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Boyce-Codd Normal Form (BCNF)

Relation R with FDs Fis in BCNF if, for all X— A in '+
m A€ X (calleda trivial FD), or

m X contains a key for R. (i.e., X is a superkey)

In other words, R is in BCNF if the only non-trivial FDs that hold over R
are key constraints.

m No dependency in R that can be predicted using FDs alone.

m |f example relation is in BCNF and X is a key, the 2 tuples
must be identical (since X is a key).

m To check we must know all keys.

X Y
X |yl
X |y2




F+ what is going on here?

Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs
A->B , B->C, BC->D, D->EFG.
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs
A->B , B->C, BC->D, D->EFG.

Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs
A->B , B->C, BC->D, D->EFG, A->C

Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs

A->B , B->C, BC->D, D->EFG, A->C.
Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?

If BC->D and if D->EFG then BC->DEFG ?
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs

A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.
When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?

If BC->D and if D->EFG then BC->DEFG ?
If BC->DEFG then ABC->ADEFG?
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs
A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.

When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?
If BC->D and if D->EFG then BC->DEFG ?
If BC->DEFG then ABC->ADEFG?
If ABC -> ADEFG then ABBCC - > ABCDEFG?
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Also let us assume that we are given a set of FDs

A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.
When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?

If BC->D and if D->EFG then BC->DEFG ?

If BC->DEFG then ABC->ADEFG?

If ABC -> ADEFG then ABBCC - > ABCDEFG?
So ABC -> ABCDEFG?

So ABC is a key... What else?

27



F+ what is going on here? At

Let us assume that we are given a relation R={A,B,C,D,E,F,G}
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Let us assume that we are given a relation R={A,B,C,D,E,F,G}

Also let us assume that we are given a set of FDs
A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG, ABC -> ABCDEFG, A->ABCDEFG.

When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

This can be done intuitively:
In the above A->B, B->C this implicitly means that A->C ?
If BC->D and if D->EFG then BC->DEFG ?
If BC->DEFG then ABC->ADEFG?
If ABC -> ADEFG then ABBCC - > ABCDEFG?
So ABC -> ABCDEFG?
So ABC is a key... What else?
A->B and A->C so A-> ABC
So A->ABCDEFG and Ais a key.
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s These are sound and complete inference rules for FDs!



Reasoning About FDs

m AFDSf isimplied by a set of FDs F if f holds whenever all FDs in F hold.

F+= closure of F is the set of all FDs that are implied by F.

= Armstrong’s Axioms (X, Y, Z are sets of attributes):

Reflexivity: If X € Y, then Y -> X (a trivial FD) “IF X is IN Y” comment ©
Augmentation: If X->Y, then XZ->Z foranyZ

Transitivity: If X->Y and Y->Z, then X->Z

Union: IfX -> Y and X -> Z, then X -> YZ

Decomposition: If X->YZ, then X -> Y and X-> Z

s These are sound and complete inference rules for FDs!

Lancaster Ex=
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Reasoning About FDs pancaser§=

For example, in the above schema

SN->S isatrivial FD
since {S,N} is a superset of {S}




Reasoning About FDs pancaser§=

For example, in the given schema

IfSN->RW,then SNL->RWL (by augmentation)
If S->R and R ->W, then S ->W (by transitivity)



Reasoning About FDs pancaser§=

s Example: Contracts(cid,sid,jid,did,pid,qty,value), and given FDs:
m Cisthekey: C — CSIDPQV
m Project purchases each part using single contract: JP —>C

m Dept purchases at most one part from a supplier: SD —> P then prove that SD)J
is a KEY:

YOUR FURN



Normalisation (3 STEPS) pancaser§=

For a given FD F we have to find all possible Keys using F* Closure.
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Normalisation (3 STEPS) pancaser§=

For a given FD F we have to find all possible Keys using F* Closure.

And then using the Normalisation rules we decide on the
Normalisation level.
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Normalisation (3 STEPS) pancaster 622

For a given FD F we have to find all possible Keys using F* Closure.

