even more powerful ways to select elements and change or 
even animate them. You also learned a new HTML attribute, id, 
which allows you to give an element a unique identifier.

In the next chapter, you’ll learn how to control when your 
JavaScript is run—for example, once a timer has run out or when 
you click a button. We’ll also look at how to run the same piece of 
code multiple times with a time delay in between—for example, 
updating a clock once every second.

Try It out!
We use fadeIn to make invisible elements visible. But what 
happens if you call fadeIn on an element that’s already 
visible or an element that comes after the element you’re 
animating? 

For example, say you add a new p element to your 
dom.html document after the heading. Try using slideUp 
and slideDown to hide and show the h1 element, and see what 
happens to the p element. What if you use fadeOut and fadeIn?

What happens if you call fadeOut and fadeIn on the same 
element without chaining the calls? For example:

$("h1").fadeOut(1000);
$("h1").fadeIn(1000);

Try adding the preceding code inside a for loop set to 
run five times. What happens?

What do you think the show and hide jQuery methods do? 
Try them out to see if you’re right. How could you use hide to 
fade in an element that’s already visible?



154  Chapter 9

Programming Challenges
Try these challenges to practice more things you can do with 
jQuery and DOM elements.

#1: listing Your friends with jQuery 
(And Making Them Smell!)
Create an array containing the names of a few friends. 
Using a for loop, create a p element for each of your friends 
and add it to the end of the body element using the jQuery 
append method. Use jQuery to change the h1 element so it says 
My friends instead of Hello world!. Use the hide method followed 
by the fadeIn method to fade in each name as it’s provided.

Now, modify the p elements you created to add the text 
smells! after each friend. Hint: If you select the p elements 
using $("p"), the append method will apply to all the p elements.

#2: Making a Heading flash
How could you use fadeOut and fadeIn to cause the heading to 
flash five times, once a second? How could you do this using 
a for loop? Try modifying your loop so it fades out and fades 
in over 1 second the first time, over 2 seconds the second time, 
over 3 seconds the third time, and so on.

#3: Delaying Animations
The delay method can be used to delay animations. Using 
delay, fadeOut, and fadeIn, make an element on your page fade 
out and then fade back in again after 5 seconds.

#4: using fadeTo
Try using the fadeTo method. Its first argument is a number 
of milliseconds, as in all the other animation methods. Its 
second argument is a number between 0 and 1. What happens 
when you run the following code?

$("h1").fadeTo(2000, 0.5);

What do you think the second argument means? Try 
using different values between 0 and 1 to figure out what 
the second argument is used for.



10
INTeRACTIVe PRoGRAMMING

Until now, the JavaScript code on our web pages has 
run as soon as the page is loaded, pausing only if we 
include a call to a function like alert or confirm. But 
we don’t always necessarily want all of our code to run 
as soon as the page loads—what if we want some code 
to run after a delay or in response to something the 
user does?



156  Chapter 10

In this chapter, we’ll look at different ways of modifying when 
our code is run. Programming in this way is called interactive 
programming. This will let us create interactive web pages that 
change over time and respond to actions by the user.

Delaying Code with setTimeout
Instead of having JavaScript execute a function immediately, 
you can tell it to execute a function after a certain period of time. 
Delaying a function like this is called setting a timeout. To set a 
timeout in JavaScript, we use the function setTimeout. This func-
tion takes two arguments (as shown in Figure 10-1): the function 
to call after the time has elapsed and the amount of time to wait 
(in milliseconds).

setTimeout(func, timeout)

The number of milliseconds to wait
before calling the function

The function to call after
timeout milliseconds have passed

Figure 10-1: The arguments for setTimeout

The following listing shows how we could use setTimeout to dis-
play an alert dialog.

u var timeUp = function () {
  alert("Time's up!");
};

v setTimeout(timeUp, 3000);
1

At u we create the function timeUp, which opens an alert dialog 
that displays the text "Time's up!". At v we call setTimeout with two 
arguments: the function we want to call (timeUp) and the number 
of milliseconds (3000) to wait before calling that function. We’re 
essentially saying, “Wait 3 seconds and then call timeUp.” When 
setTimeout(timeUp, 3000) is first called, nothing happens, but after 
3 seconds timeUp is called and the alert dialog pops up.



Interactive Programming  157

Notice that calling setTimeout returns 1. This return value is 
called the timeout ID. The timeout ID is a number that’s used to 
identify this particular timeout (that is, this particular delayed 
function call). The actual number returned could be any number, 
since it’s just an identifier. Call setTimeout again, and it should 
return a different timeout ID, as shown here:

setTimeout(timeUp, 5000);
2

You can use this timeout ID with the clearTimeout function to 
cancel that specific timeout. We’ll look at that next.

Canceling a Timeout
Once you’ve called setTimeout to set up a delayed 
function call, you may find that you don’t actually 
want to call that function after all. For example, if 
you set an alarm to remind you to do your home-
work, but you end up doing your homework early, 
you’d want to cancel that alarm. To cancel a time-
out, use the function clearTimeout on the timeout 
ID returned by setTimeout. For example, say we 
create a “do your homework” alarm like this:

var doHomeworkAlarm = function () {
  alert("Hey! You need to do your homework!");
};

u var timeoutId = setTimeout(doHomeworkAlarm, 60000);

The function doHomeworkAlarm pops up an alert dialog telling 
you to do your homework. When we call setTimeout(doHomeworkAlarm, 
60000) we’re telling JavaScript to execute that function after 
60,000 milliseconds (or 60 seconds) has passed. At u we make 
this call to setTimeout and save the timeout ID in a new variable 
called timeoutId.

To cancel the timeout, pass the timeout ID to the clearTimeout 
function like this:

clearTimeout(timeoutId);

Now setTimeout won’t call the doHomeworkAlarm function after all.



158  Chapter 10

Calling Code Multiple Times with 
setInterval

The setInterval function is like setTimeout, except that it repeatedly 
calls the supplied function after regular pauses, or intervals. For 
example, if you wanted to update a clock display using JavaScript, 
you could use setInterval to call an update function every second. 
You call setInterval with two arguments: the function you want to 
call and the length of the interval (in milliseconds), as shown in 
Figure 10-2.

setInterval(func, interval)

The number of milliseconds to wait
between each call

The function to call
every interval milliseconds

Figure 10-2: The arguments for setInterval

Here’s how we could write a message to the console every 
second:

u var counter = 1;

v var printMessage = function () { 
  console.log("You have been staring at your console for " + counter 
+ " seconds");

w   counter++;
};

x var intervalId = setInterval(printMessage, 1000);
You have been staring at your console for 1 seconds
You have been staring at your console for 2 seconds
You have been staring at your console for 3 seconds
You have been staring at your console for 4 seconds
You have been staring at your console for 5 seconds
You have been staring at your console for 6 seconds

y clearInterval(intervalId);



Interactive Programming  159

At u we create a new variable called counter and set it to 1. 
We’ll be using this variable to keep track of the number of seconds 
you’ve been looking at your console.

At v we create a function called 
printMessage. This function does two 
things. First, it prints out a message 
telling you how long you have been 
staring at your console. Then, at w, it 
increments the counter variable.

Next, at x, we call setInterval, 
passing the printMessage function and 
the number 1000. Calling setInterval 
like this means “call printMessage 
every 1,000 milliseconds.” Just as 
setTimeout returns a timeout ID, 
setInterval returns an interval 
ID, which we save in the variable 
intervalId. We can use this interval ID 
to tell JavaScript to stop executing the 
printMessage function. This is what we 
do at y, using the clearInterval function.

Animating elements with setInterval
As it turns out, we can use setInterval to animate elements in a 
browser. Basically, we need to create a function that moves an ele-
ment by a small amount, and then pass that function to setInterval 
with a short interval time. If we make the movements small enough 
and the interval short enough, the animation will look very smooth.

Try It out!
Modify the preceding example to print the message every 
five seconds instead of every second.



160  Chapter 10

Let’s animate the position of some text in an HTML document 
by moving the text horizontally in the browser window. Create a 
document called interactive.html, and fill it with this HTML:

<!DOCTYPE html>
<html>
<head>
    <title>Interactive programming</title>
</head>

<body>
    <h1 id="heading">Hello world!</h1>

    <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
    // We'll fill this in next
    </script>
</body>
</html>

Now let’s look at the JavaScript. As always, put your code 
inside the <script> tags of the HTML document.

u var leftOffset = 0;

v var moveHeading = function () {
w   $("#heading").offset({ left: leftOffset });

x   leftOffset++;

y   if (leftOffset > 200) {
    leftOffset = 0;
  }  
};

z setInterval(moveHeading, 30);

When you open this page, you should see the heading element 
gradually move across the screen until it travels 200 pixels; at that 
point, it will jump back to the beginning and start again. Let’s see 
how this works.

At u we create the variable leftOffset, which we’ll use later to 
position our Hello world! heading. It starts with a value of 0, which 
means the heading will start on the far left side of the page. 



Interactive Programming  161

Next, at v, we create the function moveHeading, which we’ll 
call later with setInterval. Inside the moveHeading function, at w, we 
use $("#heading") to select the element with the id of "heading" (our 
h1 element) and use the offset method to set the left offset of the 
heading—that is, how far it is from the left side of the screen.

The offset method takes an object that can contain a left 
property, which sets the left offset of the element, or a top property, 
which sets the top offset of the element. In this example we use 
the left property and set it to our leftOffset variable. If we wanted 
a static offset (that is, an offset that doesn’t change), we could set 
the property to a numeric value. For example, calling $("#heading") 
.offset({ left: 100 }) would place the heading element 100 pixels 
from the left side of the page.

At x we increment the leftOffset variable by 1. To make sure 
the heading doesn’t move too far, at y we check to see if leftOffset 
is greater than 200, and if it is, we reset it to 0. Finally, at z we 
call setInterval, and for its arguments we pass in the function 
moveHeading and the number 30 (for 30 milliseconds).

This code calls the moveHeading function every 30 milliseconds, 
or about 33 times every second. Each time moveHeading is called, the 
leftOffset variable is incremented, and the value of this variable 
is used to set the position of the heading element. Because the 
function is constantly being called and leftOffset is incremented 
by 1 each time, the heading gradually moves across the screen by 
1 pixel every 30 milliseconds.

Try It out!
You can speed up this animation by raising the amount 
that leftOffset is increased every time moveHeading is called 
or by reducing the time that setInterval waits between calls 
to moveHeading.

How would you double the speed that the heading moves? 
Try it with both techniques. What difference do you see? 



162  Chapter 10

Responding to user Actions
As you’ve seen, one way to control when code is run is with the 
functions setTimeout and setInterval, which run a function once 
a fixed amount of time has passed. Another way is to run code 
only when a user performs certain actions, such as clicking, typ-
ing, or even just moving the mouse. This will let users interact 
with your web page so that your page responds according to what 
they do. 

In a browser, every time you perform an action such as click-
ing, typing, or moving your mouse, something called an event is 
triggered. An event is the browser’s way of saying, “This thing hap-
pened!” You can listen to these events by adding an event handler 
to the element where the event happened. Adding an event handler 
is your way of telling JavaScript, “If this event happens on this 
element, call this function.” For example, if you want a function to 
be called when the user clicks a heading element, you could add a 
click event handler to the heading element. We’ll look at how to do 
that next.

Responding to Clicks
When a user clicks an element in the browser, this triggers a 
click event. jQuery makes it easy to add a handler for a click 
event. Open the interactive.html document you created earlier, 
use file4Save as to save it as clicks.html, and replace its second 
script element with this code:

u var clickHandler = function (event) {
v   console.log("Click! " + event.pageX + " " + event.pageY);

};

w $("h1").click(clickHandler);

At u we create the function clickHandler with the single argu-
ment event. When this function is called, the event argument will 
be an object holding information about the click event, such as 
the location of the click. At v, inside the handler function, we use 
console.log to output the properties pageX and pageY from the event 
object. These properties tell us the event’s x- and y-coordinates—
in other words, they say where on the page the click occurred. 

Finally, at w we activate the click handler. The code $("h1") 
selects the h1 element, and calling $("h1").click(clickHandler) 



Interactive Programming  163

means “When there is a click on the 
h1 element, call the clickHandler func-
tion and pass it the event object.” In 
this case, the click handler retrieves 
information from the event object to 
output the x- and y-coordinates of 
the click location.

Reload your modified page in 
your browser and click the head-
ing element. Each time you click 
the heading, a new line should be 
output to the console, as shown 
in the following listing. Each line 
shows two numbers: the x- and 
y-coordinates of the clicked location.

Click! 88 43
Click! 63 53
Click! 24 53
Click! 121 46
Click! 93 55
Click! 103 48 

Browser Coordinates
In the web browser and in 
most programming and graphics 
environments, the 0 position of 
the x- and y-coordinates is at the 
top-left corner of the screen. As 
the x-coordinate increases, you 
move right across the page, and 
as the y-coordinate increases, 
you move down the page (see 
Figure 10-3).

x

y

530

5

2

0

(3, 2)

Figure 10-3: Coordinates 
in the browser, showing 
a click at the coordinate 
(3, 2)



164  Chapter 10

The mousemove event
The mousemove event is triggered every time the mouse moves. To 
try it out, create a file called mousemove.html and enter this code:

<!DOCTYPE html>
<html>
<head>
    <title>Mousemove</title>
</head>

<body>
    <h1 id="heading">Hello world!</h1>

    <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
u       $("html").mousemove(function (event) {
v         $("#heading").offset({

          left: event.pageX,
          top: event.pageY
        });
      });
    </script>
</body>
</html>

At u we add a handler for the mousemove event using $("html") 
.mousemove(handler). In this case, the handler is the entire function 
that appears after mousemove and before </script>. We use $("html") 
to select the html element so that the handler is triggered by mouse 
movements that occur anywhere on the page. The function that we 
pass into the parentheses after mousemove will be called every time 
the user moves the mouse.

In this example, instead of creating the event handler sepa-
rately and passing the function name to the mousemove method 
(as we did with our clickHandler function 
earlier), we’re passing the handler func-
tion directly to the mousemove method. 
This is a very common way of writing 
event handlers, so it’s good to be famil-
iar with this type of syntax.

At v, inside the event handler 
function, we select the heading element 
and call the offset method on it. As I 



Interactive Programming  165

mentioned before, the object passed to offset can have left and 
top properties. In this case, we set the left property to event.pageX 
and the top property to event.pageY. Now, every time the mouse 
moves, the heading will move to that location. In other words, 
wherever you move the mouse, the heading follows it!

What You learned
In this chapter, you learned how to write JavaScript that runs 
only when you want it to. The setTimeout and setInterval functions 
are great for timing code to run after a delay or at certain inter-
vals. If you want to run code when the user does something in the 
browser, you can use events like click and mousemove, but there are 
many others.

In the next chapter, we’ll put what you’ve just learned to good 
use to make a game!

Programming Challenges
Here are a few challenges to explore more ways to use inter-
active programming.

#1: follow the Clicks
Modify the previous mousemove program so that instead of 
following your mouse, the heading will follow just your clicks. 
Whenever you click the page, the heading should move to the 
click location.

#2: Create Your own Animation
Use setInterval to animate an h1 heading element around 
the page, in a square. It should move 200 pixels to the right, 
200 pixels down, 200 pixels to the left, 200 pixels up, and 
then start again. Hint: You’ll need to keep track of your 
current direction (right, down, left, or up) so that you know 
whether to increase or decrease the left or top offset of the 
heading. You’ll also need to change the direction when you 
reach a corner of the square. 

(continued)



166  Chapter 10

#3: Cancel an Animation with a Click
Building upon Challenge #2, add a click handler to the mov-
ing h1 element that cancels the animation. Hint: You can 
cancel intervals with the clearInterval function.

#4: Make a “Click the Header” Game!
Modify Challenge #3 so that every time a player clicks the 
heading, instead of stopping, the heading speeds up, making 
it harder and harder to click. Keep track of the number of 
times the heading has been clicked and update the heading 
text so it shows this number. When the player has reached 
10 clicks, stop the animation and change the text of the 
heading to “You Win.” Hint: To speed up, you’ll have to 
cancel the current interval and then start a new one with 
a shorter interval time.



11
fIND THe BuRIeD TReASuRe!

Let’s put what we’ve learned so far to good use and 
make a game! The aim of this game is to find the hid-
den treasure. In this game, the web page will display 
a treasure map. Inside that map, the program will 
pick a single pixel location, which represents where 
the hidden treasure is buried. Every time the player 
clicks the map, the web page will tell them how close 



168  Chapter 11

to the treasure they are. When they click the location of the 
treasure (or very close to it), the game congratulates them on 
finding the treasure and says how many clicks it took to find it. 
Figure 11-1 shows what the game will look like after a player 
clicks the map.

Figure 11-1: The buried treasure game

Designing the Game
Before we start writing the code, let’s break down the overall 
structure of this game. Here is a list of steps we need to take 
to set up the game so it can respond accordingly when a player 
clicks the treasure map.

1. Create a web page with an image (the treasure map) and a 
place to display messages to the player.

2. Pick a random spot on the map picture to hide the treasure.



Find the Buried Treasure!  169

3. Create a click handler. Each time the player clicks the map, 
the click handler will do the following:

a. Add 1 to a click counter.

b. Calculate how far the click location is from the treasure 
location.

c. Display a message on the web page to tell the player 
whether they’re hot or cold.

d. Congratulate the player if they click on the treasure or 
very close to it, and say how many clicks it took to find the 
treasure.

I’ll show you how to implement each of these features in the 
game, and then we’ll go through the full code.

Creating the Web Page with HTMl
Let’s look at the HTML for the game. We’ll use a new element 
called img for the treasure map and add a p element where we can 
display messages to the player. Enter the following code into a new 
file called treasure.html.

<!DOCTYPE html>
<html>
<head>
    <title>Find the buried treasure!</title>
</head>

<body>
    <h1 id="heading">Find the buried treasure!</h1>

u     <img id="map" width=400 height=400 
v       src="http://nostarch.com/images/treasuremap.png">

w     <p id="distance"></p>

    <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
    // Game code goes here
    </script>
</body>
</html>



170  Chapter 11

The img element is used to include images in HTML docu-
ments. Unlike the other HTML elements we’ve looked at, img 
doesn’t use a closing tag. All you need is an opening tag, which, 
like other HTML tags, can contain various attributes. At u we’ve 
added an img element with an id of "map". We set the width and 
height of this element using the width and height attributes, which 
are both set to 400. This means our image will be 400 pixels tall 
and 400 pixels wide.

To tell the document which image we want to display, we use 
the src attribute to include the web address of the image at v. In 
this case, we’re linking to an image called treasuremap.png on the 
No Starch Press website.

Following the img element is an empty p element at w, which 
we give an id of "distance". We’ll add text to this element by using 
JavaScript to tell the player how close they are to the treasure.

Picking a Random Treasure location
Now let’s build the JavaScript for 
our game. First we need to pick a 
random location for the hidden trea-
sure inside the treasure map image. 
Since the dimensions of the map 
are 400 by 400 pixels, the coordi-
nates of the top-left pixel will be 
{ x: 0, y: 0 }, and the bottom-right 
pixel will be { x: 399, y: 399 }. 

Picking Random Numbers
To set a random coordinate point within the treasure map, we 
pick a random number between 0 and 399 for the x value and a 
random number between 0 and 399 for the y value. To generate 
these random values, we’ll write a function that takes a size argu-
ment as input and picks a random number from 0 up to (but not 
including) size:

var getRandomNumber = function (size) {
  return Math.floor(Math.random() * size);
};

This code is similar to the code we’ve used to pick random 
words in earlier chapters. We generate a random number between 



Find the Buried Treasure!  171

0 and 1 using Math.random, multiply that by the size argument, and 
then use Math.floor to round that number down to a whole num-
ber. Then we output the result as the return value of the function. 
Calling getRandomNumber(400) will return a random number from 0 
to 399, which is just what we need! 

Setting the Treasure Coordinates
Now let’s use the getRandomNumber function to set the treasure 
coordinates:

u var width = 400;
var height = 400;

v var target = {
  x: getRandomNumber(width),
  y: getRandomNumber(height)
};

The section of code at u sets the width and height variables, 
which represent the width and height of the img element that we’re 
using as a treasure map. At v we create an object called target, 
which has two properties, x and y, that represent the coordinates 
of the buried treasure. The x and y properties are both set by 
getRandomNumber. Each time we run this code, we get a new random 
location on the map, and the chosen coordinates will be saved in 
the x and y properties of the target variable.

The Click Handler
The click handler is the function that will be called when the player 
clicks the treasure map. Start building this function with this code:

$("#map").click(function (event) {
  // Click handler code goes here
});

First we use $("#map") to select the treasure map area (because 
the img element has an id of "map"), and then we go into the click 
handler function. Each time the player clicks the map, the function 
body between the curly brackets will be executed. Information about 
the click is passed into that function body as an object through the 
event argument. 



172  Chapter 11

This click handler function needs to do quite a bit of work: it 
has to increment the click counter, calculate how far each click 
is from the treasure, and display messages. Before we fill in the 
code for the click handler function, we’ll define some variables and 
create some other functions that will help execute all these steps.

Counting Clicks
The first thing our click handler needs to do is track the total 
number of clicks. To set this up, we create a variable called clicks 
at the beginning of the program (outside the click handler) and 
initialize it to zero:

var clicks = 0;

Inside the click handler, we’ll include clicks++ so that we incre-
ment clicks by 1 each time the player clicks the map.

Calculating the Distance Between the 
Click and the Treasure
To figure out whether the player is hot or cold (close to the treasure 
or far away), we need to measure the distance between where the 
player clicked and the location of the hidden treasure. To do this, 
we’ll write a function called getDistance, like so:

var getDistance = function (event, target) {
  var diffX = event.offsetX - target.x;
  var diffY = event.offsetY - target.y;
  return Math.sqrt((diffX * diffX) + (diffY * diffY));
};

The getDistance function takes two objects as arguments: 
event and target. The event object is the object passed to the click 
handler, and it comes with lots of built-in information about the 
player’s click. In particular, it contains two properties called 
offsetX and offsetY, which tell us the x- and y-coordinates of the 
click, and that’s exactly the information we need.

Inside the function, the variable diffX stores the horizontal 
distance between the clicked location and the target, which we 
calculate by subtracting target.x (the x-coordinate of the treasure) 
from event.offsetX (the x-coordinate of the click). We calculate the 



Find the Buried Treasure!  173

vertical distance between the points in the same way, and store 
the result as diffY. Figure 11-2 shows how we would calculate diffX 
and diffY for two points.

x

y

530

5

2

0

target: (1, 2)

event: (3, 3)

421

3

4

1

diffX = 3 – 1
      = 2

diffY = 3 – 2
      = 1

Figure 11-2: Calculating the horizontal and vertical  
distances between event and target

using the Pythagorean Theorem
Next, the getDistance func-
tion uses the Pythagorean 
theorem to calculate the dis-
tance between two points. The 
Pythagorean theorem says 
that for a right triangle, where 
a and b represent the lengths 
of the two sides bordering the 
right angle and c represents 
the length of the diagonal side 
(the hypotenuse), a2 + b2 = c2. 
Given the lengths of a and b, 
we can calculate the length 
of the hypotenuse by calculat-
ing the square root of a2 + b2. 



174  Chapter 11

To calculate the distance between the event and the target, we 
treat the two points as if they’re part of a right triangle, as shown 
in Figure 11-3. In the getDistance function, diffX is the length of the 
horizontal edge of the triangle, and diffY is the length of the verti-
cal edge.