And then using the Normalisation rules we decide on the
Normalisation level.

If required level is not satisfied we decompose the relation according
to the FDs that prevents required Normal Form
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Normal Forms Contd.

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E }
What is the maximum Normalisation level?

Lancaster Ex=
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Normal Forms Contd.

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E }
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E (decomposition)
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Normal Forms Contd.

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E}
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E (decomposition)

Lancaster E<=
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Normal Forms Contd.

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E,AC->B,AC->E }
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E
ACC->BC...AC->BC (Augmentation)

Lancaster Ex=
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46



Normal Forms Contd. pancaser§=

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E,AC->B(}
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E
ACC->BC...AC->BC (Augmentation)
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Normal Forms Contd. pancaser§=

Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC }
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E

ACC->BC...AC->BC

BC->D....AC->BC->D...AC->D (Transitivity)
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Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E

ACC->BC...AC->BC

BC->D....AC->BC->D...AC->D (Transitivity)
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Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E

ACC->BC...AC->BC

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.
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Ex: R = ABCDE, F={ BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }
What is the maximum Normalisation level?
AC->BE.......... AC->B, AC->E

ACC->BC...AC->BC
BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level? Observationl: No single
AC->BE AC->B. AC->E prime attribute determines a

nonprime attribute.
ACC->BC...AC->BC

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Normal Forms Contd. pancaser§=

Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }

What is the maximum Normalisation level? Observation1: No single
AC->BE.......... AC->B, AC->E prime attribute determines a
ACC->BC.. AC->BC nonprime attribute, so in

2NF.

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Normal Forms Contd. pancaser§=

Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?
AC->BE.......... AC->B, AC->E Observation2: B determines

ACC->BC...AC->BC E, so Relation is not in 3NF.

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?
AC->BE. .. AC->B, AC->E Observatio.n3:.B detgrmines
E, so Relation is not in 3NF
ACC->BC...AC->BC and so not in BCNF.
BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?
AC->BE.......... AC->B, AC->E Answer is 2NF.

ACC->BC...AC->BC
BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?
AC->BE.......... AC->B, AC->E Solution:

ACC->BC...AC->BC
BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E Solution: As B->E nonprime attribute implies
ACC->BC.. AC->BC nonprime attribute. We decompose ABCDE to

ABCD, and BE.
BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?

-> -> ->
AC->BE.......... AC->B, AC->E Solution: However we have FD BC ->D. BC is not a
ACC->BC...AC->BC key. So we will decompose ABCD to ABC and BCD.

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.
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Ex: R = ABCDE, F={BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}
What is the maximum Normalisation level?

AC->BE.......... AC->B, AC->E Solution: Finally we have three tables ABC, BE,
ACC->BC...AC->BC and BCD. This is in 3NF, and BCNF.

BC->D....AC->BC->D...AC->D

AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABC->ABCDE.

{A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

More examples are in Lab material Next Week. 60



Summary Lancaster E=

Relational algebra and Normal forms are quite important apparatuses
to optimise

Database (Normal forms)
Querying (Relational algebra)

We have seen four normal forms
1st, 2nd 3rd 3and Boyce-Codd normal forms.

Each Normalisation level guarantees a level of non-redundancy.
Decomposition is done on FDs.
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SCC.201
Database Management Systems

2023 - Week 5 -SQL and JDBC
Uraz C Turker & Ricki Boswell




What will you learn today?

Advanced SQL queries
Connection with JDBC.

Lancaster E<
University = =

Curriculum Design: Outline Syllabus

This moedule builds upon knowledge gained in Part | by providing a theoretical background to the design, implementation and use of database management systems,
both for data designers and application developers. It takes into account all relevant aspects related to information security in the design, development and use of
database systems. The course consists of a number of related sections, which range from single lectures to multi-lecture streams, depending on the required depth of
coverage. The sections are as follows

Introduction : we begin with a brief history of how the need for database management systems (DBMS) grew over time and how they are applied in day {o day

scenarios.

Database Design: before making use of a DBMS, we must capture our requirements - what data do we actually wish to model? We make use of the Extended Entity-

Relationship (EER) model which is both a technique and a notation for designing the data in a DBMS independent way.

The Relational Model: now the de-facto standard for DBMS, this was a revolutionary step taken in 1970. We extensively examine the Model, looking at relational
database systems, the model itself and the normalisation process, the relational algebra (the mathematical theory that underpins the model), the three schema
architecture and schema definition in SQL. Finally, we look at how we can map the EER model into an equivalent Relational Model. The resultant database is then
examined in terms of access rights and privileges.

A (re)Introduction to SQL: SQL is the de-facto standard for DBMS query languages. We look at both the DDL (data definition language) and DML (data manipulation
language). We introduce the use of views, a powerful mechanism for providing privacy and security. We look at the Discretionary Access Control (DAC) features that
allow the granting and withholding of access rights and privileges.

Accessing relational DBMS via Java: we explore the facilities of the JDBC and show how we can write applications in Java which connect with a relational DBMS
(in practice, MySQL).

The Physical Model- as Computer Scientists, our students need an awareness of the techniques that allow rapid access to stored data. In this section, we examine

the physical data organisation and associated access methods. We show under what circumstances the organisations can be applied, and we look at how queries
can be optimised.

Transaction processing and concurrency control- a huge part of DBMS in practice is the need to support transactions and concurrency, allowing huge numbers of
users to access the DBMS at any one time while still ensuring the consistency of the data. This stream examines the problems and solutions in depth.
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Lecture 2
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Lecture 1
Lecture 2

Lab

Lecture 1
Lecture 2

Lab

Lecture 1
Lecture 2

Lab

Lecture 1
Lecture 2

Lab

Lecture 1
Lecture 2

Lab

Introduction to the module, Why do we need Databases? Entity Relationship Model
Entity Relationship Model (ERM) (cont.)

A gentle start to the ER diagrams.

Relational Model (RM)
ER to RM

ER diagrams.

Relational Model To SQL & SQL scripting
Review

ER to Relational Model.

Relational Algebra
Functional Dependencies + 1st, 2nd Normal Forms

Relational Algebra + SQL + Relational Model To SQL.

3dr and Boycott normal forms. Advanced SQL queries.
JDBC

Functional dependencies and Normalisation.

Physical Storage - record files
Storage - secondary files

Functional dependencies and Normalisation + JDBC Example.

Record Search - B-Trees
Search - Hashing

Working on project

Access Routines
Query Optimisation

Project Grade Phase 1

Concurrency - Transaction Processing
Locking

Project Grade Phase 2

Advanced SQL - schemas, views, access control
Review and recap?

Project Grade Phase 3

Lancaster

University

> )
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B
BID Colr
b1l red
b2 grn

AND : Used to compute the set
intersection of two union-compatible
sets of tuples

Find sid’s of sailors who’ve reserved a red and a greeNboat

R
SID BID
sl bl
sl b2
s2 bl

B1XR1
BID Colr [ SID BID
b1l red sl bl
b1l red sl b2
b1l red s2 b1l
b2 gn | sl bl
b2 gn | sl b2
b2 gn |s2 |bl

SELECT R.sid
FROM Boats B,
WHERE R.bid=B.

AND (B.color="regF'§ND B.color="green’)



Find sid’s of sailors who've reserved a red and a green boat

(TmplLlr . (o Boats)><i Reserves)) Lancaster E=a
PUETPLE ia™C color="red" University
Imp2rx . (O Boats)><1Reserves))
PP Gd ™ color= 'oreen’
A Bl X R1
Tmpl Tmp2 BID | Colr
R1 bl red
b1l red
B1 SID BID bl red
BID | Colr sl bl b2 grn
bl red sl b2 b2 grn
b2 grn S2 b1l b2 grn
B2 X R2
BID Colr
B2 R2 b1 red
BID Colr SID BID b1l red
bl | red sl bl bL_ | red
b2 | gmn s1 b2 b2 Jom '
2 b1 b2 grn
b2 grn




Find sid’s of sailors who’ve reserved a red and a green boat

Can be used to
compute the intersection of
any two
sets of tuples.