To calculate the distance between the click and the trea-
sure, we need to calculate the length of the hypotenuse, based 
on the lengths diffX and diffY. A sample calculation is shown in 
Figure 11-3.

x

y

530

5

2

0

target: (1, 2)

event: (3, 3)

421

3

4

1

diffX = 3 – 1
      = 2

diffY = 3 – 2
      = 1

Hypotenuse = √(diffX2 + diffY2)
= √(22 + 12)
= √(4 + 1)
= √5
= 2.236

Figure 11-3: Calculating the hypotenuse to find out  
the distance between event and target

To get the length of the hypotenuse, we first have to square 
diffX and diffY. We then add these squared values together, and 
get the square root using the JavaScript function Math.sqrt. So our 
complete formula for calculating the distance between the click and 
the target looks like this:

Math.sqrt((diffX * diffX) + (diffY * diffY)) 

The getDistance function calculates this and returns the result.



Find the Buried Treasure!  175

Telling the Player How Close They Are
Once we know the distance between the player’s click and the 
treasure, we want to display a hint telling the player how close 
they are to the treasure, without telling them exactly how far 
away the treasure is. For this, we use the getDistanceHint function 
shown here:

var getDistanceHint = function (distance) {
  if (distance < 10) {
    return "Boiling hot!";
  } else if (distance < 20) {
    return "Really hot";
  } else if (distance < 40) {
    return "Hot";
  } else if (distance < 80) {
    return "Warm";
  } else if (distance < 160) {
    return "Cold";
  } else if (distance < 320) {
    return "Really cold";
  } else {
    return "Freezing!";
  }
};

This function returns different strings depending on the cal-
culated distance from the treasure. If the distance is less than 10, 
the function returns the string "Boiling hot!". If the distance is 
between 10 and 20, the function returns "Really hot". The strings 
get colder as the distance increases, up to the point where we 
return "Freezing!" if the distance is greater than 320 pixels. 

We display the message to the player by adding it as text in 
the p element of the web page. The following code will go inside our 
click handler to calculate the distance, pick the appropriate string, 
and display that string to the player:

var distance = getDistance(event, target);
var distanceHint = getDistanceHint(distance);
$("#distance").text(distanceHint);

As you can see, we first call getDistance and then save the 
result as the variable distance. Next we pass that distance to the 
getDistanceHint function to pick the appropriate string and save it 
as distanceHint. 



176  Chapter 11

The code $("#distance").text(distanceHint); selects the element 
with the id of "distance" (in this case the p element) and sets its 
text to distanceHint so that each time the player clicks the map, 
our web page tells them how close they are to the target.

Checking If the Player Won
Finally, our click handler needs to check whether the player has 
won. Because pixels are so small, instead of making the player 
click the exact location of the treasure, we’ll let them win if 
they click within 8 pixels. 

This code checks the distance to the treasure and displays a 
message telling the player that they’ve won:

if (distance < 8) {
  alert("Found the treasure in " + clicks + " clicks!");
}

If the distance is less than 8 pixels, this code uses alert to tell 
the player they found the treasure and how many clicks it took 
them to do so.

Putting It All Together
Now that we have all the pieces, let’s combine them to make one 
script.

// Get a random number from 0 to size
var getRandomNumber = function (size) {
  return Math.floor(Math.random() * size);
};

// Calculate distance between click event and target
var getDistance = function (event, target) {
  var diffX = event.offsetX - target.x;
  var diffY = event.offsetY - target.y;
  return Math.sqrt((diffX * diffX) + (diffY * diffY));
};

// Get a string representing the distance
var getDistanceHint = function (distance) {
  if (distance < 10) {
    return "Boiling hot!";



Find the Buried Treasure!  177

  } else if (distance < 20) {
    return "Really hot";
  } else if (distance < 40) {
    return "Hot";
  } else if (distance < 80) {
    return "Warm";
  } else if (distance < 160) {
    return "Cold";
  } else if (distance < 320) {
    return "Really cold";
  } else {
    return "Freezing!";
  }
};

// Set up our variables
u var width = 400;

var height = 400;
var clicks = 0;

// Create a random target location
v var target = {

  x: getRandomNumber(width),
  y: getRandomNumber(height)
};

// Add a click handler to the img element
w $("#map").click(function (event) {

  clicks++;

  // Get distance between click event and target
x   var distance = getDistance(event, target);

  // Convert distance to a hint
y   var distanceHint = getDistanceHint(distance);

  // Update the #distance element with the new hint
z   $("#distance").text(distanceHint);

  // If the click was close enough, tell them they won
{   if (distance < 8) {

    alert("Found the treasure in " + clicks + " clicks!");
  }
});

First, we have the three functions getRandomNumber, getDistance, 
and getDistanceHint, which we’ve already looked at. Then, at u, we 



178  Chapter 11

set up the variables we’ll need: width, height, and clicks. After that, 
at v, we create the random location for the treasure.

At w we create a click handler on the map element. The first 
thing this does is increment the clicks variable by 1. Then, at x, it 
works out the distance between event (the click location) and target 
(the treasure location). At y we use the function getDistanceHint 
to convert this distance into a string representing the distance 
("Cold", "Warm", and so on). We update the display at z so the user 
can see how far they are. Finally, at {, we check to see whether 
the distance is under 8, and if so, we tell the player they’ve won 
and in how many clicks.

This is the entire JavaScript for our game. If you add this to 
the second <script> tag in treasure.html, you should be able to play 
it in your browser! How many clicks does it take you to find the 
treasure?

What You learned
In this chapter, you used your new event-handling skills to create 
a game. You also learned about the img element, which can be used 
to add images to a web page. Finally, you learned how to measure 
the distance between two points using JavaScript.

In the next chapter, we’ll learn about object-oriented program-
ming, which will give us more tools for organizing our code.



Find the Buried Treasure!  179

Programming Challenges
Here are a few ways you could change the game and add 
more features.

#1: Increasing the Playing Area
You could make the game harder by increasing the size of 
the playing area. How would you make it 800 pixels wide by 
800 pixels tall?

#2: Adding More Messages
Try adding some extra messages to display to the player 
(like "Really really cold!"), and modify the distances to make 
the game your own.

#3: Adding a Click limit
Add a limit to the number of clicks and show the message 
"GAME OVER" if the player exceeds this limit.

#4: Displaying the Number of Remaining Clicks
Show the number of remaining clicks as an extra piece of 
text after the distance display so the player knows if they’re 
about to lose.





12
oBJeCT-oRIeNTeD 

PRoGRAMMING

Chapter 4 discussed JavaScript objects—collections 
of keys paired with values. In this chapter, we’ll look 
at ways to create and use objects as we explore object-
oriented programming. Object-oriented programming 
is a way to design and write programs so that all of 
the program’s important parts are represented by 
objects. For example, when building a racing game, 



182  Chapter 12

you could use object-oriented programming techniques to repre-
sent each car as an object and then create multiple car objects that 
share the same properties and functionality.

A Simple object
In Chapter 4, you learned that objects are made up of properties, 
which are simply pairs of keys and values. For example, in the fol-
lowing code the object dog represents a dog with the properties name, 
legs, and isAwesome:

var dog = {
  name: "Pancake",
  legs: 4,
  isAwesome: true
};

Once we create an object, we can access its properties using dot 
notation (discussed in “Accessing Values in Objects” on page 66). 
For example, here’s how we could access the name property of our 
dog object:

dog.name;
"Pancake"

We can also use dot notation to add properties to a JavaScript 
object, like this:

dog.age = 6;

This adds a new key-value pair (age: 6) to the object, as you 
can see below:

dog;
Object {name: "Pancake", legs: 4, isAwesome: true, age: 6}

Adding Methods to objects
In the preceding example, we created several properties with dif-
ferent kinds of values saved to them: a string ("Pancake"), numbers 
(4 and 6), and a Boolean (true). In addition to strings, numbers, 
and Booleans, you can save a function as a property inside an 



Object-Oriented Programming  183

object. When you save a function as a property in an object, that 
property is called a method. In fact, we’ve already used several 
built-in JavaScript methods, like the join method on arrays and 
the toUpperCase method on strings. 

Now let’s see how to create our own methods. One way to add a 
method to an object is with dot notation. For example, we could add 
a method called bark to the dog object like this:

u dog.bark = function () {
v   console.log("Woof woof! My name is " + this.name + "!");

};

w dog.bark();
Woof woof! My name is Pancake!

At u we add a property to the dog object called bark and assign 
a function to it. At v, inside this new function, we use console.log 
to log Woof woof! My name is Pancake!. Notice that the function uses 
this.name, which retrieves the value saved in the object’s name prop-
erty. Let’s take a closer look at how the this keyword works.

using the this Keyword
You can use the this keyword inside a method to refer to the object 
on which the method is currently being called. For example, when 
you call the bark method on the dog object, this refers to the dog 
object, so this.name refers to dog.name. The this keyword makes 
methods more versatile, allowing you to add the same method 
to multiple objects and have it access the properties of whatever 
object it’s currently being called on. 

Sharing a Method Between 
Multiple objects 
Let’s create a new function called speak that we can use as a 
method in multiple objects that represent different animals. When 
speak is called on an object, it will use the object’s name (this.name) 
and the sound the animal makes (this.sound) to log a message.

var speak = function () {
  console.log(this.sound + "! My name is " + this.name + "!");
};



184  Chapter 12

Now let’s create another object so we can add speak to it as a 
method:

var cat = {
  sound: "Miaow",
  name: "Mittens",

u   speak: speak
};

Here we create a new object called cat, with sound, name, and 
speak properties. We set the speak property at u and assign it 
the speak function we created earlier. Now cat.speak is a method 
that we can call by entering cat.speak(). Since we used the this 
keyword in the method, when we call it on cat, it will access the 
cat object’s properties. Let’s see that now:

cat.speak();
Miaow! My name is Mittens!

When we call the cat.speak method, it retrieves two proper-
ties from the cat object: this.sound (which is "Miaow") and this.name 
(which is "Mittens").

We can use the same speak function as a method in other 
objects too:

var pig = {
  sound: "Oink",
  name: "Charlie",
  speak: speak
};

var horse = {
  sound: "Neigh",
  name: "Marie",
  speak: speak
};

pig.speak();
Oink! My name is Charlie! 

horse.speak();
Neigh! My name is Marie!



Object-Oriented Programming  185

Again, each time this appears inside a method, it refers to the 
object on which the method is called. In other words, when you call 
horse.speak(), this will refer to horse, and when you call pig.speak(), 
this refers to pig.

To share methods between multiple 
objects, you can simply add them to each 
object, as we just did with speak. But if you 
have lots of methods or objects, adding the 
same methods to each object individually 
can become annoying, and it can make 
your code messier, too. Just imagine if 
you needed a whole zoo full of 100 animal 
objects and you wanted each to share a set 
of 10 methods and properties.

JavaScript object constructors offer a 
better way to share methods and proper-
ties between objects, as we’ll see next.

Creating objects using 
Constructors

A JavaScript constructor is a function that creates objects and 
gives them a set of built-in properties and methods. Think of it as 
a specialized machine for creating objects, kind of like a factory 
that can churn out tons of copies of the same item. Once you’ve 
set up a constructor, you can use it to make as many of the same 
object as you want. To try it out, we’ll build the beginnings of a 
racing game, using a Car constructor to create a fleet of cars with 
similar basic properties and methods for steering and acceleration.

Anatomy of the Constructor
Each time you call a constructor, it creates an object and gives the 
new object built-in properties. To call a normal function, you enter 
the function name followed by a pair of parentheses. To call a con-
structor, you enter the keyword new (which tells JavaScript that you 
want to use your function as a constructor), followed by the con-
structor name and parentheses. Figure 12-1 shows the syntax for 
calling a constructor.



186  Chapter 12

var car = new Car(100, 200)

The new object
is saved into
this variable.

Arguments passed
to the constructor

The name of
the constructor

Figure 12-1: The syntax for calling a constructor  
named Car with two arguments

NoTe  Most JavaScript programmers start constructor names with a capi-
tal letter so it’s easy to see at a glance that they’re different from 
other functions. 

Creating a Car Constructor
Now let’s create a Car constructor that will add an x and y property 
to each new object it creates. These properties will be used to set 
each car’s onscreen position when we draw it.

Creating the HTMl Document
Before we can build our constructor, we need to create a new 
HTML document. Make a new file called cars.html and enter 
this HTML into it:

<!DOCTYPE html>
<html>
<head>
    <title>Cars</title>
</head>

<body>
    <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
    // Code goes here
    </script>
</body>
</html>



Object-Oriented Programming  187

The Car Constructor function
Now add this code to the empty <script> tags in cars.html (replac-
ing the comment // Code goes here) to create the Car constructor 
that gives each car a set of coordinates.

    <script>
    var Car = function (x, y) {
      this.x = x;
      this.y = y;
    };
    </script>

Our new constructor Car takes the arguments x and y. We’ve 
added the properties this.x and this.y to store the x and y values 
passed to Car in our new object. This way, each time we call Car as 
a constructor, a new object is created with its x and y properties set 
to the arguments we specify.

Calling the Car Constructor
As I mentioned earlier, the keyword new tells JavaScript that we’re 
calling a constructor to create a new object. For example, to create 
a car object named tesla, open cars.html in a web browser and then 
enter this code in the Chrome JavaScript console:

var tesla = new Car(10, 20);
tesla;
Car {x: 10, y: 20}

The code new Car(10, 20) tells JavaScript to create an object 
using Car as a constructor, pass in the arguments 10 and 20 for its 
x and y properties, and return that object. We assign the returned 
object to the tesla variable with var tesla. 

Then when we enter tesla, the Chrome console returns the 
name of the constructor and its x and y values: Car {x: 10, y: 20}. 



188  Chapter 12

Drawing the Cars
To show the objects created by the Car constructor, we’ll create 
a function called drawCar to place an image of a car at each car 
object’s (x, y) position in a browser window. Once we’ve seen how 
this function works, we’ll rewrite it in a more object-oriented way 
in “Adding a draw Method to the Car Prototype” on page 191. Add 
this code between the <script> tags in cars.html:

    <script>
    var Car = function (x, y) {
      this.x = x;
      this.y = y;
    };

    var drawCar = function (car) {
u       var carHtml = '<img src="http://nostarch.com/images/car.png">';

v       var carElement = $(carHtml);

w       carElement.css({
        position: "absolute",
        left: car.x,
        top: car.y
      });

x       $("body").append(carElement);
    };
    </script>

At u we create a string containing HTML that points to an 
image of a car. (Using single quotes to create this string lets us 
use double quotes in the HTML.) At v we pass carHTML to the $ 
function, which converts it from a string to a jQuery element. That 
means the carElement variable now holds a jQuery element with the 
information for our <img> tag, and we can tweak this element before 
adding it to the page. 

At w we use the css method on carElement to set the position 
of the car image. This code sets the left position of the image to 
the car object’s x value and its top position to the y value. In other 
words, the left edge of the image will be x pixels from the left edge 
of the browser window, and the top edge of the image will be y pixels 
down from the top edge of the window.



Object-Oriented Programming  189

NoTe  In this example, the css method works like the offset method we 
used in Chapter 10 to move elements around the page. Unfortu-
nately, offset doesn’t work as well with multiple elements, and since 
we want to draw multiple cars, we’re using css here instead.

Finally, at x we use jQuery to append the carElement to the 
body element of the web page. This final step makes the carElement 
appear on the page. (For a reminder on how append works, see 
“Creating New Elements with jQuery” on page 150.)

Testing the drawCar function
Let’s test the drawCar function to make sure it works. Add this code 
to your cars.html file (after the other JavaScript code) to create 
two cars.

      $("body").append(carElement);
    };
    var tesla = new Car(20, 20);
    var nissan = new Car(100, 200);

    drawCar(tesla);
    drawCar(nissan);
    </script>

Here, we use the Car constructor to create two car objects, one 
at the coordinates (20, 20) and the other at (100, 200), and then 
we use drawCar to draw each of them in the browser. Now when you 
open cars.html, you should see two car images in your browser 
window, as shown in Figure 12-2.



190  Chapter 12

Figure 12-2: Drawing cars using drawCar 

Customizing objects with 
Prototypes

A more object-oriented way to draw our cars would be to give each 
car object a draw method. Then, instead of writing drawCar(tesla), 
you’d write tesla.draw(). In object-oriented programming, we want 
objects to have their own functionality built in as methods. In this 
case, the drawCar function is always meant to be used on car objects, 
so instead of saving drawCar as a separate function, we should include 
it as part of each car object.

JavaScript prototypes make it easy to share functionality 
(as methods) between different objects. All constructors have a 
prototype property, and we can add methods to it. Any method that 
we add to a constructor’s prototype property will be available as a 
method to all objects created by that constructor.

Figure 12-3 shows the syntax for adding a method to a 
prototype property.



Object-Oriented Programming  191

Car.prototype.draw = function () {
  // The body of the method
}

The
constructor

name

The
method

name

Figure 12-3: The syntax for adding a method to a prototype property

Adding a draw Method to the Car 
Prototype
Let’s add a draw method to Car.prototype so that all objects we create 
using Car will have the draw method. Using file4Save as, save 
your cars.html file as cars2.html. Then replace all of the JavaScript 
in your second set of <script> tags in cars2.html with this code:

u var Car = function (x, y) {
  this.x = x;
  this.y = y;
};

v Car.prototype.draw = function () {
  var carHtml = '<img src="http://nostarch.com/images/car.png">';

w   this.carElement = $(carHtml);

  this.carElement.css({
    position: "absolute",

x     left: this.x,
    top: this.y
  });

  $("body").append(this.carElement);
};

var tesla = new Car(20, 20);
var nissan = new Car(100, 200);

tesla.draw();
nissan.draw();



192  Chapter 12

After creating our Car constructor at u, we add a new method 
called draw to Car.prototype at v. This makes the draw method part 
of all of the objects created by the Car constructor.

The contents of the draw method are a modified version of 
our drawCar function. First, we create an HTML string and save 
it as carHTML. At w we create a jQuery element representing this 
HTML, but this time we save it as a property of the object by 
assigning it to this.carElement. Then at x, we use this.x and 
this.y to set the coordinates of the top-left corner of the current 
car image. (Inside a constructor, this refers to the new object cur-
rently being created.)

When you run this code, the result should look like Figure 12-2. 
We haven’t changed the code’s functionality, only its organization. 
The advantage to this approach is that the code for drawing the car 
is part of the car, instead of a separate function.

Adding a moveRight Method
Now let’s add some methods to move the cars around, beginning 
with a moveRight method to move the car 5 pixels to the right of 
its current position. Add the following code after your definition of 
Car.prototype.draw:

  this.carElement.css({
    position: "absolute",
    left: this.x,
    top: this.y
  });

  $("body").append(this.carElement);
};

Car.prototype.moveRight = function () {
  this.x += 5;

  this.carElement.css({
    left: this.x,
    top: this.y
  });
};



Object-Oriented Programming  193

We save the moveRight method in Car.prototype to share it with 
all objects created by the Car constructor. With this.x += 5 we add 5 
to the car’s x value, which moves the car 5 pixels to the right. Then 
we use the css method on this.carElement to update the car’s posi-
tion in the browser.

Try the moveRight method in the browser console. First, refresh 
cars2.html, and then open the console and enter these lines:

tesla.moveRight();
tesla.moveRight();
tesla.moveRight();

Each time you enter tesla.moveRight, the top car should move 
5 pixels to the right. You could use this method in a racing game to 
show the car moving down the racetrack.

Try It out!
Try moving nissan to the right. How many times do you need 
to call moveRight on nissan to make it line up with tesla?

Use setInterval and moveRight to animate nissan so that it 
drives across the browser window.

Adding the left, up, and Down 
move Methods
Now we’ll add the remaining directions to our code so that we can 
move our cars around the screen in any direction. These methods 
are basically the same as moveRight, so we’ll write them all at once. 

Add the following methods to cars2.html just after the code for 
moveRight:

Car.prototype.moveRight = function () {
  this.x += 5;

  this.carElement.css({
    left: this.x,
    top: this.y
  });
};



194  Chapter 12

Car.prototype.moveLeft = function () {
  this.x -= 5;

  this.carElement.css({
    left: this.x,
    top: this.y
  });
};

Car.prototype.moveUp = function () {
  this.y -= 5;

  this.carElement.css({
    left: this.x,
    top: this.y
  });
};

Car.prototype.moveDown = function () {
  this.y += 5;

  this.carElement.css({
    left: this.x,
    top: this.y
  });
};

Each of these methods moves the car by 5 pixels in the speci-
fied direction by adding or subtracting 5 from each car’s x or y 
value.



Object-Oriented Programming  195

What You learned
In this chapter, you learned the basics of object-oriented program-
ming in JavaScript, including how to create constructors to build 
new objects and how to modify the prototype property of those con-
structors to share methods between objects.

In object-oriented programs, most functions are written as 
methods. For example, to draw the car, we call the draw method 
on the car, and to move the car to the right, we call the moveRight 
method. Constructors and prototypes are JavaScript’s built-in way 
of letting you create objects that share the same set of methods, 
but there are many ways to write object-oriented JavaScript. (For 
more on object-oriented JavaScript, see Nicholas C. Zakas’s The 
Principles of Object-Oriented JavaScript [No Starch Press, 2014].)

Writing JavaScript in an object-oriented way can help you 
structure your code. Having well-structured code means that when 
you come back to it later to make changes, it should be easier to 
figure out how your program works if you don’t remember (this is 
particularly important with bigger programs or when you start to 
work with other programmers who may need to access your code). 
For example, in the final project in this book, we’ll build a Snake 
game that requires quite a bit of code, and we’ll use objects and 
methods to organize our game and handle a lot of the important 
functionality.

In the next chapter, we’ll go over how to draw and animate 
lines and shapes on a web page using the canvas element. 

Programming Challenges
Try these challenges to practice working with objects and 
prototypes.

#1: Drawing in the Car Constructor
Add a call to the draw method from inside the Car constructor 
so that car objects automatically appear in the browser as 
soon as you create them.

(continued)



196  Chapter 12

#2: Adding a speed Property
Modify the Car constructor to add a new speed property 
with a value of 5 to the constructed objects. Then use 
this property instead of the value 5 inside the movement 
methods.

Now try out different values for speed to make the cars 
move faster or slower.

#3: Racing Cars
Modify the moveLeft, moveRight, moveUp, and moveDown methods 
so they take a single distance argument, the number of 
pixels to move, instead of always moving 5 pixels. For 
example, to move the nissan car 10 pixels to the right, you 
would call nissan.moveRight(10).

Now, use setInterval to move the two cars (nissan and 
tesla) to the right every 30 milliseconds by a different 
random distance between 0 and 5. You should see the two 
cars animate across the screen, jumping along at varying 
speeds. Can you guess which car will make it to the edge 
of the window first?



Part III
Canvas





13
THe CANVAS eleMeNT

JavaScript isn’t all about playing with text and num-
bers. You can also use JavaScript to draw pictures with 
the HTML canvas element, which you can think of as 
a blank canvas or sheet of paper. You can draw almost 
anything that you want on this canvas, such as lines, 
shapes, and text. The only limit is your imagination!



200  Chapter 13

In this chapter, you’ll learn the basics of drawing on the can-
vas. In the following chapters, we’ll build on our knowledge to 
create a canvas-based JavaScript game.

Creating a Basic Canvas
As our first step in using the canvas, create a new HTML docu-
ment for the canvas element, as shown in the following listing. Save 
this document as canvas.html:

<!DOCTYPE html>
<html>
<head>
    <title>Canvas</title>
</head>

<body>
u     <canvas id="canvas" width="200" height="200"></canvas>

    <script>
    // We'll fill this in next
    </script>
</body>
</html>

As you can see at u, we create a canvas element and give it 
an id property of "canvas", which we’ll use to select the element in 
our code. The width and height properties set the dimensions of the 
canvas element in pixels. Here we set both dimensions to 200. 