Included in the SQL/92
standard, but some systems
don’t support it.

Contrast symmetry of the
UNION and INTERSECT queries
with how much the other
versions differ.

Lancaster Ex=
UnlverS]_ty LEL AN 1

SELECT R.sid
FROM Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE R1.sid = R2.sid AND
R1.bid=B1.bid AND R2.bid=B2.bid
AND (B1.color="red’ B2.color="green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color="red’

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color="green’



: Lancaster E=3
Nested Queries University

Find names of sailors who ve reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid (ONLY ONE Colum)
FROM Reserves R
WHERE R.bid=103)

=  WHERE clause can itself contain an SQL query! (As well as FROM and HAVING clauses which
we will see later on.)



Nested Queries

SELECT S.sname
FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

Find names of sailors who ve reserved boat #103:

std | sname rating | age
=P | 22 | Dustin | 7 45.0
29+ - Brutus't [ 33.0
=P | 31 | Lubber | 8 Do
32 | Andy 8 25.5
28 | Rusty 10 35.0
64 | Horatio | 7 85.0
71 | Zorba 10 16.0
=P | 74 | Horatio | 9 36.0
85 | Art 3 295
95 | Bob 3 63.5

\

\

Lancaster
University = °

sid || bed | day
22 ||101 | 10/10/98
22 |[102 | 10/10/98
22 |[[103 | 10/8/98
52 || 104 | 10/7/98
31 |[102 | 11/10/98
103 | 11/6/98
31 ||104 | 11/12/98
64 ||101 | 9/5/98
64_||102 | 9/8/98
'7_4i 103 | 9/8/98




Nested Queries

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid
FROM Reserves R

Find names of sailors
who did NOT reserve boat #103:

Lancaster E=2

University # ¢

WHERE R bid=103)

sid | sname | rating | age

22 [sPustiniad 7 45.0
29+ e Brutusit |l 33.0
31 | Lubber | 8 T
32 | Andy | 8 25.5
28 | Rusty 10 35 0
64 | Horatio | 7 350
73 Zorha 11l 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 95 5
95 | Bob 3 63.5

sid | bid | day

22 | 101 | 10/10/98
22 | 102 | 10/10/98
22 | 103 | 10/8/98
22 | 104 | 10/7/98
31 | 102 1 11/10/98
31 | 103 | 11/6/98
31 | 104 | 11/12/98
64 | 101 | 9/5/98
64 | 102 | 9/8/98
74 | 103 | 9/8/98




EXISTS returns true TRUE if the set, is nonempty.
EXISTS operator is another set comparison

Nested Queries
with Correlation

operator, like IN.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Lsid | sname I rating ] age |

Lsid l bid J day

22

101

10/10/98

22

102

10/10/98

22

103

10/8/98

22

104

10/7/98

31

102

11/10/98

31

103

11/6/98

31

104

11/12/98

64

101

9/5/98

22 |sDustini=i 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 25.5
95 | Bob 3 63.5

64

102

9/8/98

74

103

9/8/98

Lancaster
University = =

Find names of sailors SELECT S.sname
FROM GSailors S

whove reserved boat #103:  WiERE Ssid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

= To understand semantics of correlated
queries, think of a nested loops evaluation:
For each Sailors tuple, check the qualification
by computing the subquery.

For (i=1...10) do {
For (j=1...5) do {
y=x+1;



Nested Queries with Correlation

UNIQUE construct can be used.

Lancaster E=3

University 2 #
Find names of sailors who reserved a boat at most once

UNIQUE checks for duplicate tuples. Returns TRUE if the corresponding set does not contain duplicates.