Drawing on the Canvas
Now that we’ve built a page with a canvas element, let’s draw some 
rectangles with JavaScript. Enter this JavaScript between the 
<script> tags in canvas.html.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.fillRect(0, 0, 10, 10);

We’ll go over this code line by line in the following sections.



The canvas Element  201

Selecting and Saving 
the canvas element
First, we select the canvas element using 
document.getElementById("canvas"). As we 
saw in Chapter 9, the getElementById 
method returns a DOM object repre-
senting the element with the supplied 
id. This object is assigned to the canvas 
variable with the code var canvas = 
document.getElementById("canvas").

Getting the Drawing 
Context
Next, we get the drawing context from the canvas element. A draw-
ing context is a JavaScript object that includes all the methods 
and properties for drawing on a canvas. To get this object, we call 
getContext on canvas and pass it the string "2d" as an argument. 
This argument says that we want to draw a two-dimensional 
image on our canvas. We save this drawing context object in the 
variable ctx using the code var ctx = canvas.getContext("2d").

Drawing a Square
Finally, on the third line, we draw a rectangle on the canvas by 
calling the method fillRect on the drawing context. The fillRect 
method takes four arguments. In order, these are the x- and 
y-coordinates of the top-left corner of the rectangle (0, 0) and the 
width and height of the rectangle (10, 10). In this case, we’re say-
ing, “Draw a 10-pixel-by-10-pixel rectangle at coordinates (0, 0),” 
which are at the top-left corner of the canvas.

When you run this code, you should see a small black square 
on your screen, as shown in Figure 13-1. 

Figure 13-1: Our first canvas drawing



202  Chapter 13

Drawing Multiple Squares
How about trying something a bit more interesting? Rather than 
drawing just one square, let’s use a loop to draw multiple squares 
running diagonally down the screen. Replace the code in the 
<script> tags with the following. When you run this code, you 
should see a set of eight black squares, as shown in Figure 13-2:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
for (var i = 0; i < 8; i++) {
  ctx.fillRect(i * 10, i * 10, 10, 10);
}

The first two lines are the same as in the earlier listing. In the 
third line, we create a for loop that runs from 0 to 8. Next, inside 
this loop, we call fillRect on the drawing context. 

Figure 13-2: Drawing multiple squares using  
a for loop

The x and y positions for the top-left corner of each square 
are based on the loop variable, i. The first time around the loop, 
when i is 0, the coordinates are (0, 0) because 0 × 10 is equal to 0. 
This means that when we run the code 
ctx.fillRect(i * 10, i * 10, 10, 10), we 
will draw a square at the coordinates 
(0, 0), with a width and height of 10 
pixels by 10 pixels. This is the top-left 
square in Figure 13-2.

The second time around the loop, when 
i is 1, the coordinates are (10, 10) because 
1 × 10 is equal to 10. This time, the code 
ctx.fillRect(i * 10, i * 10, 10, 10) draws 
a square at the coordinates (10, 10), 



The canvas Element  203

but the square’s size is still 10 pixels by 10 pixels (because we’re 
not changing the width and height arguments). This is the second 
square down in Figure 13-2.

 Since i increments by 1 each time through the loop, the x- and 
y-coordinates keep increasing by 10 pixels each time through the 
loop, but the width and height of the square stay fixed at 10. The 
remaining six squares are drawn over the remaining six times 
around the loop.

Try It out!
Now that you know how to draw squares 
and rectangles on the canvas, try drawing 
this little robot using the fillRect method.

Hint: You’ll need to draw six sepa-
rate rectangles. I made the head using a 
50-pixel-by-50-pixel rectangle. The neck, 
arms, and legs are all 10 pixels wide.

Changing the Drawing Color
By default, when you call fillRect, JavaScript draws a black 
rectangle. To use a different color, you can change the fillStyle 
property of the drawing context. When you set fillStyle to a new 
color, everything you draw will be drawn in that color until you 
change fillStyle again. 

The easiest way to set a color for fillStyle is to give it the 
name of a color as a string. For example:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

u ctx.fillStyle = "Red";
ctx.fillRect(0, 0, 100, 100);

At u we tell the drawing context that everything we draw 
from now on should be colored red. Running this code should draw 
a bright red square on the screen, as shown in Figure 13-3.



204  Chapter 13

Figure 13-3: A red square

NoTe  JavaScript understands more than 
100 color names, including Green, 
Blue, Orange, Red, Yellow, Purple, 
White, Black, Pink, Turquoise, Violet, 
SkyBlue, PaleGreen, Lime, Fuchsia, 
DeepPink, Cyan, and Chocolate. 
You’ll find a full list on the CSS-Tricks 
website: http://css-tricks.com/snippets/
css/named-colors-and-hex-equivalents/.

Try It out!
Look at the CSS-Tricks website (http://css-tricks.com/
snippets/css/named-colors-and-hex-equivalents/) and 
choose three colors you like. Draw three rectangles using 
these colors. Each rectangle should be 50 pixels wide and 
100 pixels tall. Don’t include any space between them. You 
should end up with something like this:

. . . although I’m sure you can find some more interesting 
colors than red, green, and blue!

http://css-tricks.com/snippets/css/named-colors-and-hex-equivalents/
http://css-tricks.com/snippets/css/named-colors-and-hex-equivalents/


The canvas Element  205

Drawing Rectangle outlines
As we’ve seen, the fillRect method draws a filled-in rectangle. 
That’s fine if that’s what you want, but sometimes you might want 
to draw just the outline, as if you were using a pen or pencil. To 
draw just the outline of a rectangle, we use the strokeRect method. 
(The word stroke is another word for outline.) For example, run-
ning this code should draw the outline of small rectangle, as 
shown in Figure 13-4:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.strokeRect(10, 10, 100, 20);

Figure 13-4: Using strokeRect to draw the  
outline of a rectangle

The strokeRect method takes the same arguments as fillRect: 
first the x- and y-coordinates of the top-left corner, followed by the 
width and height of the rectangle. In this example, we see that 
a rectangle is drawn starting at 10 pixels from the top left of the 
canvas, and it is 100 pixels wide by 20 pixels tall.

Use the strokeStyle property to change the color of the rect-
angle’s outline. To change the thickness of the line, use the 
lineWidth property. For example:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

u ctx.strokeStyle = "DeepPink";
v ctx.lineWidth = 4;

ctx.strokeRect(10, 10, 100, 20);

Here, we set the color of the line to DeepPink at u and the 
width of the line to 4 pixels at v. Figure 13-5 shows the resulting 
rectangle.



206  Chapter 13

Figure 13-5: A deep pink rectangle with a  
4-pixel-wide outline

Drawing lines or Paths
Lines on the canvas are called paths. To draw a path with the 
canvas, you use x- and y-coordinates to set where each line should 
begin and end. By using a careful combination of starting and 
stopping coordinates, you can draw specific shapes on the canvas. 
For example, here’s how you might draw the turquoise X shown in 
Figure 13-6:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

u ctx.strokeStyle = "Turquoise";
v ctx.lineWidth = 4;
w ctx.beginPath();
x ctx.moveTo(10, 10);
y ctx.lineTo(60, 60);
z ctx.moveTo(60, 10);
{ ctx.lineTo(10, 60);
 ctx.stroke();

Figure 13-6: A turquoise X, drawn with moveTo  
and lineTo

At u and v we set the color and width of the line. At w we 
call the beginPath method on the drawing context (saved as ctx) 
to tell the canvas that we want to start drawing a new path. 
At x we call the moveTo method with two arguments: x- and 



The canvas Element  207

y-coordinates. Calling moveTo picks up our virtual JavaScript pen 
off the canvas paper and moves it to those coordinates without 
drawing a line. 

To start drawing a line, we call the lineTo method at y with 
x- and y-coordinates, which places the virtual pen back on the can-
vas and traces a path to these new coordinates. Here, we draw a 
line from the point (10, 10) to the point (60, 60)—a diagonal line 
from the top left of the canvas to the bottom right, forming the 
first line of the X.

At z we call moveTo again, which 
sets a new location to draw from. 
At { we call lineTo again, to draw 
a line from (60, 10) to (10, 60)—a 
diagonal line from the top right of 
the canvas to the bottom left, com-
pleting the X shape. 

But we’re not done yet! So far 
we’ve only told the canvas what we’d 
like to draw; we haven’t actually 
drawn anything. So at , we call the 
stroke method, which finally makes 
the lines appear on the screen. 

Try It out!
Try drawing this happy stickman using the 
beginPath, moveTo, lineTo, and stroke methods. You 
can use the strokeRect method for the head. The 
head is a 20-pixel-by-20-pixel square, and the line 
width is 4 pixels.

filling Paths
So far we’ve looked at strokeRect for drawing rectangle outlines, 
fillRect for filling rectangles with color, and stroke for outlining 
a path. The equivalent of fillRect for paths is called fill. To fill a 
closed path with color instead of just drawing an outline, you can 
use the fill method instead of stroke. For example, you could use 
this code to draw the simple sky blue house shown in Figure 13-7.



208  Chapter 13

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

ctx.fillStyle = "SkyBlue";
ctx.beginPath();
ctx.moveTo(100, 100);
ctx.lineTo(100, 60);
ctx.lineTo(130, 30);
ctx.lineTo(160, 60);
ctx.lineTo(160, 100);
ctx.lineTo(100, 100);

u ctx.fill();

Figure 13-7: A sky blue house, drawn with a  
path and filled with the fill method

Here’s how this code works. After setting our drawing color 
to SkyBlue, we begin our path with beginPath and then move to our 
starting point of (100, 100) using moveTo. Next we call lineTo five 
times for each corner of the house, using five sets of coordinates. 
The final call to lineTo completes the path by going back to the 
starting point of (100, 100).

Figure 13-8 shows the same house, but with each coordinate 
labeled.

Figure 13-8: The house from Figure 13-7 with  
coordinates labeled

(130, 30)

(100, 60)

(100, 100)

(160, 60)

(160, 100)



The canvas Element  209

Finally, at u we call the fill method, which fills our path with 
the chosen fill color, SkyBlue.

Drawing Arcs and Circles
In addition to drawing straight lines on the canvas, you can 
use the arc method to draw arcs and circles. To draw a circle, 
you set the circle’s center coordinates and radius (the distance 
between the circle’s center and outer edge) and tell JavaScript 
how much of the circle to draw by providing a starting angle and 
ending angle as arguments. You can draw a full circle, or just a 
portion of a circle to create an arc.

The starting and ending angles are measured in radians. When 
measured in radians, a full circle starts at 0 (at the right side of the 
circle) and goes up to π × 2 radians. So to draw a full circle, you tell 
arc to draw from 0 radians to π × 2 radians. Figure 13-9 shows a 
circle labeled with radians and their equivalent in degrees. The 
values 360° and π × 2 radians both mean a full circle.

π × 3 ÷ 2 radians (270°)

π radians (180°)
π × 2 radians (360°)

0 radians (0°)

π ÷ 2 radians (90°)

Figure 13-9: Degrees and radians, starting from the right side of  
the circle and moving clockwise

For example, the following code will create a quarter circle, a 
half circle, and a full circle, as shown in Figure 13-10.

ctx.lineWidth = 2;
ctx.strokeStyle = "Green";

ctx.beginPath();
u ctx.arc(50, 50, 20, 0, Math.PI / 2, false);

ctx.stroke();



210  Chapter 13

ctx.beginPath();
v ctx.arc(100, 50, 20, 0, Math.PI, false);

ctx.stroke();

ctx.beginPath();
w ctx.arc(150, 50, 20, 0, Math.PI * 2, false);

ctx.stroke();

Figure 13-10: Drawing a quarter circle, a half  
circle, and a full circle

We’ll go over all three shapes in the following sections.

Drawing a Quarter Circle or an Arc
The first block of code draws a quarter circle. At u, after calling 
beginPath, we call the arc method. We set the center of the circle at 
the point (50, 50) and the radius to 20 pixels. The starting angle 
is 0 (which draws the arc starting from the right of the circle), and 
the ending angle is Math.PI / 2. Math.PI is how JavaScript refers 
to the number π (pi). Because a full circle is π × 2 radians, π radi-
ans means a half circle, and π ÷ 2 radians (which we’re using for 
this first arc) gives us a quarter circle. Figure 13-11 shows the 
start and end angles.

0 radians (0°)

π ÷ 2 radians (90°)

20 px

Figure 13-11: The start angle (0 radians, or 0°)  
and end angle (π ÷ 2 radians, or 90°) of the  
quarter-circle



The canvas Element  211

We pass false for the final argument, 
which tells arc to draw in a clockwise direc-
tion. If you want to draw in a counterclockwise 
direction, pass true for this final argument.

Drawing a Half Circle
Next we draw a half circle. The arc at v has a center at (100, 50), 
which places it 50 pixels to the right of the first arc, which was 
at (50, 50). The radius is again 20 pixels. We also start at 0 radi-
ans again, but this time we end at Math.PI, drawing a half circle. 
Figure 13-12 shows the start and end angles.

π radians (180°) 0 radians (0°)
20 px

Figure 13-12: The start angle (0 radians, or 0°) and  
end angle (π radians, or 180°) of the half circle

Drawing a full Circle
At w we draw a full circle. The center is at (150, 50), and the radius 
is 20 pixels. For this circle, we start the arc at 0 radians and end it 
at Math.PI * 2 radians, drawing a full circle. Figure 13-13 shows the 
start and end angles.

π × 2 radians (360°)

0 radians (0°)

20 px

Figure 13-13: The start angle (0 radians, or 0°) and  
end angle (π × 2 radians, or 360°) of the full circle



212  Chapter 13

Drawing lots of Circles  
with a function

If you just want to draw circles, the arc method is a bit compli-
cated. For circles, you’re always going to want to start the arc at 0 
and end at π × 2, and the direction (clockwise or counterclockwise) 
doesn’t matter. Also, to actually draw the circle you always need 
to call ctx.beginPath and ctx.stroke before and after calling the arc 
method. We can make a function to draw circles that lets us ignore 
those details so that we have to supply only the x, y, and radius 
arguments. Let’s do that now.

var circle = function (x, y, radius) {
  ctx.beginPath();
  ctx.arc(x, y, radius, 0, Math.PI * 2, false);
  ctx.stroke();
};

As with the arc method, inside this function the first thing we 
have to do is call ctx.beginPath to tell the canvas we want to draw 
a path. Then, we call ctx.arc, passing the x, y, and radius variables 
from the function arguments. As before, we use 0 for the start 
angle, Math.PI * 2 for the end angle, and false to draw the circle 
clockwise.

Now that we have this function, we can draw lots of circles 
simply by filling in the center coordinates and radius as arguments. 
For example, this code would draw some colorful concentric circles:

ctx.lineWidth = 4;

ctx.strokeStyle = "Red";
circle(100, 100, 10);

ctx.strokeStyle = "Orange";
circle(100, 100, 20);

ctx.strokeStyle = "Yellow";
circle(100, 100, 30);

ctx.strokeStyle = "Green";
circle(100, 100, 40);

ctx.strokeStyle = "Blue";
circle(100, 100, 50);



The canvas Element  213

ctx.strokeStyle = "Purple";
circle(100, 100, 60);

You can see what this should look like in Figure 13-14. 
First, we set the line width to a thick 4 pixels. Then we set the 
strokeStyle to "Red" and use the circle function to draw a circle at 
the coordinates (100, 100), with a radius of 10 pixels. This is the 
red center ring. 

Figure 13-14: Colorful concentric circles, drawn  
using our circle function

We then use the same technique to draw an orange circle at 
the same location but with a radius of 20 pixels; we follow that 
with a yellow circle, again in the same location but with a radius of 
30 pixels. The last three circles are also in the same location, but 
with increasingly larger radii and in green, blue, and purple.

Try It out!
How would you modify our circle function to make it fill 
the circle instead of outline it? Add a fourth argument, a 
Boolean, that says whether the circle should 
be filled or outlined. Passing true indicates 
that you want the circle to be filled. You can 
call the argument fillCircle.

Using your modified function, draw this 
snowman, using a mix of outlined and filled 
circles.



214  Chapter 13

What You learned
In this chapter, you learned about a new HTML element called 
canvas. Using the canvas’s drawing context, we can easily draw 
rectangles, lines, and circles, with full control over their location, 
line width, color, and so on.

In the next chapter, we’ll learn how to animate our drawings, 
using some of the techniques we learned in Chapter 9.

Programming Challenges
Try these challenges to practice drawing to the canvas.

#1: A Snowman-Drawing function
Building on your code for drawing a snowman (page 213), 
write a function that draws a snowman at a specified 
location, so that calling this . . .

drawSnowman(50, 50);

would draw a snowman at the point (50, 50).



The canvas Element  215

#2: Drawing an Array of Points
Write a function that will take an array of points like this:

var points = [[50, 50], [50, 100], [100, 100], [100, 50], 
[50, 50]];
drawPoints(points);

and draw a line connecting the points. In this example, 
the function would draw a line from (50, 50) to (50, 100) to 
(100, 100) to (100, 50) and back to (50, 50).

Now use this function to draw the following points:

var mysteryPoints = [[50, 50], [50, 100], [25, 120], 
[100, 50], [70, 90], [100, 90], [70, 120]];
drawPoints(mysteryPoints);

Hint: You can use points[0][0] to get the first x-coordinate 
and points[0][1] to get the first y-coordinate.

#3: Painting with Your Mouse
Using jQuery and the mousemove event, draw a filled circle 
with a radius of 3 pixels at the mouse position whenever 
you move your mouse over the canvas. Because this event is 
triggered by every tiny movement of the mouse, these circles 
will join into a line as you move the mouse over the canvas.

Hint: Refer to Chapter 10 for a reminder of how to respond 
to mousemove events.

#4: Drawing the Man in Hangman
In Chapter 7 we created our own version of the 
game Hangman. Now you can make it closer to 
the real game by drawing part of a stick man every 
time the player gets a letter wrong.

Hint: Keep track of the number of times the player has 
guessed incorrectly. Write a function that takes this num-
ber as an argument and draws a different part of the body 
depending on the number passed in.





14
MAKING THINGS MoVe 

oN THe CANVAS

Creating canvas animations in JavaScript is a lot 
like creating a stop-motion animation. You draw a 
shape, pause, erase the shape, and then redraw it in 
a new position. This may sound like a lot of steps, 
but JavaScript can update the position of the shape 
very quickly in order to create a smooth animation. 
In Chapter 10, we learned how to animate DOM 
elements. In this chapter, we’ll animate our canvas 
drawings.



218  Chapter 14

Moving Across the Page
Let’s use canvas and setInterval to draw a square and move it slowly 
across a page. Create a new file called canvasanimation.html and 
add the following HTML:

<!DOCTYPE html>
<html>
<head>
    <title>Canvas Animation</title>
</head>

<body>
    <canvas id="canvas" width="200" height="200"></canvas>

    <script>
    // We'll fill this in next
    </script>
</body>
</html>

Now add the following JavaScript to the script element:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var position = 0;

setInterval(function () {
u   ctx.clearRect(0, 0, 200, 200); 
v   ctx.fillRect(position, 0, 20, 20);

w   position++;
x   if (position > 200) {

    position = 0;
  }

y }, 30);

The first two lines in this code create the canvas and the con-
text. Next, we create the variable position and set it to 0, with the 
code var position = 0. We’ll use this variable to control the left-to-
right movement of the square.

Now we call setInterval to start our animation. The first argu-
ment to setInterval is a function, which draws a new square each 
time it’s called.



Making Things Move on the Canvas  219

Clearing the Canvas
Inside the function we passed to setInterval, 
we call clearRect at u, which clears a rect-
angular area on the canvas. The clearRect 
method takes four arguments, which set 
the position and size of the rectangle to be 
cleared. As with fillRect, the first two argu-
ments represent the x- and y-coordinates 
of the top-left corner of the rectangle, and 
the last two represent the width and height. 
Calling ctx.clearRect(0, 0, 200, 200) erases 
a 200-by-200-pixel rectangle, starting at the 
very top-left corner of the canvas. Because our 
canvas is exactly 200 by 200 pixels, this will 
clear the entire canvas.

Drawing the Rectangle
Once we’ve cleared the canvas, at v we use ctx.fillRect 
(position, 0, 20, 20) to draw a 20-pixel square at the point 
(position, 0). When our program starts, the square will be 
drawn at (0, 0) because position starts off set to 0.

Changing the Position
Next, we increase position by 1, using position++ at w. Then at x 
we ensure that position doesn’t get larger than 200 with the check 
if (position > 200). If it is, we reset it to 0.

Viewing the Animation in the Browser
When you load this page in your browser, setInterval will call the 
supplied function once every 30 milliseconds, or about 33 times 
a second (this time interval is set by the second argument to 
setInterval, at y). Each time the supplied function is called, it 
clears the canvas, draws a square at (position, 0), and increments 
the variable position. As a result, the square gradually moves 
across the canvas. When the square reaches the end of the canvas 
(200 pixels to the right), its position is reset to 0.

Figure 14-1 shows the first four steps of the animation, zoomed 
in to the top-left corner of the canvas.



220  Chapter 14

Figure 14-1: A close-up of the top-left corner of the canvas for the first four steps of the ani-
mation. At each step, position is incremented by 1 and the square moves 1 pixel to the right.

Animating the Size of a Square
By making only three changes to the code in the previous section, 
we can create a square that grows larger instead of moving. Here’s 
what that code would look like:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var size = 0;

setInterval(function () {
  ctx.clearRect(0, 0, 200, 200);
  ctx.fillRect(0, 0, size, size);

  size++;
  if (size > 200) {
    size = 0;
  }
}, 30);

As you can see, we’ve done two things. First, instead of a 
position variable, we now have a variable named size, which will 
control the dimensions of the square. Second, instead of using this 
variable to set the square’s horizon-
tal position, we’re using it to set the 
square’s width and height with the 
code ctx.fillRect(0, 0, size, size). 
This will draw a square at the top-
left corner of the canvas, with the 
width and height both set to match 



Making Things Move on the Canvas  221

size. Because size starts at 0, the square will start out invisible. The 
next time the function is called, size will be 1, so the square will 
be 1 pixel wide and tall. Each time the square is drawn, it grows a 
pixel wider and a pixel taller. When you run this code, you should 
see a square appear at the top-left corner of the canvas and grow 
until it fills the entire canvas. Once it fills the entire canvas—that 
is, if (size > 200)—the square will disappear and start growing 
again from the top-left corner.

Figure 14-2 shows a close-up of the top-left corner of the can-
vas for the first four steps of this animation.

Figure 14-2: In each step of this animation, size is incremented by 1 and the width and 
height of the square grow by 1 pixel.

A Random Bee
Now that we know how to move and grow objects on our screen, 
let’s try something a bit more fun. Let’s make a bee that flies ran-
domly around the canvas! We’ll draw our bee using a number of 
circles, like this:

The animation will work very similarly to the moving square 
animation: we’ll set a position, and then for every step of the ani-
mation, we’ll clear the canvas, draw the bee at that position, and 
modify the position. The difference is that to make the bee move 
randomly, we’ll need to use more complex logic for updating the 
bee’s position than we used for the square animation. We’ll build 
up the code for this animation in a few sections.



222  Chapter 14

A New circle function
We’ll draw our bee using a few circles, so first we’ll make a circle 
function to fill or outline circles:

var circle = function (x, y, radius, fillCircle) {
  ctx.beginPath();

u   ctx.arc(x, y, radius, 0, Math.PI * 2, false);
v   if (fillCircle) {
w     ctx.fill();

  } else {
x     ctx.stroke();

  }
};

The function takes four arguments: x, y, radius, and fillCircle. 
We used a similar circle function in Chapter 13, but here we’ve 
added fillCircle as an extra argument. When we call this func-
tion, this argument should be set to true or false, which determines 
whether the function draws a filled circle or just an outline.

Inside the function, we use the arc method at u to create the 
circle with its center at the position (x, y) and a radius of radius. 
After this, we check to see if the fillCircle argument is true at v. 
If it is true, we fill the circle using ctx.fill at w. Otherwise, we 
outline the circle using ctx.stroke at x.

Drawing the Bee
Next, we create the drawBee function to draw the bee. The drawBee 
function uses the circle function to draw a bee at the coordinates 
specified by its x and y arguments. It looks like this:

var drawBee = function (x, y) {
u   ctx.lineWidth = 2;

  ctx.strokeStyle = "Black";
  ctx.fillStyle = "Gold";
  

v   circle(x, y, 8, true);
  circle(x, y, 8, false);
  circle(x - 5, y - 11, 5, false);
  circle(x + 5, y - 11, 5, false);
  circle(x - 2, y - 1, 2, false);
  circle(x + 2, y - 1, 2, false);
};



Making Things Move on the Canvas  223

In the first section of this code at u, we set the lineWidth, 
strokeStyle, and fillStyle properties for our drawing. We set the 
lineWidth to 2 pixels and the strokeStyle to Black. This means that 
our outlined circles, which we’ll use for the bee’s body, wings, and 
eyes, will have thick black borders. The fillStyle is set to Gold, 
which will fill the circle for our bee body with a nice yellow color. 

In the second section of the code at v, we draw a series of 
circles to create our bee. Let’s go through those one at a time.

The first circle draws the bee’s body using a filled circle with 
a center at the point (x, y) and a radius of 8 pixels: 

circle(x, y, 8, true);

Because we set the fillStyle to Gold, this circle will be filled in 
with yellow like so:

This second circle draws a black outline around the bee’s body 
that’s the same size and in the same place as the first circle:

circle(x, y, 8, false);

Added to the first circle, it looks like this:

Next, we use circles to draw the bee’s wings. The first wing is 
an outlined circle with its center 5 pixels to the left and 11 pixels 
above the center of the body, with a radius of 5 pixels. The second 
wing is the same, except it’s 5 pixels to the right of the body’s 
center.

circle(x - 5, y - 11, 5, false);
circle(x + 5, y - 11, 5, false);

With those circles added, our bee looks like this:



224  Chapter 14

Finally, we draw the eyes. The first one is 2 pixels to the left of 
the center of the body and 1 pixel above, with a radius of 2 pixels. 
The second one is the same, except it’s 2 pixels right of center.

circle(x - 2, y - 1, 2, false);
circle(x + 2, y - 1, 2, false);

Together, these circles create a bee, with its body centered 
around the (x, y) coordinate passed into the drawBee function.

updating the Bee’s location
We’ll create an update function to randomly change the bee’s x- 
and y-coordinates in order to make it appear to buzz around the 
canvas. The update function takes a single coordinate; we update 
the x- and y-coordinates one at a time so that the bee will move 
randomly left and right and up and down. The update function 
looks like this:

var update = function (coordinate) {
u   var offset = Math.random() * 4 - 2;
v   coordinate += offset;

w   if (coordinate > 200) {
    coordinate = 200;
  }

x   if (coordinate < 0) {
    coordinate = 0;
  }

y   return coordinate;
};

Changing the Coordinate with an offset Value
At u, we create a variable called offset, which will determine how 
much to change the current coordinate. We generate the offset value 
by calculating Math.random() * 4 - 2. This will give us a random num-
ber between –2 and 2. Here’s how: calling Math.random() on its own 
gives us a random number between 0 and 1, so Math.random() * 4 
produces a random number between 0 and 4. Then we subtract 2 
to get a random number between –2 and 2.



Making Things Move on the Canvas  225

At v we use coordinate += offset to modify our coordinate with 
this offset number. If offset is a positive number, coordinate will 
increase, and if it’s a negative number, coordinate will decrease. 
For example, if coordinate is set to 100 and offset is 1, then after we 
run the line at v, coordinate will be 101. However, if coordinate is 100 
and offset is -1, this would change coordinate to 99.

Checking If the Bee Reaches the edge
At w and x we prevent the bee from leaving the canvas by mak-
ing sure coordinate never increases above 200 or shrinks below 0. 
If coordinate gets bigger than 200, we set it back to 200, and if it 
goes below 0, we reset it to 0.

Returning the updated Coordinate
Finally, at y we return coordinate. Returning the new value of 
coordinate lets us use that value in the rest of our code. Later we’ll 
use this return value from the update method to modify the x and y 
values like this:

x = update(x);
y = update(y);

Animating our Buzzing Bee
Now that we have the circle, drawBee, and update functions, we can 
write the animation code for our buzzing bee.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var x = 100;
var y = 100;

setInterval(function () {
u   ctx.clearRect(0, 0, 200, 200);

v   drawBee(x, y);
w   x = update(x);

  y = update(y);

x   ctx.strokeRect(0, 0, 200, 200);
}, 30);



226  Chapter 14

As usual, we start with the var canvas and var ctx lines to get 
the drawing context. Next, we create the variables x and y and 
set both to 100. This sets the bee’s starting position at the point 
(100, 100), which puts it in the middle of the canvas, as shown in 
Figure 14-3.

Next we call setInterval, passing a func-
tion to call every 30 milliseconds. Inside 
this function, the first thing we do is call 
clearRect at u to clear the canvas. Next, 
at v we draw the bee at the point (x, y). The 
first time the function is called, the bee is 
drawn at the point (100, 100), as you can see 
in Figure 14-3, and each time the function 
is called after that, it will draw the bee at a 
new, updated (x, y) position.

Next we update the x and y values start-
ing at w. The update function takes a number, 
adds a random number between –2 and 2 to 
it, and returns that updated number. So the 
code x = update(x) basically means “change x 
by a small, random amount.”

Finally, we call strokeRect at x to draw 
a line around the edge of the canvas. This 
makes it easier for us to see when the bee is 
getting close to it. Without the border, the 
edge of the canvas is invisible.

When you run this code, you should see 
the yellow bee randomly buzz around the 
canvas. Figure 14-4 shows a few frames from 
our animation.

Figure 14-3: The bee 
drawn at the point 
(100, 100)

Figure 14-4: The ran-
dom bee animation



Making Things Move on the Canvas  227

Bouncing a Ball!
Now let’s make a ball that bounces around the canvas. Whenever 
the ball hits one of the walls, it will bounce off at an angle, as a 
rubber ball would.

First, we’ll create a JavaScript object to represent our ball 
with a Ball constructor. This object will store the ball’s speed and 
direction using two properties, xSpeed and ySpeed. The ball’s hori-
zontal speed will be controlled by xSpeed, and the vertical speed 
will be controlled by ySpeed.

We’ll make this animation in a new file. Create a new HTML 
file called ball.html, and add the following HTML:

<!DOCTYPE html>
<html>
<head>
    <title>A Bouncing Ball</title>
</head>

<body>
    <canvas id="canvas" width="200" height="200"></canvas>

    <script>
    // We'll fill this in next
    </script>
</body>
</html>

The Ball Constructor
First we’ll create the Ball constructor, which we’ll use to create 
our bouncing ball. Type the following code into the <script> tags 
in ball.html:

var Ball = function () {
  this.x = 100;
  this.y = 100;
  this.xSpeed = -2;
  this.ySpeed = 3;
};

Our constructor is very straightforward: it simply sets the 
starting position of the ball (this.x and this.y), the ball’s horizon-
tal speed (this.xSpeed), and its vertical speed (this.ySpeed). We set 



228  Chapter 14

the starting position to the point (100, 100), 
which is the center of our 200-by-200-pixel 
canvas.

this.xSpeed is set to -2. This will make 
the ball move 2 pixels to the left for every 
step of the animation. this.ySpeed is set to 3. 
This will make the ball move 3 pixels down 
for every step of the animation. Therefore, 
the ball will move diagonally down (3 pixels) 
and to the left (2 pixels) between every frame. 

Figure 14-5 shows the starting position 
of the ball and its direction of movement.

Drawing the Ball
Next we’ll add a draw method to draw the ball. We’ll add this 
method to the Ball prototype so that any objects created by the 
Ball constructor can use it:

var circle = function (x, y, radius, fillCircle) {
  ctx.beginPath();
  ctx.arc(x, y, radius, 0, Math.PI * 2, false);
  if (fillCircle) {
    ctx.fill();
  } else {
    ctx.stroke();
  }
};
 
Ball.prototype.draw = function () {
  circle(this.x, this.y, 3, true);
};

First we include our circle function, the same one we used ear-
lier in “A New circle Function” on page 222. We then add the draw 
method to Ball.prototype. This method simply calls circle(this.x, 
this.y, 3, true) to draw a circle. The circle’s center will be at 
(this.x, this.y): the location of the ball. It will have a radius of 
3 pixels. We pass true as the final argument to tell the circle 
function to fill the circle.

Figure 14-5: The 
starting position 
of the ball, with an 
arrow indicating its 
direction



Making Things Move on the Canvas  229

Moving the Ball
To move the ball, we just have to 
update the x and y properties based 
on the current speed. We’ll do that 
using the following move method:

Ball.prototype.move = function () {
  this.x += this.xSpeed;
  this.y += this.ySpeed;
};

We use this.x += this.xSpeed to add the horizontal speed of the 
ball to this.x. Then this.y += this.ySpeed adds the vertical speed 
to this.y. For example, at the beginning of the animation, the 
ball will be at the point (100, 100), with this.xSpeed set to -2 and 
this.ySpeed set to 3. When we call the move method, it subtracts 2 
from the x value and adds 3 to the y value, which places the ball at 
the point (98, 103). This moves the ball’s location to the left 2 pixels 
and down 3 pixels, as illustrated in Figure 14-6.

(100, 100)

(98, 103)

(96, 106)

  -2   +3
Step 1

Step 2

Step 3
  -2   +3

Figure 14-6: The first three steps of the animation,  
showing how the x and y properties change

Bouncing the Ball
At every step of the animation, we check to see if the ball has 
hit one of the walls. If it has, we update the xSpeed or ySpeed prop-
erty by negating it (multiplying it by –1). For example, if the ball 
hits the bottom wall, we negate this.ySpeed. So if this.ySpeed is 3, 
negating it will make it -3. If this.ySpeed is -3, negating it will set 
it back to 3.



230  Chapter 14

We’ll call this method checkCollision, because it checks to see if 
the ball has collided with (hit) the wall.

Ball.prototype.checkCollision = function () {
u   if (this.x < 0 || this.x > 200) {

    this.xSpeed = -this.xSpeed;
  }

v   if (this.y < 0 || this.y > 200) {
    this.ySpeed = -this.ySpeed;
  }
};

At u, we determine whether the ball has hit the left wall or 
the right wall by checking to see if its x property is either less 
than 0 (meaning it hit the left edge) or greater than 200 (mean-
ing it hit the right edge). If either of these is true, the ball has 
started to move off the edge of the canvas, so we have to reverse 
its horizontal direction. We do this by setting this.xSpeed equal to 
-this.xSpeed. For example, if this.xSpeed was -2 and the ball hit the 
left wall, this.xSpeed would become 2.

At v, we do the same thing for the top and bottom walls. If 
this.y is less than 0 or greater than 200, we know the ball has hit 
the top wall or the bottom wall, respectively. In that case, we set 
this.ySpeed to be equal to -this.ySpeed.

Figure 14-7 shows what happens when the ball hits the left 
wall. this.xSpeed starts as -2, but after the collision it is changed 
to 2. However, this.ySpeed remains unchanged at 3.



Making Things Move on the Canvas  231

( 3, 50)

( 1, 53)

(-1, 56)

 -2  +3
Step 1

Step 2

Step 3

( 1, 59)Step 4

( 3, 62)Step 5

 -2  +3

 +2  +3

 +2  +3

Figure 14-7: How this.xSpeed changes after a  
collision with the left wall

As you can see in Figure 14-7, in this case the center of the 
ball goes off the edge of the canvas at step 3 when it collides with 
a wall. During that step, part of the ball will disappear, but this 
happens so quickly that it’s barely noticeable when the animation 
is running.

Animating the Ball
Now we can write the code that gets the animation running. 
This code sets up the object that represents the ball, and it uses 
setInterval to call the methods that draw and update the ball for 
each animation step.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

u var ball = new Ball();

v setInterval(function () {
w   ctx.clearRect(0, 0, 200, 200);

x   ball.draw();
  ball.move();
  ball.checkCollision();

y   ctx.strokeRect(0, 0, 200, 200);
z }, 30);



232  Chapter 14

We get the canvas and drawing context as usual on the first 
two lines. Then we create a ball object using new Ball() and save it 
in the variable ball at u. Next, we call setInterval at v, passing a 
function and the number 30 at z. As you’ve seen before, this means 
“call this function every 30 milliseconds.”

The function we pass to setInterval does several things. First, 
it clears the canvas, using ctx.clearRect(0, 0, 200, 200) at w. After 
this, it calls the draw, move, and checkCollision methods at x on the 
ball object. The draw method draws the ball at its current x- and 
y-coordinates. The move method updates the position of the ball 
based on its xSpeed and ySpeed properties. Finally, the checkCollision 
method updates the direction of the ball, if it hits a wall.

The last thing we do in the function passed to setInterval is 
call ctx.strokeRect(0, 0, 200, 200) at y to draw a line around the 
edge of the canvas, so we can see the walls the ball is hitting.

When you run this code, the ball should immediately start 
moving down and to the left. It should hit the bottom wall first, 
and bounce up and to the left. It will continue to bounce around 
the canvas as long as you leave the browser window open.

What You learned
In this chapter, we combined our knowledge of animation from 
Chapter 11 with our knowledge of the canvas element to create 
various canvas-based animations. We began simply by moving and 
growing squares on the canvas. Next, we made a bee buzz ran-
domly around the screen, and we ended with an animation of a 
bouncing ball.



Making Things Move on the Canvas  233

All of these animations work in basically the same way: we 
draw a shape of a particular size in a particular position, then 
we update that size or position, and then we clear the canvas and 
draw the shape again. For elements moving around a 2D canvas, 
we generally have to keep track of the x- and y-coordinates of the 
element. For the bee animation, we added or subtracted a random 
number from the x- and y-coordinates. For the bouncing ball, we 
added the current xSpeed and ySpeed to the x- and y-coordinates. In 
the next chapter, we’ll add interactivity to our canvas, which will 
let us control what’s drawn to the canvas using the keyboard.

Programming Challenges
Here are some ways you can build on the bouncing ball 
animation from this chapter.

#1: Bouncing the Ball Around a larger Canvas
Our 200-by-200-pixel canvas is a bit small. What if you 
wanted to increase the canvas size to 400 by 400 pixels or 
some other arbitrary size?

Instead of entering the width and height of the canvas 
manually throughout your program, you can create width and 
height variables and set the variables using the canvas object. 
Use the following code:

var width = canvas.width;
var height = canvas.height;

Now if you use these variables throughout your program, 
you only have to change the properties on the canvas element 
in the HTML if you want to try out a new size. Try changing 
the size of the canvas to 500 pixels by 300 pixels. Does your 
program still work?

#2: Randomizing this.xSpeed and this.ySpeed
To make the animation more interesting, set this.xSpeed and 
this.ySpeed to different random numbers (between –5 and 5) 
in the Ball constructor.

(continued)



234  Chapter 14

#3: Animating More Balls
Instead of creating just one ball, create an empty array of 
balls, and use a for loop to add 10 balls to the array. Now, 
in the setInterval function, use a for loop to draw, move, and 
check collisions on each of the balls.

#4: Making the Balls Colorful
How about making some colored bouncing balls? Set a new 
property in the Ball constructor called color and use it in the 
draw method. Use the pickRandomWord function from Chapter 8 
to give each ball a random color from this array:

var colors = ["Red", "Orange", "Yellow", "Green", "Blue", 
"Purple"];



15
CoNTRollING ANIMATIoNS 

WITH THe KeYBoARD

Now that you know how to work with the canvas; 
draw and color objects; and make objects move, bounce, 
and grow in size, let’s liven things up by adding some 
interactivity!

In this chapter, you’ll learn how to make your can-
vas animations respond when a user presses a key on 
the keyboard. This way, a player can control an anima-
tion by pressing an arrow key or one of a few assigned 



236  Chapter 15

letters on their keyboard (like the classic W, A, S, D game con-
trols). For example, instead of just having a ball bounce across 
a screen, we can have a player control the movement of the ball 
using the arrow keys.

Keyboard events
JavaScript can monitor the keyboard through keyboard events. 
Each time a user presses a key on the keyboard, they generate 
a keyboard event, which is a lot like the mouse events we saw 
in Chapter 10. With mouse events, we used jQuery to determine 
where the cursor was when the event took place. With keyboard 
events, you can use jQuery to determine which key was pressed 
and then use that information in your code. For example, in this 
chapter we’ll make a ball move left, right, up, or down when the 
user presses the left, right, up, or down arrow key.

We’ll use the keydown event, which is triggered whenever a 
user presses a key, and we’ll use jQuery to add an event handler 
to the keydown event. That way, every time a keydown event occurs, 
our event handler function can find out which key was pressed 
and respond accordingly.

Setting up the HTMl file
To begin, create a clean HTML file containing the following code 
and save it as keyboard.html.

<!DOCTYPE html>
<html>
<head>
    <title>Keyboard input</title>
</head>

<body>
    <canvas id="canvas" width="400" height="400"></canvas>

    <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

    <script>
    // We'll fill this in next
    </script>
</body>
</html>



Controlling Animations with the Keyboard  237

Adding the keydown event Handler
Now let’s add some JavaScript to respond to keydown events. Enter 
this code inside the empty <script> tags in your keyboard.html file.

$("body").keydown(function (event) {
  console.log(event.keyCode);
});

In the first line, we use the jQuery $ function to select the 
body element in our HTML and then call the keydown method. 
The argument to the keydown method is a function that will be 
called whenever a key is pressed. Information about the keydown 
event is passed in to the function through the event object. For 
this program, we want to know which key was pressed, and that 
information is stored in the event object as event.keyCode.

Inside the function, we use console.log to output the event 
object’s keyCode property: a number representing the pressed key. 
Each key on your keyboard has a unique 
keycode. For example, the keycode for the 
spacebar is 32, and the left arrow is 37.

Once you’ve edited your keyboard.html 
file, save it and then open it in a browser. 
Now open the console so you can see the out-
put, and click in the main browser window 
to have JavaScript register your keypresses. 
Now, if you start pressing keys, the corre-
sponding keycodes should be printed to the 
console.

For example, if you type hi there, you should see the following 
output in the console:

72
73
32
84
72
69
82
69

Every key you press has a different keycode. The H key is 72, 
the I key is 73, and so on.



238  Chapter 15

Try It out!
Press various keys to see their keycodes. What are the 
keycodes for the up, down, left, and right arrows? What 
about shift and enter? The number and letter keys each 
have their own keycodes too.

using an object to Convert Keycodes 
into Names
To make it easier to work with keys, we’ll use an object to convert 
the keycodes into names so that the keypresses will be easier to 
recognize. In this next example, we create an object called keyNames, 
where the object keys are keycodes and the values are the names of 
those keys. Delete the JavaScript in keyboard.html and replace it 
with this:

var keyNames = {
  32: "space",
  37: "left",
  38: "up",
  39: "right",
  40: "down"
};

$("body").keydown(function (event) {
u   console.log(keyNames[event.keyCode]);

});

First, we create the keyNames object and fill it with the keycodes 
32, 37, 38, 39, and 40. The keyNames object uses key-value pairs to 
match keycodes (such as 32, 37, and so on) with corresponding labels 
(such as "space" for the spacebar and "left" for the left arrow). 

We can then use this object to find out the name of a key 
based on its keycode. For example, to look up the keycode 32, 
enter keyNames[32]. That returns the string "space".

At u, we use the keyNames object in the keydown event handler 
to get the name of the key that was just pressed. If the event key-
code referenced by event.keyCode matches one of the keys in the 
keyNames object, this function will log the name of that key. If no 
key matches, this code will log undefined.



Controlling Animations with the Keyboard  239

Load keyboard.html in your browser. Open the console, click in 
the main browser window, and try pressing a few keys. If you press 
one of the five keys in the keyName object (the arrow keys or space-
bar), the program should print the name of the key. Otherwise, it 
will print undefined.

Try It out!
Add more key-value pairs to the keyNames object so that it can 
convert more keys to names. Insert the keycodes and names 
for shift, enter/return, and alt/option. 

Moving a Ball with the Keyboard
Now that we can determine which key is 
being pressed, we can write a program to use 
the keyboard to control the movement of a 
ball. Our program will draw a ball and move 
it to the right. Pressing the arrow keys will 
change the ball’s direction, and pressing the 
spacebar will stop it. If the ball goes off the 
edge of the canvas, it will wrap around to the 
opposite side. For example, if the ball goes 
off the right edge of the canvas, it will show 
up again on the left edge while continuing 
to move in the same direction, as shown in 
Figure 15-1.

We’ll use an object called 
keyActions to find out which key 
was pressed and then use that 
information to set the direction 
of the ball’s movement. We’ll use 
setInterval to continually update 
the ball’s position and redraw it 
at its new position.

Figure 15-1: If the 
ball moves off the 
right side of the 
canvas, it will reap-
pear on the left.



240  Chapter 15

Setting up the Canvas
First we need to set up the canvas and the context object. Open 
keyboard.html and replace the JavaScript between the second set 
of <script> tags with this code:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var width = canvas.width;
var height = canvas.height;

On the first line, we use document.getElementById to select the 
canvas element. On the second line, we call getContext on the canvas 
to get the context object. Then, in the var width and var height lines, 
we store the width and height of the canvas element in the variables 
width and height. This way, when we need the canvas dimensions, 
we can use these variables instead of having to enter the num-
bers manually. Now, if we choose to change the size of the canvas, 
we can simply edit the HTML, and the JavaScript code should 
still work.

Defining the circle function
Next, we define the same circle function for the ball that we used 
in Chapter 14. Add this function after the code from the previous 
section:

var circle = function (x, y, radius, fillCircle) {
  ctx.beginPath();
  ctx.arc(x, y, radius, 0, Math.PI * 2, false);
  if (fillCircle) {
    ctx.fill();
  } else {
    ctx.stroke();
  }
};

Creating the Ball Constructor
Now we’ll create a Ball constructor. We’ll use this constructor to 
create the moving ball object. We’ll be using the same technique 
for moving this ball as we did in Chapter 14—using the xSpeed and 



Controlling Animations with the Keyboard  241

ySpeed properties to control the horizontal and vertical speed of the 
ball. Add this code after the circle function:

var Ball = function () {
  this.x = width / 2;
  this.y = height / 2;
  this.xSpeed = 5;
  this.ySpeed = 0;
};

We set the x and y values (the ball’s position) to width / 2 and 
height / 2 so that the ball will start at the center of the canvas. We 
also set this.xSpeed to 5 and this.ySpeed to 0. This means that the 
ball will start the animation by moving to the right (that is, with 
each animation step, its x position will increase by 5 pixels and its 
y position will stay the same). 

Defining the move Method
In this section, we’ll define the move method. We’ll add this method 
to Ball.prototype to move the ball to a new location based on its 
current location, xSpeed and ySpeed. Add this method after the Ball 
constructor: 

Ball.prototype.move = function () {
  this.x += this.xSpeed;
  this.y += this.ySpeed;

u   if (this.x < 0) {
    this.x = width;
  } else if (this.x > width) {
    this.x = 0;
  } else if (this.y < 0) {
    this.y = height;
  } else if (this.y > height) {
    this.y = 0;
  }
};

First we update this.x and this.y using this.xSpeed and 
this.ySpeed, just as we did in Chapter 14 (see “Moving the Ball” 
on page 229). After that is the code for when the ball reaches 
the edge of the canvas.