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT Rbi
FROM Reserves R
WHERE S.sid=R.sid)

| sid [ sname | rating [ age

22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 255
95 | Bob 3 63.5

Lsid | bid I day

22

101

10/10/98

22

102

10/10/98

22

103

10/8/98

22

104

10/7/98

31

102

11/10/98

31

103

11/6/98

31

104

11/12/98

64

101

9/5/98

64

102

9/8/98

74

103

9/8/98




- Lancaster E<3
More on Set-Comparison Operators University £

We've already seen IN, EXISTS and UNIQUE. Can also use NOT IN, NOT EXISTS and NOT
UNIQUE.

Also available: ANY, op ALL
Find sailors whose rating is greater than that of some sailor called Horatio:

> < = > <L ¢'<>' ANY (returns true if there exist tuples (returned from nested
> T WHERE clause) obey the condition!)
ALL (returns true if all tuples (returned from nested WHERE
.
SELECT * clause) obey the condition!) - 1 | .
. sid | sname | rating | age i
FROM Sailors S 22 [Dustin |7 | 5.0 22 [ 101 | 10/10/98
) ) 29 | Brutus | 1 33.0 22 | 102 | 10/10/98
WHERE S.rating > ANY (SELECT S2.rating 31 | Tubber [§ [ 555 | 22 | 103 | 10/8/98
. 32 | Andy |8 255 22 | 104 | 10/7/98
FROM Sailors S2 58 | Rusty |10 | 350 31 | 102 | 11/10/98
, ., 64 | Horatio | 7 35.0 31 | 103 | 11/6/98
WHERE S2.sname="Horatio’) 7| Zorba |10 | 160 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 102 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98




Division in SQL

Find sailors who've reserved all boats.

SELECT S.sname

FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid A
FROM Boats B)

EXCEPT -
(SELECT R.bid
FROM Reserves R B
WHERE R.sid = S.sid))

EXISTS (.. Is nonempty ?)
NOT EXISTS (.. Is empty ?)

Lancaster E<:

University # ¢

[ sid ame ting o ]
22 | Dustin 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 25.5
95 | Bob 3 63.5

Figure 4.15 An Instance S3 of Sailors

sid | bid | day [
22 | 101 | 10/10/98
22 | 102 | 10/10/98
22 | 103 | 10/8/98
22 | 104 | 10/7/98
31 | 102 | 11/10/98
31 | 103 | 11/6/98
31 | 104 | 11/12/98

64 | 101 | 9/5/98
64 | 102 | 9/8/98
74 | 103 | 9/8/98

Figure 4.16 An Instance R2 of Reserves

bid ] bname

101 | Interlake

102 | Interlake

104 | Marine

103 | Clipper green

Figure 4.17 An Instance o ats

THINK ABOUT HOW YOU CAN WRITE THE RELATIONAL

ALGEBRA VERSION WITHOUT USING THE DIVISION OPERATOR



Aggregate Operators Lancaster E=

University # ¢

= Significant extension of relational algebra.
m They are used to write statistical queries

= Mainly used for reporting, such as

COUNT (¥ = the total sales in 2004,

COUNT ( [DISTINCT] A) m average, max, min income of employees
SUM ( [DISTINCT] A) . . .
AVG ( [DISTINCT] A) = Total number of employees hired/fired in
MAX (A) 2004

MIN (A)




Aggregate Operators Lancaster £33
COUNT () WUniversity ©

COUNT ( [DISTINCT] A)
SUM ( [DISTINCT] A)
AVG ([DISTINCT] A)

The total number of sailors in the club? MAX (A)
MIN (A)

[ sid | sname I rating I age I uid l bid I day |
22 | Dustin | 7 45.0 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
SELECT COUNT (*) 32 | Andy |8 25.5 22 | 104 | 10/7/98
58 | Rusty 10 35.0 31 | 102 | 11/10/98
1 64 | Horatio | 7 35.0 31 | 103 | 11/6/98
FROM Sallors S 71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98
Figure 4.15 An Instance S3 of Sailors Figure 4.16 An Instance R2 of Reserves
| bid ] bname | color |

101 | Interlake | blue
102 | Interlake | red
103 | Clipper green
104 | Marine red

Figure 4.17 An Instance Bl of Boats



Aggregate Operators

Average age of sailors in the club
Whose rating is 10?