The if...else statement at u checks the ball’s position to see if 
it has moved off the edge of the canvas. If it has, this code makes 



242  Chapter 15

the ball wrap around to the other side of the canvas. For example, 
if the ball goes off the left edge of the canvas, it should reappear 
from the right side of the canvas. In other words, if this.x is less 
than 0, we set this.x to width, which places it at the very right edge 
of the canvas. The rest of the if...else statement deals with the 
other three edges of the canvas in a similar way.

Defining the draw Method
We’ll use the draw method to draw the ball. 
Add this after the definition of the move 
method:

Ball.prototype.draw = function () {
  circle(this.x, this.y, 10, true);
};

This method calls the circle function. 
It uses the ball’s x and y values to set the 
center of the ball, sets the radius to 10, and 
sets fillCircle to true. Figure 15-2 shows the 
resulting ball.

Figure 15-2: The ball is a filled circle with a radius of 10.



Controlling Animations with the Keyboard  243

Creating a setDirection Method
Now we have to create a way to set the direction of the ball. We’ll 
do that with a method called setDirection. This method will be 
called by our keydown event handler, which you’ll see in the next 
section. The keydown handler will tell setDirection which key was 
pressed by passing it a string ("left", "up", "right", "down", or "stop"). 
Based on that string, setDirection will change the xSpeed and ySpeed 
properties of the ball to make it move in the direction that matches 
the keypress. For example, if the string "down" is passed, we set 
this.xSpeed to 0 and this.ySpeed to 5. Add this code after the draw 
method:

Ball.prototype.setDirection = function (direction) {
  if (direction === "up") {
    this.xSpeed = 0;
    this.ySpeed = -5;
  } else if (direction === "down") {
    this.xSpeed = 0;
    this.ySpeed = 5;
  } else if (direction === "left") {
    this.xSpeed = -5;
    this.ySpeed = 0;
  } else if (direction === "right") {
    this.xSpeed = 5;
    this.ySpeed = 0;
  } else if (direction === "stop") {
    this.xSpeed = 0;
    this.ySpeed = 0;
  }
};

The entire body of this method is one long if...else statement. 
The new direction is passed into the method as the direction argu-
ment. If direction is equal to "up", we set the ball’s xSpeed property 
to 0 and its ySpeed property to -5. The other directions are handled 
in the same way. Finally, if the direction is set to the string "stop", 
we set both this.xSpeed and this.ySpeed to 0, which means that the 
ball will stop moving.



244  Chapter 15

Reacting to the Keyboard
This next snippet of code creates a ball object using the Ball con-
structor, and it listens for keydown events in order to set the ball’s 
direction. Add this code after the setDirection method:

u var ball = new Ball();

v var keyActions = {
  32: "stop",
  37: "left",
  38: "up",
  39: "right",
  40: "down"
};

w $("body").keydown(function (event) {
x   var direction = keyActions[event.keyCode];
y   ball.setDirection(direction);

});

At u, we create a ball object by calling new Ball(). At v we 
create a keyActions object, which we’ll use to convert keycodes 
to their corresponding direction. This object is the same as the 
keyNames object we created on page 238, except that for 32 (the 
keycode for the spacebar) we replace the label "space" with "stop" 
since we want the spacebar to stop the ball from moving.

At w we use the jQuery $ function to select the body element 
and then call the keydown method to listen for keydown events. The 
function passed to the keydown method is called every time a key is 
pressed.

Inside this function, we use keyActions[event.keyCode] at x to 
look up the label for the key that was pressed and assign that 
label to the direction variable. This sets the direction variable to 
a direction: "left" if the left arrow is pressed, "right" if the right 
arrow is pressed, "up" for the up arrow, "down" for the down arrow, 
and "stop" for the spacebar. If any other key is pressed, direction is 
set to undefined, and the animation won’t be affected.



Controlling Animations with the Keyboard  245

Finally, at y we call the setDirection method on the ball 
object, passing the direction string. As you saw before, setDirection 
updates the ball’s xSpeed and ySpeed properties based on the new 
direction.

Animating the Ball
All we have left to do now is animate the ball. The following code 
should look familiar, since it’s quite similar to what we used in 
Chapter 14. It uses the setInterval function that we’ve seen in the 
animation code in previous chapters to update the ball’s position at 
regular intervals. Add this code after the code from the previous 
section:

setInterval(function () {
  ctx.clearRect(0, 0, width, height);

  ball.draw();
  ball.move();

  ctx.strokeRect(0, 0, width, height);
}, 30);

We use setInterval to call our 
animation function every 30 milli-
seconds. The function first clears 
the entire canvas with clearRect and 
then calls the draw and move methods 
on the ball. As we’ve seen, the draw 
method simply draws a circle at the 
ball’s current location, and the move 
method updates the ball’s position 
based on its xSpeed and ySpeed prop-
erties. Finally, it draws a border 
with strokeRect so we can see the 
edge of the canvas.



246  Chapter 15

Putting It All Together
Now that we’ve gone through all the code, here’s the full listing for 
your convenience.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var width = canvas.width;
var height = canvas.height;

var circle = function (x, y, radius, fillCircle) {
  ctx.beginPath();
  ctx.arc(x, y, radius, 0, Math.PI * 2, false);
  if (fillCircle) {
    ctx.fill();
  } else {
    ctx.stroke();
  }
};

// The Ball constructor
var Ball = function () {
  this.x = width / 2;
  this.y = height / 2;
  this.xSpeed = 5;
  this.ySpeed = 0;
};

// Update the ball's position based on its speed
Ball.prototype.move = function () {
  this.x += this.xSpeed;
  this.y += this.ySpeed;

  if (this.x < 0) {
    this.x = width;
  } else if (this.x > width) {
    this.x = 0;
  } else if (this.y < 0) {
    this.y = height;
  } else if (this.y > height) {
    this.y = 0;
  }
};

// Draw the ball at its current position
Ball.prototype.draw = function () {
  circle(this.x, this.y, 10, true);
};



Controlling Animations with the Keyboard  247

// Set the ball's direction based on a string
Ball.prototype.setDirection = function (direction) {
  if (direction === "up") {
    this.xSpeed = 0;
    this.ySpeed = -5;
  } else if (direction === "down") {
    this.xSpeed = 0;
    this.ySpeed = 5;
  } else if (direction === "left") {
    this.xSpeed = -5;
    this.ySpeed = 0;
  } else if (direction === "right") {
    this.xSpeed = 5;
    this.ySpeed = 0;
  } else if (direction === "stop") {
    this.xSpeed = 0;
    this.ySpeed = 0;
  }
};

// Create the ball object
var ball = new Ball();

// An object to convert keycodes into action names
var keyActions = {
  32: "stop",
  37: "left",
  38: "up",
  39: "right",
  40: "down"
};

// The keydown handler that will be called for every keypress
$("body").keydown(function (event) {
  var direction = keyActions[event.keyCode];
  ball.setDirection(direction);
});

// The animation function, called every 30 ms
setInterval(function () {
  ctx.clearRect(0, 0, width, height);

  ball.draw();
  ball.move();

  ctx.strokeRect(0, 0, width, height);
}, 30);



248  Chapter 15

Running the Code
Now our program is complete. When you run the program, you 
should see a black ball moving across the canvas to the right, as 
shown in Figure 15-3. When it reaches the right side of the canvas, 
it should wrap around to the left side and keep moving to the right. 
When you press the arrow keys, the ball should change direction, 
and pressing the spacebar should make the ball stop. 

Figure 15-3: A screenshot from the moving ball animation

NoTe  If the animation doesn’t respond to keys as expected, click the page 
to make sure the program can access your keypresses.



Controlling Animations with the Keyboard  249

What You learned
In this chapter, you learned how to make programs that react to 
keyboard events. We used this knowledge to create a moving ball, 
where the ball’s direction is set by the keyboard.

Now that we can draw to the canvas, create animations, and 
update those animations based on user input, we can create a simple 
canvas-based game! In the next chapter, we’ll re-create the classic 
Snake game, combining everything we’ve learned up until now.

Programming Challenges
Here are a few ways you can build on the final animation to 
make it more sophisticated.

#1: Bouncing off the Walls
Modify the code so the ball bounces off the side and top 
walls instead of wrapping around to the other side. Hint: 
Just reverse the direction when the ball hits the wall.

#2: Controlling the Speed
The ball currently moves 5 pixels for every step of the ani-
mation. This is because setDirection always sets xSpeed or 
ySpeed to -5 or 5. Create a new property in the Ball constructor 
called speed and set it to 5. Then use this instead of the num-
ber 5 in setDirection.

Now, change your code so that you can use the number 
keys to set the speed from 1 to 9. Hint: Create an object called 
speeds, and use it to determine the new speed, if any, based on 
the keydown event.

#3: flexible Controls
Modify your code so that when you press the Z key, the ball 
slows down, and when you press the X key, it speeds up. Once 
that’s working, use C to make the ball smaller and V to 
make it larger.

What happens if the speed goes below 0? What about the 
size? Add a check in the code to make sure the speed and size 
never go below 0.





16
MAKING A SNAKe GAMe: 

PART 1

In this chapter and the next, we’ll build our own 
version of the classic arcade game Snake. In Snake, 
the player uses the keyboard to control a snake by 
directing its movement up, down, left, or right. As the 
snake moves around the playing area, apples appear. 
When the snake reaches an apple, it eats the apple and 
grows longer. But if the snake hits a wall or runs into 
part of its own body, the game is over.



252  Chapter 16

As you create this game, 
you’ll combine many of the tools 
and techniques you’ve learned 
so far, including jQuery and the 
canvas as well as animation and 
interactivity. In this chapter, we’ll 
look at the general structure of 
the game and go through the code 
for drawing the border and the 
score and ending the game. In 
Chapter 17, we’ll write the code for 
the snake and the apple and then 
put everything together to complete 
the game.

The Game Play
Figure 16-1 shows what our finished game will look like. We’ll 
need to keep track of and draw four items on the screen as the 
game runs: the border (in gray), the score (in black), the snake 
(in blue), and the apple (in lime green).

Figure 16-1: Our Snake game



Making a Snake Game: Part 1  253

The Structure of the Game
Before we start writing code, let’s take a look at the overall struc-
ture of the game. This pseudocode describes what our program 
needs to do:

Set up the canvas
Set score to zero
Create snake
Create apple

Every 100 milliseconds {
  Clear the canvas
  Draw current score on the screen
  Move snake in current direction
  If snake collides with wall or itself {
    End the game
  } Else If snake eats an apple {
    Add one to score
    Move apple to new location
    Make snake longer
  }
  For each segment of the snake {
    Draw the segment
  }
  Draw apple
  Draw border
}

When the user presses a key {
  If the key is an arrow {
    Update the direction of the snake
  }
}

Over the course of this chapter and the 
next, we’ll write the code to execute each of 
these steps. But first, let’s talk through some 
of the major parts of this program and plan 
out some of the JavaScript tools we’ll use 
for them. 



254  Chapter 16

using setInterval to Animate the Game
As you can see in the pseudocode, every 100 milliseconds we need 
to call a series of functions and methods that update and draw 
everything to the game board. Just as we’ve done in Chapters 14 
and 15, we’ll use setInterval to animate the game by calling those 
functions at regular intervals. This is what our call to setInterval 
will look like in the final program:

var intervalId = setInterval(function () {
  ctx.clearRect(0, 0, width, height);
  drawScore();
  snake.move();
  snake.draw();
  apple.draw();
  drawBorder();
}, 100);

In the function that we pass to setInterval, the first line clears 
the canvas with clearRect so that we can draw the next step in the 
animation. Next we see several function and method calls. Notice 
that these all roughly match up with the steps in the pseudocode 
listing on the previous page.

Also notice that we save the interval ID in the variable 
intervalId. We’ll need that interval ID when the game is over 
and we want to stop the animation (see “Ending the Game” on 
page 264).

Creating the Game objects
For this program, we’ll use the object-oriented programming style 
we learned about in Chapter 12 to represent the two main objects 
in the game: the snake and the apple. We’ll create a constructor for 
each of these objects (called Snake and Apple), and we’ll add methods 
(like move and draw) to the prototypes of these constructors.

We’ll also divide the game board into a grid and then create 
a constructor called Block, which we’ll use to create objects that 
represent squares in the grid. We’ll use these block objects to rep-
resent the location of segments of the snake, and we’ll use a single 
block object to store the apple’s current location. These blocks will 
also have methods to let us draw the segments of the snake and 
the apple.



Making a Snake Game: Part 1  255

Setting up Keyboard Control 
In the earlier pseudocode, there’s a sec-
tion devoted to responding to keypresses 
by the user. To allow the player to control 
the snake using the arrow keys on the 
keyboard, we’ll use jQuery to respond to 
keypresses, as we did in Chapter 15. We’ll 
identify the key that was pressed by look-
ing up the keycode, and then we’ll set the 
snake’s direction accordingly.

Game Setup
Now that we’ve gone through an overview of how the program 
will work, let’s start writing some code! In this chapter, we’ll start 
by setting up the HTML, the canvas, and some variables we’ll 
need throughout the program. Then we’ll tackle a few of the more 
straightforward functions we need for this game: one to draw the 
border around the board, one to draw the score on the screen, and 
one to end the game. In the next chapter, we’ll create the construc-
tors and methods for the snake and apple, create an event handler 
for arrow keypresses, and put it all together to complete the game.

Creating the HTMl
To begin coding our game, enter the following into your text editor 
and save it as snake.html.

<!DOCTYPE html>
<html>
<head>
    <title>Snake!</title>
</head>

<body>
u     <canvas id="canvas" width="400" height="400"></canvas>

v     <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

w     <script>
    // We'll fill this in next
    </script>
</body>
</html>



256  Chapter 16

At u we create a canvas element that is 400 × 400 pixels. This is 
where we’ll draw everything for our game. We include the jQuery 
library at v, followed by another pair of <script> tags at w, where 
we’ll add our JavaScript code to control the game. Let’s start writ-
ing that JavaScript now.

Defining the canvas, ctx, width, and 
height Variables
First we’ll define the variables canvas and ctx, which will let us 
draw on the canvas, and the variables width and height, to get the 
width and height of the canvas element. 

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var width = canvas.width;
var height = canvas.height;

The code in the HTML sets the width and height to 400 pixels; 
if you change those dimensions in the HTML, width and height will 
match the new dimensions.

Dividing the Canvas into Blocks
Next, we’ll create variables to help us think about our canvas as 
a grid of 10-by-10-pixel blocks, as shown in Figure 16-2. Although 
the grid will be invisible (that is, the game won’t actually display it), 
everything in the game will be drawn to line up with it.



Making a Snake Game: Part 1  257

Figure 16-2: A 10-pixel grid showing the block  
layout of the game

The snake and apple will both be one block wide so that they 
fit within this grid. For every step of the animation, the snake will 
move exactly one block in its current direction. 

We’ll use these variables to create the blocks on our canvas:

u var blockSize = 10;
v var widthInBlocks = width / blockSize;

var heightInBlocks = height / blockSize;

At u we create a variable called blockSize and set it to 10, 
since we want our blocks to be 10 pixels tall and wide. At v 
we create the variables widthInBlocks and heightInBlocks. We set 
widthInBlocks equal to the width of the canvas divided by the block 
size, which tells us how many blocks wide the canvas is. Similarly, 
heightInBlocks tells us how many blocks tall the canvas is. At the 
moment the canvas is 400 pixels wide and tall, so widthInBlocks and 
heightInBlocks will both be 40. If you count the number of squares 
in Figure 16-2 (including the border), you’ll see that it’s 40 blocks 
wide and tall.

400 pixels

40
0 

p
ix

el
s



258  Chapter 16

Defining the score Variable
Finally, we define the score 
variable.

var score = 0;

We’ll use the score variable to 
keep track of the player’s score. 
Because this is the beginning of 
the program, we set score equal 
to 0. We’ll increment it by 1 every 
time the snake eats an apple.

Drawing the Border
Next, we’ll create a drawBorder function to draw a border around the 
canvas. We’ll make this border one block (10 pixels) thick.

Our function will draw four long, thin rectangles, one for each 
edge of the border. Each rectangle will be blockSize (10 pixels) thick 
and the full width or height of the canvas.

var drawBorder = function () {
  ctx.fillStyle = "Gray";

u   ctx.fillRect(0, 0, width, blockSize);
v   ctx.fillRect(0, height - blockSize, width, blockSize);
w   ctx.fillRect(0, 0, blockSize, height);
x   ctx.fillRect(width - blockSize, 0, blockSize, height);

};

First we set the fillStyle to gray, because we want the border 
to be gray. Then, at u, we draw the top edge of the border. Here 
we’re drawing a rectangle starting at (0, 0)—the top-left corner 
of the canvas—with a width of width (400 pixels) and a height of 
blockSize (10 pixels).

Next, at v, we draw the bottom edge of the border. This will 
be a rectangle at the coordinates (0, height - blockSize), or (0, 390). 
This is 10 pixels up from the bottom of the canvas, on the left. Like 
the top border, this rectangle has a width of width and a height of 
blockSize.

Figure 16-3 shows what the top and bottom borders look like.



Making a Snake Game: Part 1  259

Figure 16-3: The top and bottom borders

At w we draw the left border, and at x we draw the right one. 
Figure 16-4 shows the addition of these two edges.

Figure 16-4: The left and right borders (with the  
top and bottom borders shown in a lighter gray)



260  Chapter 16

Displaying the Score
Now let’s write a drawScore function to display the score at the top 
left of the canvas, as shown in Figure 16-1 on page 252. This 
function will use the fillText context method to add text to the 
canvas. The fillText method takes a text string and the x- and 
y-coordinates where you want to display that text. For example,

ctx.fillText("Hello world!", 50, 50);

would write the string Hello world! at the coordinates (50, 50) on 
your canvas. Figure 16-5 shows how that would look.

Figure 16-5: The string Hello world! drawn  
at the point (50, 50)

Hey look, we’ve printed text to the canvas! But what if we want 
to have more control over how the text looks by tweaking the size 
and font or changing the alignment? For the score in our Snake 
game, we might want to use a different font, make the text bigger, 
and make sure the text appears precisely in the top-left corner, 
just below the border. So before we write our drawScore function, 
let’s learn a little more about the fillText method and look at some 
ways to customize how text appears on the canvas.

(50, 50)



Making a Snake Game: Part 1  261

Setting the Text Baseline
The coordinate location that determines where the text appears is 
called the baseline. By default, the bottom-left corner of the text is 
lined up with the baseline point so that the text appears above and 
to the right of that point. 

To change where the text appears in relation to the baseline, 
we can change the textBaseline property. The default value for this 
property is "bottom", but you can also set the textBaseline property 
to "top" or "middle". Figure 16-6 shows how the text is aligned for 
each of these options, in relation to the baseline point (shown as a 
red dot) that you pass to fillText.

bottom middle top

Figure 16-6: The effect of changing textBaseline

For example, to run your text below the baseline, enter:

ctx.textBaseline = "top";
ctx.fillText("Hello world!", 50, 50);

Now, when you call fillText, the text will be below the point 
(50, 50), as you can see in Figure 16-7.

Figure 16-7: The string Hello world! with  
textBaseline set to "top"

(50, 50)



262  Chapter 16

Similarly, to change the horizontal position of the text relative 
to the baseline point, you can set the textAlign property to "left", 
"center", or "right". Figure 16-8 shows the results.

rightcenterleft

Figure 16-8: The effect of changing textAlign

Setting the Size and font
We can change the size and font of the text we draw by setting 
the font property of the drawing context. This listing shows some 
examples of different fonts we could use:

u ctx.font = "20px Courier";
ctx.fillText("Courier", 50, 50);

ctx.font = "24px Comic Sans MS";
ctx.fillText("Comic Sans", 50, 100);

ctx.font = "18px Arial";
ctx.fillText("Arial", 50, 150);

The font property takes a string that includes the size and the 
name of the font you want to use. For example, at u we set the font 
property to "20px Courier", which means the text will be drawn at a 
size of 20 pixels in the font Courier. Figure 16-9 shows how these 
different fonts look when drawn on the canvas.



Making a Snake Game: Part 1  263

Figure 16-9: 20px Courier, 24px Comic Sans,  
and 18px Arial

Writing the drawScore function
Now we can go ahead and write the drawScore function, which 
draws a string showing the current score on the canvas.

var drawScore = function () {
  ctx.font = "20px Courier";
  ctx.fillStyle = "Black";
  ctx.textAlign = "left";
  ctx.textBaseline = "top";
  ctx.fillText("Score: " + score, blockSize, blockSize);
};

This function sets the font to 20-pixel Courier (20px Courier), 
sets its color to black using fillStyle, left-aligns the text with the 
textAlign property, and then sets the textBaseline property to "top". 

Next, we call fillText with the string "Score: " + score. 
The score variable holds the player’s current score as a number. 
We set the starting score to 0 at the beginning of the game (in 
“Defining the score Variable” on page 258), so at first this will 
display "Score: 0". 

When we call fillText, we set the x- and y-coordinates to 
blockSize. Since we set blockSize to 10, this sets the score’s baseline 
point to (10, 10), which is just inside the top-left corner of the bor-
der. And since we set textBaseline to "top", the text will appear just 
below that baseline point, as shown in Figure 16-10.



264  Chapter 16

Figure 16-10: The position of the score text

ending the Game
We’ll call the gameOver function to end the game when the snake hits 
the wall or runs into itself. The gameOver function uses clearInterval 
to stop the game and writes the text “Game Over” on the canvas. 
Here’s what the gameOver function looks like:

var gameOver = function () {
  clearInterval(intervalId);
  ctx.font = "60px Courier";
  ctx.fillStyle = "Black";
  ctx.textAlign = "center";
  ctx.textBaseline = "middle";
  ctx.fillText("Game Over", width / 2, height / 2);
};

First we stop the game by calling clearInterval and passing 
in the variable intervalId. This cancels the setInterval animation 
function that we created in “Using setInterval to Animate the 
Game” on page 254).

Next, we set our font to 60-pixel Courier in black, center the 
text, and set the textBaseline property to "middle". We then call 
fillText and tell it to draw the string "Game Over" with width / 2 
for the x-position and height / 2 for the y-position. The resulting 
“Game Over” text will be centered in the canvas, as shown in 
Figure 16-11.



Making a Snake Game: Part 1  265

Figure 16-11: The “Game Over” screen, after the  
snake has hit the left wall

What You learned
In this chapter, we looked at the gen-
eral outline of our Snake game and 
some of the functions we’ll need to 
make the game. You learned how to 
draw text onto a canvas and how to 
customize its size, font, and position.

In the next chapter, we’ll fin-
ish off our game by writing the code 
for the snake and the apple and to 
handle keyboard events.



266  Chapter 16

Programming Challenges
Here are a few exercises you can try before you go on to 
finish programming the game.

#1: Putting It Together
Although I haven’t shown all the code for the game yet, you 
can run the code for drawing the border and the score. Take 
your HTML file (from “Creating the HTML” on page 255) 
and add the code for setting up the canvas, creating the score, 
drawing the border, and drawing the score. Now you just need 
to call drawBorder and drawScore to see the border and score. It 
should look just like Figure 16-10. You can try out the gameOver 
function, too, but before you call that function, you’ll need to 
delete the clearInterval(intervalId); line. You haven’t created 
the intervalId variable yet, so for now, if you call the function 
without removing that line, it will produce an error.

#2: Animating the Score
Write your own call to setInterval with a function that 
increases the score by 1 and then draws the updated 
score using the drawScore function every 100 milliseconds. 
Remember that you’ll need to clear the canvas each time, 
using the clearRect method on the canvas context.

#3: Adding Text to Hangman
Programming challenge #4 in 
Chapter 13 was to draw the man 
in our Hangman game using canvas. 
Try extending your Hangman game 
by using the fillText method to draw 
the current word underneath the 
hangman, as shown.

Hint: To underline each letter, I’ve 
used 30-pixel-long stroked lines, with 
10 pixels between each one.

For even more of a challenge, 
draw the incorrect guesses crossed 
out, as shown to the right.



17
MAKING A SNAKe GAMe: 

PART 2

In this chapter, we’ll finish building our Snake 
game. In Chapter 16, we set up the playing area 
and covered how the game would work in general. 
Now we’ll create the objects that represent the snake 
and apple in the game, and we’ll program a keyboard 
event handler so that the player can control the snake 
with the arrow keys. Finally, we’ll look at the complete 
code listing for the program.



268  Chapter 17

As we create the snake and apple objects for this game, we’ll 
use the object-oriented programming techniques we learned in 
Chapter 12 to create constructors and methods for each object. 
Both our snake and apple objects will rely on a more basic block 
object, which we’ll use to represent one block on the game board 
grid. Let’s start by building a constructor for that simple block 
object.

Building the Block Constructor
In this section, we’ll define a Block constructor that will create 
objects that represent individual blocks on our invisible game grid. 
Each block will have the properties col (short for column) and row, 
which will store the location of that particular block on the grid. 
Figure 17-1 shows this grid with some of the columns and rows 
numbered. Although this grid won’t actually appear on the screen, 
our game is designed so that the apple and the snake segments 
will always line up with it.

Column
0 3910 20 30

R
o

w

0

39

10

20

30

Figure 17-1: The column and row numbers used  
by the Block constructor

In Figure 17-1, the block containing the green apple is at col-
umn 10, row 10. The head of the snake (to the left of the apple) is 
at column 8, row 10.



Making a Snake Game: Part 2  269

Here’s the code for the Block constructor:

var Block = function (col, row) {
  this.col = col;
  this.row = row;
};

Column and row values are passed into the Block constructor 
as arguments and saved in the col and row properties of the new 
object. 

Now we can use this constructor to create an object represent-
ing a particular block on the game grid. For example, here’s how 
we’d create an object that represents the block in column 5, row 5:

var sampleBlock = new Block(5, 5);

Adding the drawSquare Method
So far this block object lets us represent a location on the grid, but 
to actually make something appear at that location, we’ll need to 
draw it on the canvas. Next, we’ll add two methods, drawSquare and 
drawCircle, that will let us draw a square or a circle, respectively, in 
a particular block on the grid. First, here’s the drawSquare method:

Block.prototype.drawSquare = function (color) {
u   var x = this.col * blockSize;
v   var y = this.row * blockSize;

  ctx.fillStyle = color;
  ctx.fillRect(x, y, blockSize, blockSize);
};

In Chapter 12 we learned 
that if you attach methods to the 
prototype property of a constructor, 
those methods will be available to 
any objects created with that con-
structor. So by adding the drawSquare 
method to Block.protoype, we make it 
available to any block objects.

This method draws a square at 
the location given by the block’s col 
and row properties. It takes a single 
argument, color, which determines 



270  Chapter 17

the color of the square. To draw a square with canvas, we need to 
provide the x- and y-positions of the top-left corner of the square. 
At u and v we calculate these x- and y-values for the current 
block by multiplying the col and row properties by blockSize. We 
then set the fillStyle property of the drawing context to the meth-
od’s color argument.

Finally, we call ctx.fillRect, passing our computed x- and 
y-values and blockSize for both the width and height of the square.

Here’s how we would create a block in column 3, row 4, and 
draw it:

var sampleBlock = new Block(3, 4);
sampleBlock.drawSquare("LightBlue");

Figure 17-2 shows this square drawn on the canvas and how 
the measurements for the square are calculated.

Column

0

R
o

w

61 2 3 4 5

0

6

1

2

3

4

5

(30, 40)

10 pixels (blockSize)

10 pixels

this.row × blockSize
4 × 10 = 40 pixels

this.col × blockSize
3 × 10 = 30 pixels

Figure 17-2: Calculating the values for  
drawing a square

Adding the drawCircle Method
Now for the drawCircle method. It is very similar to the drawSquare 
method, but it draws a filled circle instead of a square.

Block.prototype.drawCircle = function (color) {
  var centerX = this.col * blockSize + blockSize / 2;
  var centerY = this.row * blockSize + blockSize / 2;
  ctx.fillStyle = color;
  circle(centerX, centerY, blockSize / 2, true);
};



Making a Snake Game: Part 2  271

First we calculate the location of the circle’s center by creat-
ing two new variables, centerX and centerY. As before, we multiply 
the col and row properties by blockSize, but this time we also have 
to add blockSize / 2, because we need the pixel coordinates for 
the circle’s center, which is in the middle of a block (as shown in 
Figure 17-3).

We set the context fillStyle to 
the color argument as in drawSquare 
and then call our trusty circle func-
tion, passing centerX and centerY for 
the x- and y-coordinates, blockSize / 2 
for the radius, and true to tell the 
function to fill the circle. This is the 
same circle function we defined in 
Chapter 14, so we’ll have to include 
the definition for that function once 
again in this program (as you can see 
in the final code listing).

Here’s how we could draw a circle 
in column 4, row 3:

var sampleCircle = new Block(4, 3);
sampleCircle.drawCircle("LightGreen");

Figure 17-3 shows the circle, with the calculations for the cen-
ter point and radius.

Column

0

R
o

w

61 2 3 4 5

0

6

1

2

3

4

5

(45, 35)

(this.row × blockSize) + (blockSize / 2) 
(3 × 10) + (10 / 2)
= 35 pixels

(this.col × blockSize) + (blockSize / 2) 
(4 × 10) + (10 / 2)
= 45 pixels

5 pixels (blockSize / 2)

Figure 17-3: Calculating the values for drawing a circle



272  Chapter 17

Adding the equal Method
In our game, we’ll need to know whether two blocks are in the 
same location. For example, if the apple and the snake’s head are 
in the same location, that means the snake has eaten the apple. 
On the other hand, if the snake’s head and tail are in the same 
location, then the snake has collided with itself.

To make it easier to compare block locations, we’ll add a 
method, equal, to the Block constructor prototype. When we call 
equal on one block object and pass another object as an argument, 
it will return true if they are in the same location (and false if not). 
Here’s the code:

Block.prototype.equal = function (otherBlock) {
  return this.col === otherBlock.col && this.row === otherBlock.row;
};

This method is pretty straightforward: if the two blocks 
(this and otherBlock) have the same col and row properties (that 
is, if this.col is equal to otherBlock.col and this.row is equal to 
otherBlock.row), then they are in the same place, and the method 
returns true.

For example, let’s create two new blocks called apple and head 
and see if they’re in the same location:

var apple = new Block(2, 5);
var head = new Block(3, 5);
head.equal(apple);
false

Although apple and head have the same row property (5), their 
col properties are different. If we set the head to a new block object 
one column to the left, now the method will tell us that the two 
objects are in the same location:

head = new Block(2, 5);
head.equal(apple);
true

Note that it doesn’t make any difference whether we write 
head.equal(apple) or apple.equal(head); in both cases we’re making 
the same comparison.

We’ll use the equal method later to check whether the snake 
has eaten the apple or collided with itself.



Making a Snake Game: Part 2  273

Creating the Snake
Now we’ll create the snake. We’ll store the snake’s position as an 
array called segments, which will contain a series of block objects. 
To move the snake, we’ll add a new block to the beginning of the 
segments array and remove the block at the end of the array. The 
first element of the segments array will represent the head of the 
snake.

Writing the Snake Constructor
First we need a constructor to create our snake object:

var Snake = function () {
u   this.segments = [

    new Block(7, 5),
    new Block(6, 5),
    new Block(5, 5)
  ];

v   this.direction = "right";
w   this.nextDirection = "right";

};

Defining the Snake Segments
The segments property at u is an array of block objects that 
each represent a segment of the snake’s body. When we start the 
game, this array will contain three blocks at (7, 5), (6, 5), and (5, 5). 
Figure 17-4 shows these initial three segments of the snake.



274  Chapter 17

Column

0

R
o

w

61 2 3 4 5

0

6

1

2

3

4

5

87

new Block(6, 5)

new Block(7, 5)new Block(5, 5)

Tail Head

Figure 17-4: The initial blocks that make up the snake

Setting the Direction of Movement
The direction property at v stores the current direction of the 
snake. Our constructor also adds the nextDirection property at w, 
which stores the direction in which the snake will move for the 
next animation step. This property will be updated by our keydown 
event handler when the player presses an arrow key (see “Adding 
the keydown Event Handler” on page 281). For now, the constructor 
sets both of these properties to "right", so at the beginning of the 
game our snake will move to the right.

Drawing the Snake
To draw the snake, we simply have to loop through each of the 
blocks in its segments array, calling the drawSquare method we created 
earlier on each block. This will draw a square for each segment of 
the snake.

Snake.prototype.draw = function () {
  for (var i = 0; i < this.segments.length; i++) {
    this.segments[i].drawSquare("Blue");
  }
};

The draw method uses a for loop to operate on each block object 
in the segments array. Each time around the loop, this code takes 
the current segment (this.segments[i]) and calls drawSquare("Blue") 
on it, which draws a blue square in the corresponding block.



Making a Snake Game: Part 2  275

If you want to test out the draw method, you can run the follow-
ing code, which creates a new object using the Snake constructor 
and calls its draw method:

var snake = new Snake();
snake.draw();

Moving the Snake
We’ll create a move method to move the snake one block in its cur-
rent direction. To move the snake, we add a new head segment 
(by adding a new block object to the beginning of the segments 
array) and then remove the tail segment from the end of the 
segments array.

The move method will also call a 
method, checkCollision, to see whether the 
new head has collided with the rest of the 
snake or with the wall, and whether the 
new head has eaten the apple. If the new 
head has collided with the body or the wall, 
we end the game by calling the gameOver 
function we created in Chapter 16. If the 
snake has eaten the apple, we increase the 
score and move the apple to a new location.

Adding the move Method
The move method looks like this:

Snake.prototype.move = function () {
u   var head = this.segments[0];
v   var newHead;

w   this.direction = this.nextDirection;

x   if (this.direction === "right") {
    newHead = new Block(head.col + 1, head.row);
  } else if (this.direction === "down") {
    newHead = new Block(head.col, head.row + 1);
  } else if (this.direction === "left") {
    newHead = new Block(head.col - 1, head.row);
  } else if (this.direction === "up") {
    newHead = new Block(head.col, head.row - 1);
  }



276  Chapter 17

y   if (this.checkCollision(newHead)) {
    gameOver();
    return;
  }

z   this.segments.unshift(newHead);

{   if (newHead.equal(apple.position)) {
    score++;
    apple.move();
  } else {
    this.segments.pop();
  }
};

Let’s walk through this method piece by piece.

Creating a New Head
At u we save the first element of the 
this.segments array in the variable head. 
We’ll refer to this first segment of the 
snake many times in this method, so 
using this variable will save us some 
typing and make the code a bit easier 
to read. Now, instead of repeating 
this.segments[0] over and over again, 
we can just type head.

At v we create the variable newHead, 
which we’ll use to store the block rep-
resenting the new head of the snake 
(which we’re about to add).

At w we set this.direction equal to 
this.nextDirection, which updates the 
direction of the snake’s movement to 
match the most recently pressed arrow 
key. (We’ll see how this works in more 
detail when we look at the keydown event 
handler.)



Making a Snake Game: Part 2  277

direction and nextDirection
The snake’s direction property will be updated exactly once 
for each step in the animation, since the move method is called 
once per animation step. The nextDirection property, on the 
other hand, will be updated anytime the player presses an 
arrow key (so if they press the keys really fast, this property 
could theoretically change multiple times per animation step). 
By keeping these two properties separate, we make sure the 
snake can’t turn back on itself if the player presses two arrow 
keys very quickly between two steps in the animation.

Beginning at x, we use a chain of if...else statements to 
determine the snake’s direction. In each case, we create a new 
head for the snake and save it in the variable newHead. Depending 
on the direction of movement, we add or subtract one from the 
row or column of the existing head to place this new head directly 
next to the old one (either right, left, up, or down depending on the 
snake’s direction of movement). For example, Figure 17-5 shows 
how the new head is added to the snake when this.nextDirection is 
set to "down".

Column

0

R
o

w

61 2 3 4 5

0

6

1

2

3

4

5

87

(7, 5)

(7, 6)

head

newHead

newHead = new Block(head.col, head.row + 1);8

7

Figure 17-5: Creating newHead when this.nextDirection is "down"



278  Chapter 17

Checking for Collisions and Adding the Head
At y we call the checkCollision method to find out whether the 
snake has collided with a wall or with itself. We’ll see the code for 
this method in a moment, but as you might guess, this method 
will return true if the snake has collided with something. If that 
happens, the body of the if statement calls the gameOver function to 
end the game and print “Game Over” on the canvas. 

The return keyword that follows the call to gameOver exits the 
move method early, skipping any code that comes after it. We reach 
the return keyword only if checkCollision returns true, so if the snake 
hasn’t collided with anything, we execute the rest of the method.

As long as the snake hasn’t collided with something, we add 
the new head to the front of the snake at z by using unshift to add 
newHead to the beginning of the segments array. For more about how 
the unshift method works on arrays, see “Adding Elements to an 
Array” on page 47.

eating the Apple
At {, we use the equal method to compare newHead and 
apple.position. If the two blocks are in the same location, the 
equal method will return true, which means that the snake has 
eaten the apple.

If the snake has eaten the apple, we increase the score and 
then call move on the apple to move it to a new location. If the snake 
has not eaten the apple, we call pop on this.segments. This removes 
the snake’s tail while keeping the snake the same size (since move 
already added a segment to the snake’s head). When the snake 
eats an apple, it grows by one segment because we add a segment 
to its head without removing the tail.



Making a Snake Game: Part 2  279

We haven’t defined apple yet, so this method won’t fully work in 
its current form. If you want to test it out, you can delete the whole 
if...else statement at { and replace it with this line:

this.segments.pop();

Then all you need to do is define the checkCollision method, 
which we’ll do next.

Adding the checkCollision Method
Each time we set a new location for the snake’s head, we have to 
check for collisions. Collision detection, a very common step in 
game mechanics, is often one of the more complex aspects of game 
programming. Fortunately, it’s relatively straightforward in our 
Snake game.

We care about two types of collisions in our Snake game: col-
lisions with the wall and collisions with the snake itself. A wall 
collision happens if the snake hits a wall. The snake can collide 
with itself if you turn the head so that it runs into the body. At the 
start of the game, the snake is too short to collide with itself, but 
after eating a few apples, it can.

Here is the checkCollision method:

Snake.prototype.checkCollision = function (head) {
u   var leftCollision = (head.col === 0);

  var topCollision = (head.row === 0);
  var rightCollision = (head.col === widthInBlocks - 1);
  var bottomCollision = (head.row === heightInBlocks - 1);

v   var wallCollision = leftCollision || topCollision || 
    rightCollision || bottomCollision;

w   var selfCollision = false;
  

x   for (var i = 0; i < this.segments.length; i++) {
    if (head.equal(this.segments[i])) {

y       selfCollision = true;
    }
  }

z   return wallCollision || selfCollision;
};



280  Chapter 17

Checking for Wall Collisions
At u we create the variable leftCollision and set it to the value of 
head.col === 0. This variable will be true if the snake collides with 
the left wall; that is, when it is in column 0. Similarly, the variable 
topCollision in the next line checks the row of the snake’s head to 
see if it has run into the top wall.

After that, we check for a collision with the right wall by 
checking whether the column value of the head is equal to 
widthInBlocks - 1. Since widthInBlocks is set to 40, this checks 
whether the head is in column 39, which corresponds to the right 
wall, as you can see back in Figure 17-1. Then we do the same 
thing for bottomCollision, checking whether the head’s row property 
is equal to heightInBlocks - 1.

At v, we determine whether the snake has collided with a wall 
by checking to see if leftCollision or topCollision or rightCollision 
or bottomCollision is true, using the || (or) operator. We save the 
Boolean result in the variable wallCollision.

Checking for Self-Collisions
To determine whether the snake has collided with itself, we create 
a variable at w called selfCollision and initially set it to false. Then 
at x we use a for loop to loop through all the segments of the snake 
to determine whether the new head is in the same place as any 
segment, using head.equal(this.segments[i]). The head and all of the 
other segments are blocks, so we can use the equal method that we 
defined for block objects to see whether they are in the same place. 
If we find that any of the snake’s segments are in the same place 
as the new head, we know that the snake has collided with itself, 
and we set selfCollision to true (at y).

Finally, at z, we return wallCollision || selfCollision, which 
will be true if the snake has collided with either the wall or itself.



Making a Snake Game: Part 2  281

Setting the Snake’s Direction with 
the Keyboard

Next we’ll write the code that lets the player set the snake’s direc-
tion using the keyboard. We’ll add a keydown event handler to detect 
when an arrow key has been pressed, and we’ll set the snake’s 
direction to match that key.

Adding the keydown event Handler
This code handles keyboard events:

u var directions = {
  37: "left",
  38: "up",
  39: "right",
  40: "down"
};

v $("body").keydown(function (event) {
  var newDirection = directions[event.keyCode];

w   if (newDirection !== undefined) {
    snake.setDirection(newDirection);
  }
});

At u we create an object to convert the arrow keycodes into 
strings indicating the direction they represent (this object is 
quite similar to the keyActions object we used in “Reacting to the 
Keyboard” on page 244). At v we attach an event handler to the 
keydown event on the body element. This handler will be called when 
the user presses a key (as long as they’ve clicked inside the web 
page first). 

This handler first converts the event’s keycode into a direction 
string, and then it saves the string in the variable newDirection. If 
the keycode is not 37, 38, 39, or 40 (the keycodes for the arrow keys 
we care about), directions[event.keyCode] will be undefined.

At w we check to see if newDirection is not equal to undefined. 
If it’s not undefined, we call the setDirection method on the snake, 
passing the newDirection string. (Because there is no else case in 
this if statement, if newDirection is undefined, then we just ignore 
the keypress.)

This code won’t work yet because we haven’t defined the 
setDirection method on the snake. Let’s do that now.



282  Chapter 17

Adding the setDirection Method
The setDirection method takes the new direction from the key-
board handler we just looked at and uses it to update the snake’s 
direction. This method also prevents the player from making 
turns that would have the snake immediately run into itself. For 
example, if the snake is moving right, and then it suddenly turns 
left without moving up or down to get out of its own way, it will 
collide with itself. We’ll call these illegal turns because we do not 
want to allow the player to make them. For example, Figure 17-6 
shows the valid directions and the one illegal direction when the 
snake is moving right.

Current 
direction

Valid new 
directions

Illegal new 
direction

Current
direction

Figure 17-6: Valid new directions based on the  
current direction

The setDirection method checks whether the player is trying 
to make an illegal turn. If they are, the method uses return to end 
early; otherwise, it updates the nextDirection property on the snake 
object.

Here’s the code for the setDirection method.

Snake.prototype.setDirection = function (newDirection) {
u   if (this.direction === "up" && newDirection === "down") {

    return;
  } else if (this.direction === "right" && newDirection === "left") {
    return;
  } else if (this.direction === "down" && newDirection === "up") {
    return;
  } else if (this.direction === "left" && newDirection === "right") {
    return;
  }

v   this.nextDirection = newDirection;
};



Making a Snake Game: Part 2  283

The if...else statement at u has four parts to deal with the 
four illegal turns we want to prevent. The first part says that 
if the snake is moving up (this.direction is "up") and the player 
presses the down arrow (newDirection is "down"), we should exit the 
method early with return. The other parts of the statement deal 
with the other illegal turns in the same way.

The setDirection method will reach the final line only if 
newDirection is a valid new direction; otherwise, one of the return 
statements will stop the method. 

If newDirection is allowed, we set it as the snake’s nextDirection 
property, at v.

Creating the Apple
In this game, we’ll represent the apple as an object with three com-
ponents: a position property, which holds the apple’s position as a 
block object; a draw method, which we’ll use to draw the apple; and 
a move method, which we’ll use to give the apple a new position once 
it’s been eaten by the snake.

Writing the Apple Constructor
The constructor simply sets the apple’s position property to a new 
block object.

var Apple = function () {
  this.position = new Block(10, 10);
};

This creates a new block object in column 10, row 10, and 
assigns it to the apple’s position property. We’ll use this construc-
tor to create an apple object at the beginning of the game.

Drawing the Apple
We’ll use this draw method to draw the apple:

Apple.prototype.draw = function () {
  this.position.drawCircle("LimeGreen");
};



284  Chapter 17

The apple’s draw method is very simple, as all the hard work is 
done by the drawCircle method (created in “Adding the drawCircle 
Method” on page 270). To draw the apple, we simply call the 
drawCircle method on the apple’s position property, passing the 
color "LimeGreen" to tell it to draw a green circle in the given block.

To test out drawing the apple, run the following code:

var apple = new Apple();
apple.draw();

Moving the Apple
The move method moves the apple to a random new position within 
the game area (that is, any block on the canvas other than the 
border). We’ll call this method whenever the snake eats the apple 
so that the apple reappears in a new location. 

Apple.prototype.move = function () {
u   var randomCol = Math.floor(Math.random() * (widthInBlocks - 2)) + 1;

  var randomRow = Math.floor(Math.random() * (heightInBlocks - 2)) + 1;
v   this.position = new Block(randomCol, randomRow);

};

At u we create the variables randomCol and randomRow. These 
variables will be set to a random column and row value within the 
playable area. As you saw in Figure 17-1, the columns and rows for 
the playable area range from 1 to 38, so we need to pick two ran-
dom numbers in that range.

To generate these random numbers, we can call Math.floor 
(Math.random() * 38), which gives us a random number from 0 to 37, 
and then add 1 to the result to get a number between 1 and 38 
(for more about how Math.floor and Math.random work, see “Decision 
Maker” on page 56).

This is exactly what we do at u to create our random column 
value, but instead of writing 38, we write (widthInBlocks - 2). This 
means that if we later change the size of the game, we won’t also 
have to change this code. We do the same thing to get a random 
row value, using Math.floor(Math.random() * (heightInBlocks - 2)) + 1.

Finally, at v we create a new block object with our random 
column and row values and save this block in this.position. This 
means that the position of the apple will be updated to a new ran-
dom location somewhere within the playing area.



Making a Snake Game: Part 2  285

You can test out the move method like this:

var apple = new Apple();
apple.move();
apple.draw();

Putting It All Together
Our full code for the game contains almost 200 lines of JavaScript! 
After we assemble the whole thing, it looks like this.