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

Lancaster E=S

University & °

COUNT (¥)

COUNT ( [DISTINCT] A)

SUM ( [DISTINCT] A)
AVG ([DISTINCT] A)

MAX (A)
MIN (A)

[ sid | sname rating agr!
22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 25.5
95 | Bob 3 63.5

Figure 4.15 An Instance S3 of Sailors

Figure

sid [ bid | day I
22 | 101 | 10/10/98
22 | 102 | 10/10/98
22 | 103 | 10/8/98
22 | 104 | 10/7/98
31 | 102 | 11/10/98
31 | 103 | 11/6/98
31 | 104 | 11/12/98
64 | 101 | 9/5/98
64 | 102 | 9/8/98
74 | 103 | 9/8/98

bid

bname

color

101

Interlake

blue

102

Interlake

red

103

Clipper

green

104

Marine

red

Figure 4.17 An Instance Bl of Boats

4.16 An Instance R2 of Reserves



Lancaster
Aggregate Operators University

COUNT (¥)
COUNT ( [DISTINCT] A)
SUM ( [DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)

Average distinct ages of sailors in the club
Whose rating is 107?

[ sid | sname rating | age | sid | bid | day
22 | Dustin 7 45.0 22 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
3L | Lubber [8 55.5 25 | 103 | 10/8/98
32 | Andy 8 25.5 22 | 104 | 10/7/98
SELECT AVG (DISTINCT S.age) SimimE e
. g 64 | Horatio | 7 35.0 31 | 103 | 11/6/98
. 71 Zorba 10 16.0 31 104 | 11/12/98
FROM Sallors S 74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
WHERE S t. _ 1 O 95 | Bob 3 63.5 74 | 103 | 9/8/98
Ta lng Figure 4.15 An Instance S3 of Sailors F A f
Uid I bnam 1
101 | Interlak bl
102 | Interlak d
103 | Clipp g
104 | Marine d




Lancaster
Aggregate Operators University

COUNT (*)
COUNT ( [DISTINCT] A)
SUM ( [DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)

Names of sailors whose rating is equal to the maximum
rating in the club.

SELECT S.sname

sid | sname rating | age sid | bid | day

. 22 | Dustin | 7 45.0 22 [ 101 | 10/10/98
FROM Sailors S T e o
31 | Lubber | 8 555 22 | 103 | 10/8/98

WHERE ' SELECT MAX(S2.rati SR TR D st 10 110
= t 58 | Rusty | 10 35.0 31 [ 102 | 11/10/98

S'ratlng ( ( 'ra‘ ]‘ng) 64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zotba | 10 16.0 31 | 104 | 11/12/98

FROM S '1 Sz 74 | Horatio | 9 35.0 64 | 101 | 9/5/98

allors 85 | Art 3 25.5 64 | 102 | 9/8/98

95 | Bob 3 63.5 74 | 103 | 9/8/98

[ bid ] bnam 1




Lancaster
Aggregate Ope rators University & °

COUNT (¥
COUNT ( [DISTINCT] A)
. - | SUM ( [DISTINCT] A)
Nurnbgr olfsaflok:'s whose rating is equal to the maximum AVG ( [DISTINCT] A)
rating In the club. MAX (A)

MIN (A)

SELECT COUNT(S.sid)

sid | sname rating | age [ sid | bid | day

FROM S '1 S 22 | Dustin | 7 150 22 | 101 | 10/10/98
allors 20 | Brutus 1 33.0 22 | 102 | 10/10/98

31 | Lubber | 8 555 22 [ 103 | 10/8/98

. . 32 [Andy |8 %525 22 | 104 | 10/7/98
WHERE S t = SELECT MAX 82 t 58 [Rusty |10 | 350 31 [ 102 | 11/10/98
Ja lng ( ( JTa lng) 64 | Horatio | 7 35.0 31 [ 103 | 11/6/98

71 [ Zotba | 10 31| 104 | 11/12/

. 1 | Zorba 16.0 T [ 104 | 11/12/98
FROM S 1 T Sz 74 | Horatio | 9 35.0 64 | 101 | 9/5/98
allors 85 [ Art 3 %55 64 | 102 | 9/8/98
9% [Bob |3 3.5 74 |1 8
Figure 4.15 An Instance S3 of Sailors Figure 4.16




Aggregate Operators %%%%%g}ﬁyf

COUNT (*)

COUNT ( [DISTINCT] A)
How many different ratings are there in the club? SUM ( [DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)

SELECT COUNT (S.rating)

. sid | sname rating | age sid | bid | day
FROM Sailors S Sl e ] Bt
29 | Brutus 1 33.0 22 [ 102 | 10/10/98
31 | Lubber |8 55.5 22 [ 103 | 10/8/98
32 | And 8 5.5 22 | 104 | 10/7/98
58 | Rusty | 10 35.0 31 | 102 | 11/10/98
64 | Horati 7 35 31 103 | 11/6/98
71 | Zorb 10 0 31 | 104 | 11/12/98
. H 74 | Horatio | 9 35.0 64 | 101 | 9/5/98
Above query is not correct. Think why! w5 an T3 S0 078708
95 | Bob 3 63.5 74 | 103 | 9/8/98
igur
‘lzd ame color
101 blue

SELECT COUNT (DISTINCT S.rating) | e 2
FROM Sailors S .

Y =lolElEls
E R

212 (2|8
= =

3|2 &5
2 5|5
&




Find name and age of the oldest sailor(s)

= This query is correct and it is allowed in the SQL/92 standard, but is not

supported in some systems.

sid | sname rating | age

22 | Dustin 7 45.0

29 | Brutus |1 33.0

31 | Lubber | 8 55.5

32 | Andy 8 25.5

58 | Rusty 10 35.0

SELECT S.sname, S.age ool o b
. 71 | Zorba 10 16.0

FROM Sailors S i [ Horaio [0 | 550
85 | Art 3 25.5

WHERE S _ 95 | Bob 3 63.5

.age Figure 4.15 An Instance S3 of Sailors

(SELECT MAX (S2.age)
FROM Sailors S2)

Lancaster
University = °

I sid | bid | day

22 | 101 | 10/10/98
22 | 102 | 10/10/98
22 | 103 | 10/8/98
22 | 104 | 10/7/98
31 | 102 | 11/10/98
31 | 103 | 11/6/98
31 | 104 | 11/12/98
64 | 101 | 9/5/98
64 | 102 | 9/8/98
74 | 103 | 9/8/98

Figure 4.16 An Instance R2 of Reserves

Iﬂ bname color |
101 | Interlake | blue
102 | Interlake | red
103 | Clipper green
104 | Marine red

Figure 4.17 An Instance Bl of Boats



- : Lancaster
Find name and age of the oldest sailor(s) University 2 ®

m This query is valid for all systems .

sid | sname rating | age I sid | bid | day
22 | Dustin | 7 45.0 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 | Andy 8 25.5 22 | 104 | 10/7/98
SELECT S sname S ace 58 | Rusty | 10 35.0 31 | 102 | 11/10/98
. V4 . g 64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zorba 10 16.0 31 | 104 | 11/12/98
FROM Saﬂors S 74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
WHERE (SELECT MAX (S2 o e o e
( ( .age) Figure 4.15 An Instance S3 of Sailors Figure 4.16 An Instance R2 of Reserves

FROM Sailors S2)
Iﬂ bname color |
= S.age 101 | Interlake | blue

102 | Interlake | red
103 | Clipper green
104 | Marine red

Figure 4.17 An Instance Bl of Boats



GROUP BY and HAVING

Lancaster E<=
University = °

= So far, we've applied aggregate operators to all (qualifying) tuples. Sometimes, we want to apply them to each of
several groups of tuples.

Consider: Find the age of the youngest sailor for each rating level.