// Set up canvas
u var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

// Get the width and height from the canvas element
var width = canvas.width;
var height = canvas.height;

// Work out the width and height in blocks
var blockSize = 10;
var widthInBlocks = width / blockSize;
var heightInBlocks = height / blockSize;

// Set score to 0
var score = 0;

// Draw the border
v var drawBorder = function () {

  ctx.fillStyle = "Gray";
  ctx.fillRect(0, 0, width, blockSize);
  ctx.fillRect(0, height - blockSize, width, blockSize);
  ctx.fillRect(0, 0, blockSize, height);
  ctx.fillRect(width - blockSize, 0, blockSize, height);
};

// Draw the score in the top-left corner
var drawScore = function () {
  ctx.font = "20px Courier";
  ctx.fillStyle = "Black";
  ctx.textAlign = "left";
  ctx.textBaseline = "top";
  ctx.fillText("Score: " + score, blockSize, blockSize);
};



286  Chapter 17

// Clear the interval and display Game Over text
var gameOver = function () {
  clearInterval(intervalId);
  ctx.font = "60px Courier";
  ctx.fillStyle = "Black";
  ctx.textAlign = "center";
  ctx.textBaseline = "middle";
  ctx.fillText("Game Over", width / 2, height / 2);
};

// Draw a circle (using the function from Chapter 14)
var circle = function (x, y, radius, fillCircle) {
  ctx.beginPath();
  ctx.arc(x, y, radius, 0, Math.PI * 2, false);
  if (fillCircle) {
    ctx.fill();
  } else {
    ctx.stroke();
  }
};

// The Block constructor 
w var Block = function (col, row) {

  this.col = col;
  this.row = row;
};

// Draw a square at the block's location
Block.prototype.drawSquare = function (color) {
  var x = this.col * blockSize;
  var y = this.row * blockSize;
  ctx.fillStyle = color;
  ctx.fillRect(x, y, blockSize, blockSize);
};

// Draw a circle at the block's location
Block.prototype.drawCircle = function (color) {
  var centerX = this.col * blockSize + blockSize / 2;
  var centerY = this.row * blockSize + blockSize / 2;
  ctx.fillStyle = color;
  circle(centerX, centerY, blockSize / 2, true);
};

// Check if this block is in the same location as another block
Block.prototype.equal = function (otherBlock) {
  return this.col === otherBlock.col && this.row === otherBlock.row;
};



Making a Snake Game: Part 2  287

// The Snake constructor
x var Snake = function () {

  this.segments = [
    new Block(7, 5),
    new Block(6, 5),
    new Block(5, 5)
  ];

  this.direction = "right";
  this.nextDirection = "right";
};

// Draw a square for each segment of the snake's body
Snake.prototype.draw = function () {
  for (var i = 0; i < this.segments.length; i++) {
    this.segments[i].drawSquare("Blue");
  }
};

// Create a new head and add it to the beginning of
// the snake to move the snake in its current direction
Snake.prototype.move = function () {
  var head = this.segments[0];
  var newHead;

  this.direction = this.nextDirection;

  if (this.direction === "right") {
    newHead = new Block(head.col + 1, head.row);
  } else if (this.direction === "down") {
    newHead = new Block(head.col, head.row + 1);
  } else if (this.direction === "left") {
    newHead = new Block(head.col - 1, head.row);
  } else if (this.direction === "up") {
    newHead = new Block(head.col, head.row - 1);
  }

  if (this.checkCollision(newHead)) {
    gameOver();
    return;
  }

  this.segments.unshift(newHead);

  if (newHead.equal(apple.position)) {
    score++;
    apple.move();



288  Chapter 17

  } else {
    this.segments.pop();
  }
};

// Check if the snake's new head has collided with the wall or itself
Snake.prototype.checkCollision = function (head) {
  var leftCollision = (head.col === 0);
  var topCollision = (head.row === 0);
  var rightCollision = (head.col === widthInBlocks - 1);
  var bottomCollision = (head.row === heightInBlocks - 1);

  var wallCollision = leftCollision || topCollision || 
    rightCollision || bottomCollision;

  var selfCollision = false;
  
  for (var i = 0; i < this.segments.length; i++) {
    if (head.equal(this.segments[i])) {
      selfCollision = true;
    }
  }

  return wallCollision || selfCollision;
};

// Set the snake's next direction based on the keyboard
Snake.prototype.setDirection = function (newDirection) {
  if (this.direction === "up" && newDirection === "down") {
    return;
  } else if (this.direction === "right" && newDirection === "left") {
    return;
  } else if (this.direction === "down" && newDirection === "up") {
    return;
  } else if (this.direction === "left" && newDirection === "right") {
    return;
  }

  this.nextDirection = newDirection;
};

// The Apple constructor
y var Apple = function () {

  this.position = new Block(10, 10);
};



Making a Snake Game: Part 2  289

// Draw a circle at the apple's location
Apple.prototype.draw = function () {
  this.position.drawCircle("LimeGreen");
};

// Move the apple to a new random location
Apple.prototype.move = function () {
  var randomCol = Math.floor(Math.random() * (widthInBlocks - 2)) + 1;
  var randomRow = Math.floor(Math.random() * (heightInBlocks - 2)) + 1;
  this.position = new Block(randomCol, randomRow);
};

// Create the snake and apple objects
z var snake = new Snake();

var apple = new Apple();

// Pass an animation function to setInterval
var intervalId = setInterval(function () {
  ctx.clearRect(0, 0, width, height);
  drawScore();
  snake.move();
  snake.draw();
  apple.draw();
  drawBorder();
}, 100);

// Convert keycodes to directions
{ var directions = {

  37: "left",
  38: "up",
  39: "right",
  40: "down"
};

// The keydown handler for handling direction key presses
$("body").keydown(function (event) {
  var newDirection = directions[event.keyCode];
  if (newDirection !== undefined) {
    snake.setDirection(newDirection);
  }
});

This code is made up of a number of sections. The first sec-
tion, at u, is where all the variables for the game are set up, 
including the canvas, context, width, and height (we looked at 
these in Chapter 16). Next, at v, come all the individual func-
tions: drawBorder, drawScore, gameOver, and circle.



290  Chapter 17

At w comes the code for the Block constructor, followed by its 
drawSquare, drawCircle, and equal methods. Then, at x, we have the 
Snake constructor and all of its methods. After that, at y, is the 
Apple constructor and its draw and move methods.

Finally, at z, you can see the code that starts the game and 
keeps it running. First we create the snake and apple objects. Then 
we use setInterval to get the game animation going. Notice that 
when we call setInterval, we save the interval ID in the variable 
intervalId so we can cancel it later in the gameOver function.

The function passed to setInterval is called for every step of the 
game. It is responsible for drawing everything on the canvas and 
for updating the state of the game. It clears the canvas and then 
draws the score, the snake, the apple, and the border. It also calls 
the move method on the snake, which, as you saw earlier, moves the 
snake one step in its current direction. After the call to setInterval, 
at {, we end with the code for listening to keyboard events and 
setting the snake’s direction.

As always, you’ll need to type all this code inside the script 
element in your HTML document. To play the game, just load 
snake.html in your browser and use the arrows to control the 
snake’s direction. If the arrow keys don’t work, you might need to 
click inside the browser window to make sure it can pick up the 
key events.

If the game doesn’t work, there might be an error in your 
JavaScript. Any error will be output in the console, so look there 
for any helpful messages. If you can’t determine why things aren’t 
working, check each line carefully against the preceding listing.

Now that you have the game running, what do you think? How 
high a score can you get?



Making a Snake Game: Part 2  291

What You learned
In this chapter, we made a full game using the canvas element. This 
game combines many of the data types, concepts, and techniques 
you learned throughout this book: numbers, strings, Booleans, 
arrays, objects, control structures, functions, object-oriented pro-
gramming, event handlers, setInterval, and drawing with canvas.

Now that you’ve programmed this Snake game, there are lots 
of other simple two-dimensional games that you could write using 
JavaScript. You could make your own version of classic games like 
Breakout, Asteroids, Space Invaders, or Tetris. Or you could make 
up your own game!

Of course, you can use JavaScript for programs besides games. 
Now that you’ve used JavaScript to do some complicated math, you 
could use it to help with your math homework. Or maybe you want 
to create a website to show off your programming skills to the 
world. The possibilities are endless!

Programming Challenges
Here are a few ways you could improve and add features to 
the game.

#1: Making the Game Bigger
Change the size of the game to 500 pixels square. Where do 
you need to modify the code to make it work at 500 pixels?

#2: Coloring the Snake
Our snake is a bit boring: every segment of the body is blue. 
It might look a bit more like a real snake if you alternated 
the colors to create stripes. For example, make the head 
green and then alternate between blue and yellow for the 
rest of the body, or choose your own colors.

(continued)



292  Chapter 17

#3: Making the Game Speed up as You Play
Modify the game so that every time the snake eats an apple, 
the game speeds up. To do this, you’ll have to change the code 
to use setTimeout instead of setInterval, because setInterval 
keeps calling a function at a regular interval that cannot be 
changed. Instead, you can repeatedly call a function with 
setTimeout and change the timeout delay each time you call it:

var animationTime = 100;
var gameLoop = function () {
  // The code that draws and updates the game should go here
  setTimeout(gameLoop, animationTime);
};

gameLoop();

Instead of using setInterval to call a function repeatedly, 
the gameLoop function calls setTimeout(gameLoop, animationTime), 
which means “call gameLoop again after animationTime milli-
seconds.” Like setInterval, this is a way to call a function over 
and over again, with a short pause between each function call. 
The difference is that you can easily modify the animation 
time from anywhere in your code by changing animationTime, 
and the program will use that value for subsequent calls to 
setTimeout.

(One other thing to bear in mind here is that you need 
to find a new way to stop the game from looping when the 
game is over. How would you do that?)

#4: fixing the apple.move Method
Every time you move the apple, it moves to a new random 
location, but as written there’s nothing to stop the apple 
from moving to a block that part of the snake is already 
occupying. To prevent this, modify the move method to take 
into account the current locations of the snake’s segments. 
(Hint: Use a while loop to keep calling move until it picks a 
location that’s not occupied by the snake.)



Afterword
WHeRe To Go fRoM HeRe

Now that you’ve learned the basics of JavaScript, 
you’re ready to venture out into a whole, wide world of 
programming. You could learn another programming 
language, or you could choose to build on your knowl-
edge of JavaScript, taking your skills to the next level. 
Where you go next is entirely up to you, but here are 
some ideas.



294  Afterword

More JavaScript
We’ve looked at a lot of JavaScript in this book, but there’s much 
more you can learn about the language. Here are some books and 
websites that will help you learn more of the details of JavaScript:

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly 
Media, 2008)

• Eloquent JavaScript, 2nd Edition, by Marijn Haverbeke 
(No Starch Press, 2014)

• JavaScript: The Definitive Guide, 4th Edition, by David 
Flanagan (O’Reilly Media, 2001)

• The Mozilla Developer Network’s JavaScript resources: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/

• Codecademy JavaScript courses: http://www.codecademy.com/
en/tracks/javascript/

Web Programming
To create websites, you need to use some HTML and CSS, along 
with JavaScript.

HTMl
HTML is the markup language used for creating web pages. We 
learned some basic HTML in Chapter 5, but there’s much more to 
learn. Here are some places you can learn more about HTML:

• The Mozilla Developer Network’s Introduction to HTML: 
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
Introduction/

• Codecademy HTML & CSS course: http://www.codecademy 
.com/tracks/web/

• Mozilla Webmaker: https://webmaker.org/

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.codecademy.com/en/tracks/javascript
http://www.codecademy.com/en/tracks/javascript
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://webmaker.org/
http://www.codecademy.com/tracks/web/
http://www.codecademy.com/en/tracks/javascript/


Where to Go from Here  295

CSS
CSS (short for Cascading Style Sheets) is the language used to con-
trol the appearance of web pages. Learn more about CSS here:

• The Mozilla Developer Network’s Getting Started with CSS: 
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/
Getting_started/

• Codecademy HTML & CSS course: http://www.codecademy 
.com/tracks/web/

Server-Side Code with Node.js
Web pages live on web servers. A server stores all the HTML, CSS, 
and JavaScript for a web page, and it allows people to access the 
page from the Internet. You can also write programs for the server 
(called server-side code) to make the server generate new HTML 
files each time a web page is loaded. For example, when you visit 
http://twitter.com/, a program runs on a server that finds the lat-
est tweets for your feed, generates an HTML file containing those 
tweets, and sends that file to your browser. 

Node.js lets you write server-side code in JavaScript. Find out 
more about Node.js with these links:

• Node.js documentation: http://nodejs.org/

• The Node Beginner Book: http://www.nodebeginner.org/

Graphical Programming
If you want to make interactive graphics in JavaScript, you have 
two main options: the canvas element and SVG.

canvas
We learned the basics of the canvas element in this book, but there’s 
much more you can do with it. Here are some tutorials and games 
you can use to learn more:

• The Mozilla Developer Network’s Canvas Tutorial: https://
developer.mozilla.org/en-US/docs/Web/API/Canvas_API/
Tutorial/

• Code Monster from Crunchzilla: http://www.crunchzilla.com/
code-monster/

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started
http://nodejs.org/
http://www.nodebeginner.org/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
http://www.crunchzilla.com/code-monster
http://www.crunchzilla.com/code-monster
http://www.crunchzilla.com/code-monster/
http://www.codecademy.com/tracks/web/


296  Afterword

SVG using Raphaël
SVG is an image format that lets you draw shapes and animate 
them without redrawing from scratch for each animation step. 
SVG programming can be difficult to get the hang of, but it’s much 
easier if you use the JavaScript library called Raphaël. Here are 
some resources for learning Raphaël:

• Raphaël website: http://raphaeljs.com/

• An Introduction to the Raphaël JS Library: http://code 
.tutsplus.com/tutorials/an-introduction-to-the-raphael-js- 
library--net-7186/ 

3D Programming
Remember how in Chapter 13 we told canvas we wanted to make 
a 2D drawing context by calling canvas.getContext("2d")? It’s also 
possible to do 3D graphics using canvas. This is another one of 
those areas where it’s easier to use a library, so I’d recommend 
using the library three.js. Here are some resources for learning 
three.js:

• three.js Manual: http://threejs.org/docs/index.html#Manual

• The Beginner’s Guide to three.js: http://blog.teamtreehouse.
com/the-beginners-guide-to-three-js/

Programming Robots
You can even control robots using JavaScript! For example, the 
Parrot AR.Drone is a small flying helicopter that you can control 
using Node.js. Or you can check out Johnny-Five, a JavaScript 
library that lets you use Node.js to control devices such as the 
Arduino (a popular microcontroller that’s used in lots of homemade 
electronics and robotics projects). Here are some resources for 
learning how to control robots and other devices with JavaScript:

• node-ar-drone: https://github.com/felixge/node-ar-drone/

• NodeCopter: http://nodecopter.com/

• NodeBots: http://nodebots.io/

• Johnny-Five: https://github.com/rwaldron/johnny-five/

http://raphaeljs.com/
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://threejs.org/docs/index.html#Manual
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js
https://github.com/felixge/node-ar-drone
http://nodecopter.com/
http://nodebots.io/
https://github.com/rwaldron/johnny-five/
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js/
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-jslibrary--net-7186/


Where to Go from Here  297

Audio Programming
JavaScript also allows you to do advanced audio programming 
in web browsers using the Web Audio API (short for application 
programming interface). You can use the Web Audio API to make 
sound effects or even create your own music! Here are some 
resources for learning more about the Web Audio API:

• The Mozilla Developer Network’s Web Audio API: https://
developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/

• HTML5 Rocks: Getting Started with Web Audio API: http://
www.html5rocks.com/en/tutorials/webaudio/intro/

Game Programming
If you want to do more game programming in JavaScript, you 
might want to try using a game engine. A game engine is a col-
lection of code that handles a lot of the lower-level concerns of the 
game (like keyboard and mouse input), allowing you to concen-
trate on the parts that make your game different. Here are some 
resources you can check out to learn more about game program-
ming and game engines: 

• Crafty game engine: http://craftyjs.com/

• Pixi Renderer: https://github.com/GoodBoyDigital/pixi.js

• HTML5 Game Engines: http://html5gameengine.com/

• Udacity HTML5 Game Development: https://www.udacity 
.com/course/cs255

• 3D Game Programming for Kids by Chris Strom (Pragmatic 
Programmers, 2013)

Sharing Your Code using JSfiddle
What if you want to share all the great JavaScript you’ve written 
with the world? There are many ways to do that. One of the easier 
ones is JSFiddle (http://jsfiddle.net/). Just type your JavaScript 
in the JavaScript box, add any HTML you want in the HTML box, 
and then click run to run your program. To share it, click Save, 
which gives you a URL that you can then share with anyone.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
http://www.html5rocks.com/en/tutorials/webaudio/intro/
http://www.html5rocks.com/en/tutorials/webaudio/intro/
http://craftyjs.com/
https://github.com/GoodBoyDigital/pixi.js
http://html5gameengine.com/
https://www.udacity.com/course/cs255
https://www.udacity.com/course/cs255
http://www.html5rocks.com/en/tutorials/webaudio/intro/
https://www.udacity.com/course/cs255




GloSSARY

The world of computer programming has all kinds of 
special terms and definitions that can take some time 
to get the hang of. In this glossary, you’ll find defini-
tions for many of the programming terms used in this 
book. As you’re reading this book, if you come across 
a term that you don’t quite understand, you can look 
here for a brief explanation.



300  Glossary

argument A value that can be passed into a function.

array A list of JavaScript values. In an array, each value has an 
index, which is the numbered position of that value in the array. 
The first value is at index 0, the next value is at index 1, and so on.

attribute A key-value pair in an HTML element. You can use 
HTML attributes to control certain aspects of an element, like 
where the element links to or the size of the element.

Boolean A value that can be either true or false.

call To execute or run a function. To call functions in JavaScript, 
you enter the function name followed by a pair of parentheses 
(with any arguments inside the parentheses).

camel case A common way to name variables in which you 
capitalize the first letter of each word (except the first word) 
and then join all the words to make one long word, like so: 
myCamelCaseVariable.

comment Text in a program that is not executed by the 
JavaScript interpreter—comments are just there to describe 
the program for the person reading the code.

conditional statement A statement that executes code after 
checking a condition. If the condition is true, the statement will 
execute one bit of code; if the condition is false, it will execute a 
different bit of code or stop altogether. Examples include if state-
ments and if...else statements.

constructor A kind of function that’s used to create multiple 
objects so that they share built-in properties.

control structure A way to control when a piece of code is run 
and how often it’s run. Examples include conditional statements 
(which control when code is run by checking a condition) and 
loops (which repeat a piece of code a certain number of times).

data The information we store and manipulate in computer 
programs.

decrement To decrease the value of a variable (usually by 1).

dialog A small pop-up window. You can use JavaScript to open 
different kinds of dialogs in a browser, such as an alert (to display 
a message) or a prompt (to ask a question and receive input).



Glossary  301

document object model (doM) The way that web browsers 
organize and keep track of HTML elements on a web page. These 
elements are organized in a treelike structure called the DOM tree. 
JavaScript and jQuery provide methods that work with the DOM 
to create and modify elements.

element Part of an HTML page, such as a header, a paragraph, 
or the body. An element is marked by start and end tags (which 
determine what type of element it is) and includes everything in 
between. The DOM tree is made up of these elements.

event An action that happens in the browser, such as a mouse 
click or a keyboard press by the user. We can detect and respond 
to these events with event handlers.

event handler A function that is called whenever a certain 
event happens in a certain HTML element. For example, in 
Chapter 11’s “Find the Buried Treasure!” game, we create an 
event handler function that is called whenever the user clicks 
on a map image.

execute To run a piece of code, such as a program or function.

function A piece of code that bundles multiple statements so 
that they are all executed together. A function makes it easy to 
repeat a certain action in different parts of a program. A function 
can take arguments as input, and it will output a return value.

increment To increase the value of a variable (usually by 1).

index A number that indicates the position of a value inside 
an array. The index can be used to access a specific value in an 
array.

infinite loop A loop that never stops repeating (often causing 
the interpreter to crash). This error can occur if the conditions of a 
loop are set up incorrectly.

interpreter A piece of software that reads and runs code. Web 
browsers contain a JavaScript interpreter, which we use to run our 
JavaScript throughout this book.

jQuery A JavaScript library that provides many useful methods 
for modifying and working with DOM elements on a web page.



302  Glossary

key-value pair A pair made up of a string (called a key) that 
is matched up with a particular value (which can be any type of 
value). Key-value pairs go inside JavaScript objects, and they are 
used to define an object’s properties and methods.

keyword A word with a special meaning in JavaScript (for 
example, for, return, or function). Keywords can’t be used as vari-
able names.

library A collection of JavaScript code that we can load into our 
web pages to provide additional functions and methods. In this 
book we use the jQuery library, which gives us functions and 
methods for working with the DOM more easily.

loop A way to execute a piece of code multiple times.

method A function that is a property of an object.

null A special value that can be used to indicate that a variable 
is purposely left empty.

object A set of key-value pairs. Each key is a string that can 
be paired with any JavaScript value. You can then use the key to 
retrieve whatever value it’s paired with in the object.

object-oriented programming A style of programming that 
takes advantage of objects and methods to organize the code and 
represent the most important features of the program.

programming language A language that programmers can 
use to tell computers what to do. JavaScript is one programming 
language, but there are many others.

property A name for a key-value pair in an object.

prototype A property of a constructor. Any methods added to a 
constructor’s prototype will be available to all objects created by 
that constructor.

return The act of leaving a function and returning to the code 
that called the function. A function returns when it reaches the 
end of its body or when it reaches a return keyword (which can be 
used to leave a function early). When a function returns, it outputs 
a return value (if no particular return value is specified, it simply 
returns the empty value undefined).



Glossary  303

selector string A string that represents one or more HTML 
elements. We can pass this string to jQuery’s $ function to select 
those elements.

string A list of characters surrounded by quotes, used to repre-
sent text in computer programs.

syntax How keywords, punctuation, and other characters are 
combined to make working JavaScript programs.

tag A marker used to create HTML elements. All elements begin 
with a start tag, and most end with an end tag. These tags deter-
mine what type of element is created, and the start tag can include 
attributes for the element. 

text editor A computer program used to write and edit plain-
text, without any special formatting like font style or color. A good 
text editor is helpful for writing programs, which are written in 
plaintext.

undefined A value that JavaScript uses when something like a 
property or variable doesn’t have any particular value assigned 
to it.

variable A way of giving a JavaScript value a name. After you 
assign a value to a variable, you can use the variable name later to 
retrieve the value.

whitespace Invisible characters like spaces, newlines, and tabs.





Symbols
&& (and), 30–31, 33
* (multiplication), 15–17
*= (multiply and assign), 

23, 104
: (colon), 65
, (comma), 128
{} (curly brackets), 64, 67
$ ( jQuery function), 149. See 

also jQuery
" (double quotation mark), 

23–24, 65
= (assignment), 18
== (double equals), 36
=== (exactly equals),  

35–36, 96
! (not), 3
/ (division), 15–16
/= (divide and assign), 23
> (greater than), 33–34
# (id in selector strings), 149
- (subtraction), 15–16
-- (decrement), 21
-= (subtract and assign), 22
< (less than), 34
() (parentheses), 16–17, 

27, 125
. (period). See dot notation
|| (or), 31–32, 33
+ (addition), 15–17

with strings, 25, 61, 108
++ (increment), 21
+= (add and assign), 22, 73
; (semicolon), 14, 99
' (single quotation mark), 24
[] (square brackets)

accessing a character 
from a string 
with, 26

accessing elements from 
an array with, 
42–43, 45

accessing values in 
objects with, 66

adding elements to an 
array with, 43–44

creating an array with, 41

A
add and assign (+=) operator, 

22, 73
addition, 15–17

with strings, 25, 61, 108
alert method, 109–110
and (&&) operator,  

30–31, 33
animation

with canvas
bouncing ball, 227–232
changing size, 220–221
moving horizontally, 

218–221
random bee, 221–226

with setInterval, 159–161
append jQuery method, 

150, 188
arc context method,  

209–212
arguments, for functions, 

126, 300
arrays, 39–40, 54–60, 300

accessing, 42–43
adding elements to, 47, 50
combining multiple, 

50–52
combining with objects, 

69–71
converting to a string, 53
creating, 41–42
and data types, 45
finding index of element 

in, 52–53
finding length of, 46

looping through 
elements of,  
100–101

modifying, 43–44
vs. objects, 67–68
removing elements 

from, 48–50
assigning values, 18
attributes, HTML,  

86–87, 300

B
beginPath context method, 

206–210
block-level HTML elements, 

81–82
body 

of a control structure, 
92–95, 97, 99

of a function, 124
body element, 84–85
Booleans, 14, 30–37, 300

comparing numbers with, 
33–37

in conditional statements, 
91–96

logical operators, 30–33
for yes-or-no answers, 

108–109
brackets

curly, 64, 67
square. See square 

brackets
break keyword, 116

C
calling

functions, 125, 126, 300
methods, 47

camel case, 19, 300

Index



306  INDEX

canvas element, 199
animating, 217–218

bouncing ball, 227–232
changing size, 220–221
moving horizontally, 

218–221
random bee, 221–226

circles and arcs, 209–213
clearing, 219
colors, 203–204
creating, 200
lines and paths

drawing, 206–207
filling, 207–209

rectangles and squares
drawing, 201–203
outlining, 205–206

resources, 295
Cascading Style Sheets 

(CSS), 295
chaining if...else 

statements, 94–96
chaining jQuery 

animations, 152
Chrome, web browser and 

console, 7
clearInterval function, 

158–159
clearRect context method, 

218–219
clearTimeout function, 157
click events, 162
coercion, 108
collision detection, 229–231, 

278–280
colon (:), 65
comma (,), 128
comments, 10–11, 118, 300
concat method, 50–52
condition (of a control 

structure)
in for loops, 99
in if...else 

statements, 95
in if statements, 92
in while loops, 97

conditionals, 89, 300
if...else statements, 91, 

93–96, 136–137
if statements, 91–93

confirm function, 108
console, 7

calling constructors 
in, 187

exploring objects in, 
71–72

finding errors with, 120
logging values to, 91
typing in, 42
viewing output from 

keyboard events 
with, 237

console.log method, 91, 125
vs. alert, 109–110

constructors, 185–186, 300
control structures, 90, 300.  

See also conditionals; 
loops

coordinates, browser, 163
CSS (Cascading Style 

Sheets), 295
css jQuery method, 188–189
curly brackets, 64, 67

D
data, 14, 300
decrementing, 21, 300
dialogs, 106–110, 300
divide and assign (/) 

operator, 23
division, 15–16
document object 

model (DOM),  
143–147, 301

document.getElementById 
DOM method, 
145–146, 200–201

DOM (document 
object model),  
143–147, 301

DOM tree, 144

dot notation, 66
accessing object keys 

with, 69
adding keys to objects 

with, 68
adding methods to objects 

with, 182–183
adding properties to 

objects with, 182
double equals (==) 

operator, 36
double quotation mark ("), 

23–24, 65
drawing context (for 

canvas), 201

e
elements, HTML, 80, 301
else keyword, 93, 95
em element, 82–83
end tags, HTML, 80, 303
equal to (===) operator, 

35–36, 96
errors, 120
event handlers, 162, 169, 

171, 301
event object, 162–163, 172
exactly equals (===) 

operator, 35–36, 96
execute, 8, 301

f
fadeIn jQuery method, 152
fadeOut jQuery method, 151
fadeTo jQuery method, 154
false (Boolean value), 

14, 30. See also 
Booleans

fill context method, 
207, 222

fillRect context method, 
200–205, 207, 
219–220, 258, 269

fillStyle context property, 
203, 223, 258, 
263–264, 269–270



INDEX  307

fillText context method, 
260, 262–264

Find the Buried Treasure! 
game, 167–169

calculating distances, 
172–174

click handler, 171–172
code for, 176–178
creating web page, 

169–170
design, 168–169
displaying hints, 175–176
randomizing treasure 

location, 170–171
win condition, 176

floor method, 57, 103
font context property, 

262–264
for loops, 99–102
function keyword, 128. See 

also functions
functions, 123–124, 301

arguments, 126–127, 
128–129

calling, 125, 126, 300
vs. if...else statements, 

136–137
leaving early, 135
returning values from, 

125, 129–131, 302
shorthand, 137
simplifying code with, 

132–134

G
games, programming, 

6, 297. See also 
Find the Buried 
Treasure! game; 
Hangman game; 
Snake game

getContext canvas method, 
200–201

getElementById, 145–146, 
200–201

Google Chrome, web 
browser and 
console, 7

graphical programming, 4
greater than (>) operator, 

33–34

H
h1 element, 80
Hangman game, 105–106

choosing a random word, 
113–114

code for, 118–120
creating with functions, 

139–140
design, 110–113
displaying player’s 

progress, 115
drawing

guesses, 266
hangman, 215

responding to player 
input, 115–116

updating game state, 
116–118

win condition, 118
head element, 84–85
height attribute, 170, 200
hide jQuery method, 153
href attribute, 87
HTML, 77–88, 143–144, 294

attributes, 86–87, 300
elements, 80, 301
hierarchy, 84–85
nesting, 84–85

html element, 84, 164
hyperlinks, 78, 85–86

I
id attribute, 145, 149
if...else statements, 91, 

93–96, 136–137
if statements, 91–93
img element, 169, 171, 188
incrementing, 21, 301

indexes, in arrays,  
42–43, 301

changing elements with, 
43–44

and data types, 45
finding, 52–53
with strings, 57–58

indexOf method, 52–53
infinite loops, 98–99, 301
inline HTML elements, 

82–83
innerHTML property, 145–147
interactive programming, 

155–166
interval ID, 159, 254, 

264, 290

J
join method, 53–54, 61
jQuery, 143–144, 301

$ function, 149
animating elements with, 

151–152
creating new elements 

with, 150–151
keyboard events, 

responding with, 
236, 244

loading on page, 148
replacing page text with, 

148–149

K
keyCode event property, 

237, 281
keydown event, 236–238, 

244, 281
keys (in objects), 63, 65, 182

adding, 68
and quotation marks, 65

key-value pairs (in objects), 
63, 65, 182, 302

keywords, 17, 302



308  INDEX

l
length property

on arrays, 46, 60, 72
on strings, 25–26

less than (<) operator, 34
libraries, 148, 302
lineTo context method, 

206–208
lineWidth context property, 

205–206, 223
links, 78, 85–86
literals, 64–65
logs, 91
loops, 89, 302

for loops, 99–102
while loops, 97–99

M
mathematical operators, 

15–17
Math.floor, 57, 103
Math.PI, 210–212
Math.random, 57
Math.sqrt, 174
methods, 42, 302

adding to objects,  
182–183

calling, 47
sharing between objects, 

183–185
and this, 183

mousemove event,  
164–165, 215

moveTo context method, 
206–208

multiplication, 15–17
multiply and assign (*=) 

operator, 23, 104
music programming, 4, 297

N
new keyword, 185–187, 189
Node.js, 295
not (!) operator, 32
numbers, 14–23, 42, 66
null value, 37–38, 108, 302

o
Object.keys method, 67, 75
object-oriented 

programming, 
181–196, 302

objects, 63, 72–75, 302
accessing values in, 

66–67
adding keys to, 68
adding methods to, 

182–185
adding values to, 67–68
combining with arrays, 

69–71
creating, 64–65, 182

with constructors, 
185–186

customizing with 
prototypes, 190–194

exploring with the 
console, 71–72

offset jQuery method, 
160–161, 164, 189

offsetX and offsetY event 
properties, 172

operators, 15–17
or (||) operator, 31–32, 33

P
pageX and pageY event 

properties, 162, 
164–165

parentheses, (), 16–17, 
27, 125

p element, 80–81
period (.). See dot notation
pi (π), 210–212
plaintext, 78
pop method, 48–49, 55
prompt method, 106–108, 146
properties, 46, 182, 302
__proto__ properties, 72
prototype property, 190, 228
prototypes, 72, 190–196, 228
pseudocode, 110–111, 253
push method, 47, 55
Pythagorean theorem, 173

Q
queue (data structure), 56
quotation marks, 23–24, 65

R
radians, 209–211
random number generation, 

with Math.random, 57
returning values from 

functions, 125, 
129–131, 302

return keyword, 130, 
132, 302

S
script element, 90, 148
selector strings, 149, 303
semicolons, 14, 99
setInterval function,  

158–159
bouncing ball, 231–232
with canvas, 218–221
with keyboard input, 245
moving text, 159–161
random bee, 225–226
and Snake game, 254, 

285–290
setTimeout function, 156–157
shift method, 50
show jQuery method, 153
single quotation mark, 24
slice method, 27
slideDown jQuery 

method, 152
slideUp jQuery method, 152
Snake game

apple
creating, 283–284
moving, 284–285

code for, 285–290
collision detection, 272, 

279–281
design, 253–255
displaying text, 260–264
drawing

circle, 270–271
square, 269–270



INDEX  309

ending the game,  
264–265, 272

game grid
adding border, 258–260
creating Block, 268–269
setting up, 256–258

game play, 252
HTML code, 255–256
snake

creating, 273–275
moving, 275–277
setting direction of, 

281–283
square brackets, []

accessing a character 
from a string 
with, 26

accessing elements from 
an array with, 
42–43, 45

accessing values in 
objects with, 66

adding elements to an 
array with, 43–44

creating an array with, 41
square root, 174
src attribute, 148, 170
stack (data structure), 56
start tag, 80, 303
statements, 14
strings, 14, 23–24, 303

accessing single character 
from, 26–27

changing case of, 28–30
finding length of, 25–26
joining, 25
looping through each 

character of, 
101, 116

as object keys, 63, 65, 66
slicing, 27–28
turning arrays into, 

53–54

stroke context method, 
206–210, 222

strokeRect context method, 
205, 225, 231

strokeStyle context 
property,  
205–206, 223

strong element, 82–83
Sublime Text, 78–79
subtract and assign (-=) 

operator, 22
subtraction, 15–16
SVG, 296
syntax, 10, 303
syntax highlighting, 79

T
tags, HTML, 80, 303
textAlign context property, 

262–264
textBaseline context 

property, 261, 
263–264

text editors, 78–79, 303
text jQuery method, 176
this keyword, 183, 187, 

191–192
timeout ID, 157
title attribute, 87–88
toLowerCase method, 28–29
toUpperCase method, 28–29
true (Boolean value), 14, 30. 

See also Booleans

u
undefined value, 17–18, 

37–38, 44, 125, 303
unshift method, 48–49

V
values (in objects), 63, 

65, 182
accessing, 66–67
adding, 67–68
data type of, 65

variables, 17–23, 303
vs. arrays, 40
creating with math, 

19–21
increasing and decreasing 

values of, 21–23
naming, 19
undefined and null for, 

37–38
var keyword, 17, 18, 19

W
web browsers, 6–7
while loops, 97–99
whitespace, 81, 82, 303
width attribute, 170, 200



uPDATeS
Visit http://www.nostarch.com/javascriptforkids for updates, errata, and 
other  information.

EloquEnt JavaScript, 
2nd Edition
a Modern introduction to programming
by marijn haverbeke

dec 2014, 400 pp., $39.95
isbn 978-1-59327-584-6

SurvivE! inSidE thE 
huMan body, vol. 1
the digestive System
by gomdori co. and  
hyun-dong han 
oct 2013, 184 pp., $17.95
isbn 978-1-59327-471-9
full color

python for KidS
a playful introduction to programming
by jason r. briggs

dec 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

laurEn ipSuM
a Story about computer Science 
and other improbable things
by carlos bueno

dec 2014, 192 pp., $16.95
isbn 978-1-59327-574-7
full color

ruby Wizardry
an introduction to programming for Kids
by eric weinstein

dec 2014, 360 pp., $29.95
isbn 978-1-59327-566-2
two color

thE Manga guidE to 
databaSES
by mana takahashi, shoko 
azuma, and trend-pro co., ltd.
jan 2009, 224 pp., $19.95
isbn 978-1-59327-190-9

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

MoRe SMART BooKS foR CuRIouS KIDS!



JavaScript is the programming language of
the Internet, the secret sauce that makes the
Web awesome, your favorite sites interactive,
and online games fun!

JavaScript for Kids is a lighthearted intro-
duction that teaches programming essentials
through patient, step-by-step examples paired
with funny illustrations. You’ll begin with
the basics, like working with strings, arrays,
and loops, and then move on to more advanced
topics, like building interactivity with jQuery
and drawing graphics with Canvas.

Along the way, you’ll write games such as 
Find the Buried Treasure, Hangman, and 

SHELVE IN
:

PROGRAM
M

ING LANGUAGES/JAVASCRIPT

www.nostarch.com

TH E  F I N EST  I N
G E E K  E NTE RTA I N M E NT™

For kids aged 10+ (and their parents)

real programming.

real easy.
REAL Programming.

REAL EASY.

.$34.95 ($36 95 CDN)

Illustrations by Miran Lipovaca

N i c k  M o r g a n

 JavaScript
FOR KIDS

JavaScript
FOR KIDS

A Playful Introduction to Programming

With visual examples like bouncing balls,
animated bees, and racing cars, you can really
see what you’re programming. Each chapter
builds on the last, and programming challenges
at the end of each chapter will stretch your
brain and inspire your own amazing programs.
Make something cool with JavaScript today!

ABOUT THE AUTHOR

Nick Morgan is a frontend engineer at
Twitter. He loves all programming languages
but has a particular soft spot for JavaScript.
Nick lives in San Francisco (the foggy part)
with his fiancée and their fluffy dog, Pancake.
He blogs at skilldrick.co.uk.Snake. You’ll also learn how to:

 Create functions to organize and reuse
your code

 Write and modify HTML to create 
dynamic web pages

 Use the DOM and jQuery to make your 

 Use the Canvas element to draw and
animate graphics

 Program real user-controlled games with
collision detection and score keeping

 

web pages react to user input

J
a

v
a

S
c

r
ip

t
 f

o
r

 K
id

s
J

a
v

a
s

c
r

ip
t

 f
o

r
 k

id
s

M
o

r
g

a
n

skilldrick.co.uk

	About the Author
	Brief Contents
	Contents in Detail
	Introduction
	Who Should Read This Book?
	How to Read This Book
	What’s in This Book?
	Have Fun!

	Part I: Fundamentals
	Chapter 1: What Is JavaScript?
	Meet JavaScript
	Why Learn JavaScript?
	Writing Some JavaScript
	The Structure of a JavaScript Program
	Syntax
	Comments 

	What You Learned

	Chapter 2: Data Types and Variables
	Numbers and Operators
	Variables
	Naming Variables
	Creating New Variables Using Math
	Incrementing and Decrementing
	+= (plus-equals) and 
–= (minus-equals)

	Strings
	Joining Strings
	Finding the Length of a String
	Getting a Single Character 
from a String
	Cutting Up Strings
	Changing Strings to All Capital or All Lowercase Letters

	Booleans
	Logical Operators
	Comparing Numbers with Booleans

	undefined and null
	What You Learned

	Chapter 3: Arrays
	Why Should You Care About Arrays?
	Creating an Array
	Accessing an Array’s Elements
	Setting or Changing Elements 
in an Array
	Mixing Data Types in an Array
	Working with Arrays
	Finding the Length of an Array
	Adding Elements to an Array
	Removing Elements from an Array
	Adding Arrays
	Finding the Index of an Element 
in an Array 
	Turning an Array into a String

	Useful Things to Do with Arrays
	Finding Your Way Home
	Decision Maker
	Creating a Random Insult Generator

	What You Learned
	Programming Challenges
	#1: New Insults
	#2: More Sophisticated Insults
	#3: Use + or join?
	#4: Joining Numbers


	Chapter 4: Objects
	Creating Objects
	Keys Without Quotes

	Accessing Values in Objects
	Adding Values to Objects
	Adding Keys with Dot Notation

	Combining Arrays and Objects
	An Array of Friends

	Exploring Objects in the Console
	Useful Things to Do with Objects
	Keeping Track of Owed Money
	Storing Information About Your Movies

	What You Learned
	Programming Challenges
	#1: Scorekeeper
	#2: Digging into Objects and Arrays


	Chapter 5: The Basics of HTML
	Text Editors
	Our First HTML Document
	Tags and Elements
	Heading Elements
	The p Element
	Whitespace in HTML and Block-Level Elements
	Inline Elements

	A Full HTML Document
	HTML Hierarchy
	Adding Links to Your HTML
	Link Attributes
	Title Attributes

	What You Learned

	Chapter 6: Conditionals and Loops
	Embedding JavaScript in HTML
	Conditionals
	if Statements
	if…else Statements
	Chaining if…else Statements

	Loops
	while Loops
	for Loops

	What You Learned
	Programming Challenges
	#1: Awesome Animals
	#2: Random String Generator
	#3: h4ck3r sp34k 


	Chapter 7: Creating a Hangman Game
	Interacting with a Player
	Creating a Prompt
	Using Confirm to Ask a 
Yes or No Question
	Using Alerts to Give a Player Information
	Why Use alert Instead of console.log?

	Designing Your Game
	Using Pseudocode to Design the Game
	Tracking the State of the Word
	Designing the Game Loop

	Coding the Game
	Choosing a Random Word
	Creating the Answer Array
	Coding the Game Loop
	Ending the Game

	The Game Code
	What You Learned
	Programming Challenges
	#1: More Words
	#2: Capital Letters
	#3: Limit Guesses
	#4: Fixing a Bug


	Chapter 8: Functions
	The Basic Anatomy of a Function
	Creating a Simple Function
	Calling a Function
	Passing Arguments into Functions
	Printing Cat Faces!
	Passing Multiple Arguments to a Function

	Returning Values from Functions
	Using Function Calls as Values
	Using Functions to Simplify Code
	A Function to Pick a Random Word
	A Random Insult Generator
	Making the Random Insult Generator into a Function

	Leaving a Function Early with return
	Using Return Multiple Times Instead of if...else Statements
	What You Learned
	Programming Challenges
	#1: Doing Arithmetic with Functions
	#2: Are These Arrays the Same?
	#3: Hangman, Using Functions



	Part II: Advanced JavaScript
	Chapter 9: The DOM and jQuery
	Selecting DOM Elements
	Using id to Identify Elements
	Selecting an Element Using getElementById
	Replacing the Heading Text Using the DOM

	Using jQuery to Work with the DOM Tree
	Loading jQuery on Your HTML Page
	Replacing the Heading Text Using jQuery

	Creating New Elements with jQuery
	Animating Elements with jQuery
	Chaining jQuery Animations
	What You Learned
	Programming Challenges
	#1: Listing Your Friends with jQuery (And Making Them Smell!)
	#2: Making a Heading Flash
	#3: Delaying Animations
	#4: Using fadeTo


	Chapter 10: Interactive Programming
	Delaying Code with setTimeout
	Canceling a Timeout
	Calling Code Multiple Times with setInterval
	Animating Elements with setInterval
	Responding to User Actions
	Responding to Clicks
	The mousemove Event

	What You Learned
	Programming Challenges
	#1: Follow the Clicks
	#2: Create Your Own Animation
	#3: Cancel an Animation with a Click
	#4: Make a “Click the Header” Game!


	Chapter 11: Find the Buried Treasure!
	Designing the Game
	Creating the Web Page with HTML
	Picking a Random Treasure Location
	Picking Random Numbers
	Setting the Treasure Coordinates

	The Click Handler
	Counting Clicks
	Calculating the Distance Between the Click and the Treasure
	Using the Pythagorean Theorem
	Telling the Player How Close They Are
	Checking If the Player Won

	Putting It All Together
	What You Learned
	Programming Challenges
	#1: Increasing the Playing Area
	#2: Adding More Messages
	#3: Adding a Click Limit
	#4: Displaying the Number of Remaining Clicks


	Chapter 12: Object-Oriented Programming
	A Simple Object
	Adding Methods to Objects
	Using the this Keyword
	Sharing a Method Between Multiple Objects 

	Creating Objects Using Constructors
	Anatomy of the Constructor
	Creating a Car Constructor

	Drawing the Cars
	Testing the drawCar Function
	Customizing Objects with Prototypes
	Adding a draw Method to the Car Prototype
	Adding a moveRight Method
	Adding the Left, Up, and Down move Methods

	What You Learned
	Programming Challenges
	#1: Drawing in the Constructor
	#2: Adding a speed Property
	#3: Racing Cars



	Part III: Canvas
	Chapter 13: The canvas Element
	Creating a Basic Canvas
	Drawing on the Canvas
	Selecting and Saving the canvas Element
	Getting the Drawing Context
	Drawing a Square
	Drawing Multiple Squares

	Changing the Drawing Color
	Drawing Rectangle Outlines
	Drawing Lines or Paths
	Filling Paths
	Drawing Arcs and Circles
	Drawing a Quarter Circle or an Arc
	Drawing a Half Circle
	Drawing a Full Circle

	Drawing Lots of Circles 
with a Function
	What You Learned
	Programming Challenges
	#1: A Snowman Drawing Function
	#2: Drawing an Array of Points
	#3: Painting with Your Mouse
	#4: Drawing the Man in Hangman


	Chapter 14: Making Things Move on the Canvas
	Moving Across the Page
	Clearing the Canvas
	Drawing the Rectangle
	Changing the Position
	Viewing the Animation in the Browser

	Animating the Size of a Square
	A Random Bee
	A New circle Function
	Drawing the Bee
	Updating the Bee’s Location
	Animating Our Buzzing Bee

	Bouncing a Ball!
	The Ball Constructor
	Drawing the Ball
	Moving the Ball
	Bouncing the Ball
	Animating the Ball

	What You Learned
	Programming Challenges
	#1: Bouncing the Ball Around a Larger Canvas
	#2: Randomizing this.xSpeed and this.ySpeed
	#3: Animating More Balls
	#4: Making the Balls Colorful


	Chapter 15: Controlling Animations with the Keyboard
	Keyboard Events
	Setting Up the HTML File
	Adding the keydown Event Handler
	Using an Object to Convert Keycodes into Names

	Moving a Ball with the Keyboard
	Setting Up the Canvas
	Defining the Circle Function
	Creating the Ball Constructor
	Defining the move Method
	Defining the draw Method
	Creating a setDirection Method
	Reacting to the Keyboard
	Animating the Ball

	Putting It All Together
	Running the Code
	What You Learned
	Programming Challenges
	#1: Bouncing Off the Walls
	#2: Controlling the Speed
	#3: Flexible Controls


	Chapter 16: Making a Snake Game: Part 1
	The Game Play
	The Structure of the Game
	Using setInterval to Animate the Game
	Creating the Game Objects
	Setting Up Keyboard Control 

	Game Setup
	Creating the HTML
	Defining the canvas, ctx, width, and height Variables
	Dividing the Canvas into Blocks
	Defining the score Variable

	Drawing the Border
	Displaying the Score
	Setting the Text Baseline
	Setting the Size and Font
	Writing the drawScore Function

	Ending the Game
	What You Learned
	Programming Challenges
	#1: Putting It Together
	#2: Animating the Score
	#3: Adding Text to Hangman


	Chapter 17: Making a Snake Game: Part 2
	Building the Block Constructor
	Adding the drawSquare Method
	Adding the drawCircle Method
	Adding the equal Method

	Creating the Snake
	Writing the Snake Constructor
	Drawing the Snake

	Moving the Snake
	Adding the move Method
	Adding the checkCollision Method

	Setting the Snake’s Direction with the Keyboard
	Adding the Keydown Event Handler
	Adding the setDirection Method

	Creating the Apple
	Writing the Apple Constructor
	Drawing the Apple
	Moving the Apple

	Putting It All Together
	What You Learned
	Programming Challenges
	#1: Making the Game Bigger
	#2: Coloring the Snake
	#3: Making the Game Speed Up as You Play
	#4: Fixing the apple.move Method



	Afterword: Where to Go from Here
	More JavaScript
	Web Programming
	HTML
	CSS
	Server-Side Code with Node.js

	Graphical Programming
	canvas
	SVG Using Raphaël

	3D Programming
	Programming Robots
	Audio Programming
	Game Programming
	Sharing Your Code Using JSFiddle

	Glossary
	Index
	Updates