In general, we don’t know how many rating levels exist and what the rating values for these levels are!
m Suppose we know that rating values go from 1 to 10; we can write 10 queries that look like this (!):

[ sid | sname [ rating [ age sid | bid | day
22 [ Dustin | 7 15.0 22 [ 101 | 10/10/98
29 [ Brutus | L 33.0 22 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 [Andy |8 25.5 22 | 104 | 10/7/98
58 | Rusty | 10 35.0 31 [ 102 | 11/10/98 .
64_| Horatio | 7 35.0 31 [ 103 | 11/6/98 — 1 2 10-
71 | Zorba | 10 16.0 31 | 104 | 11/12/98 FOI' l 7 J see g .
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98
Figur

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating =i




Queries With GROUP BY and HAVING acaster

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING  group-qualification

= The target-list contains (i) attribute list(ii) terms with aggregate operations (e.g., MIN
(S.age)).




Lancaster E=S

Conceptual Evaluation University ® °

s The cross-product of relation-list is computed, tuples that fail gualification are discarded,
‘unnecessary’ fields are deleted, and the remaining tuples are partitioned into groups by
the value of attributes in grouping-list.

s The group-qualification is then applied to eliminate some groups. Expressions in group-
qualification must have a single value per group!

= One answer tuple is generated per qualifying group.

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list
HAVING  group-qualification




Conceptual Evaluation

Lancaster
University = °

GROUP BY grouping-list I

grl —
HAVING  group-qualification

SELECT target-list
FROM  relation-list

WHERE qualification

gr3

SELECT  [DISTINCT] target-list
FROM relation-list

WHERE  qualification

GROUP BY grouping-list

gr5 HAVING  group-qualification

gr4




Conceptual Evaluation

Lancaster
University = °

Age = 20 GROUP BY
SELECT S.rating S.rating
FROM Sailors S Rating=1 HAVING COUNT (*) > 1
WHERE S.age >= 18 grl Rating=1
Rating =4 gr2 Rating=2 RESULT
Rating =2 Rating=2
Rating =3
Rating=2 ;
Rating=3 Rat!ng=3
Rating=5 gr3 AR
Rating=1 Rating=3
Rating=4 .
Rating=3 SELECT S.rating
Rating=4 Rating=4 FROM Sailors S
Rating=1 gr4 Rating=4 _
Rating=4 WHERE S.age >.— 18
GROUP BY S.rating
Age =22 gr5 Rating=5 HAVING COUNT (*) > 1
Age = 39




Find the age of the youngest sailor with age >18, for

each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S

WHERE S.age >=18

GROUP BY S.rating
HAVING COUNT (*)>1

Only S.rating and S.age are mentioned in the
SELECT, GROUP BY or HAVING clauses;

2nd column of result is unnamed. (Use AS to
name it.)

Lancaster
University = °

sid |sname |rating |age
22 |dustin 7 45.0
31 |lubber 8 55.5
71 |zorba 10 [16.0
64 |horatio | 7 35.0
29 |brutus 1 33.0
58 |rusty 10 [35.0
rating age

1 1330

7 1450 rating

7 1350 7 135.0

8 1555

10 135.0 Answer relation




Find the age of the youngest sailor with age>18, for
each rating with at least 2 such sailors

SELECT S.rating, ag=MIN (S.age)
FROM Sailors S

WHERE S.age >=18

GROUP BY S.rating

HAVING COUNT (*)>1

= Only S.rating and S.age are mentioned in the
SELECT, GROUP BY or HAVING clauses;

= 2nd column of result is unnamed. (Use AS to
name it.)

Lancaster E=S

University # ¢

sid |sname rating |age
22 | dustin 7 45.0
31 |lubber | 8 55.5
71 |zorba 10 [16.0
64 |horatio | 7 35.0
29 |brutus 1 33.0
58 |rusty 10 (35.0
rating | age

1 1330

740 rating |ag

7 1350 7 35.0

8 1555

10 135.0 Answer relation



