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Previously: 

• Multivalued attribute: 

• An attribute that can hold a set of 
values, i.e. a set of phone numbers. 

• Prime attribute: 

• A part of a (composite) key. 

• Non-prime attribute: 

• An attribute that is not a part of any 
keys. 

• 1st Normal Form 

• No multivalued attributes 

• 2nd Normal Form 

• No part of a key determines a 
non-prime attribute. 

• 3rd Normal Form 

• No non-prime attribute 
determines a non-prime 
attribute. 
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Boyce-Codd Normal Form  (BCNF) 

 Relation R with FDs F is in BCNF if, for all X       A  in 

 A      X   (called a trivial FD), or 

 X contains a key for R. (i.e., X is a superkey) 

 In other words, R is in BCNF if the only non-trivial FDs that hold over R 

are key constraints. 

 No dependency in R that can be predicted using FDs alone. 

 If example relation is in BCNF and X is a key, the 2 tuples                                  

must be identical  (since X is a key). 

 To check we must know all keys. 

F


X Y A

x y1 a

x y2 ?



         what is going on here? 

• Let us assume that we are given a relation R={A,B,C,D,E,F,G} 

• Also let us assume that we are given a set of FDs 
• A->B , B->C, BC->D, D->EFG. 

• When ever we are to optimise a relation, we have to analyse the FDs to reveal 
hidden dependencies.  

• This can be done by using some intuitively.  
• In the above A->B, B->C this implicitly means that A->C ?  
• If BC->D and if D->EFG then BC->DEFG ?  
• If BC->DEFG then ABC->ADEFG?  
• If ABC -> ADEFG then ABBCC - > ABCDEFG? 
• So ABC -> ABCDEFG? 
• So ABC is a key… What else?  
• A->B and A->C so A-> ABC 
• So A->ABCDEFG and A is a key. 
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 A FD f   is implied by a set of FDs F if f  holds whenever all FDs in F hold. 

       = closure of F is the set of all FDs that are implied by F. 

 Armstrong’s Axioms (X, Y, Z are sets of attributes): 
 Reflexivity:  If  X       Y,  then   Y        X  (a trivial FD) “IF X is IN Y” comment  

 Augmentation:  If  X       Y,  then   XZ         YZ   for any Z 

 Transitivity:  If  X       Y  and  Y        Z,  then   X        Z 

 These are sound and complete inference rules for FDs! 
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S N L R W H 
For example, in the above schema 

 

S N -> S    is a trivial FD   

since {S,N} is a superset of {S} 

Reasoning About FDs 



S N L R W H 

For example, in the given schema 

 

If S N -> R W, then   S N L -> R W L  (by augmentation) 

If S ->R and R -> W, then S ->W (by transitivity) 

Reasoning About FDs 



 

 

 

 Example:    Contracts(cid,sid,jid,did,pid,qty,value), and given FDs: 

 C is the key:   C         CSJDPQV 

 Project purchases each part using single contract:  JP        C 

 Dept purchases at most one part from a supplier:  SD        P then prove that SDJ 

is a KEY: 

 SD      P   implies   SDJ       JP 

 JP      C,  C        CSJDPQV   imply   JP       CSJDPQV 

 SDJ      JP,   JP        CSJDPQV   imply   SDJ       CSJDPQV 



















Reasoning About FDs 



For a given FD F we have to find all possible Keys using F+ Closure. 

And then using the Normalisation rules we decide on the 
Normalisation level. 

If required level is not satisfied we decompose the relation according 
to the FD that prevents required Normal Form 

 

Normalisation (3 STEPS) 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D 

• AC is the candidate key. 
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• ACC->BC…AC->BC (Augmentation) 

• BC->D….AC->BC->D 

• AC is the candidate key. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC (Augmentation) 

• BC->D….AC->BC->D 

• AC is the candidate key. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D (Transitivity) 

• AC is the candidate key. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D (Transitivity) 

• AC is the candidate key. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Observation1: No single 

prime attribute determines a 

nonprime attribute. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D } 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Observation1: No single 

prime attribute determines a 

nonprime attribute, so in 

2NF. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Observation2: B determines 

E, so Relation is not in 3NF. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Observation3: B determines 

E, so Relation is not in 3NF 

and so not in BCNF. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Answer is 2NF. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Solution: 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Solution: As B->E nonprime attribute implies 

nonprime attribute. We decompose ABCDE to 

ABCD, and BE.  



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Solution: However we have FD BC ->D. BC is not a 

key. So we will decompose ABCD to ABC and BCD. 



Normal Forms Contd. 

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D} 

• What is the maximum Normalisation level? 

• AC->BE……….AC->B, AC->E 

• ACC->BC…AC->BC 

• BC->D….AC->BC->D…AC->D 

• AC is the candidate key as AC->BE, AC->D, by union and augmentation 
ABCABCDE. 

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES. 
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Solution: Finally we have three tables ABC, BE, 

and BCD. This is in 3NF, and BCNF. 

More examples are in Lab material Next Week. 



Summary 

• Relational algebra and Normal forms are quite important apparatuses 
to optimise  

• Database (Normal forms) 

• Querying (Relational algebra) 

• We have seen four normal forms  

• 1st, 2nd, 3rd, and Boyce-Codd normal forms. 

• Each Normalisation level guarantees a level of non-redundancy. 

• Decomposition is done on FDs. 
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SCC.201 
Database Management Systems 

2023 - Week 5 – SQL and JDBC 

Uraz C Turker & Ricki Boswell 
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What will you learn today? 

• Advanced SQL queries 

• Connection with JDBC. 

 

64 



  

65 

Lecture 1 Introduction to the module, Why do we need Databases? Entity Relationship Model

Lecture 2 Entity Relationship Model (ERM) (cont.)

Lecture 1 Relational Model (RM)

Lecture 2 ER to RM 

Lecture 1 Relational Model To SQL & SQL scripting

Lecture 2 Review

Lecture 1 Relational Algebra

Lecture 2 Functional Dependencies + 1st, 2nd Normal Forms

Lecture 1 3dr and Boycott normal forms. Advanced SQL queries.

Lecture 2 JDBC

Lecture 1 Physical Storage - record files

Lecture 2 Storage - secondary files

Lecture 1 Record Search - B-Trees

Lecture 2 Search - Hashing

Lecture 1 Access Routines

Lecture 2 Query Optimisation

Lecture 1 Concurrency - Transaction Processing

Lecture 2 Locking

Lecture 1 Advanced SQL - schemas, views, access control

Lecture 2 Review and recap?

Lab Project Grade Phase 2

Lab Project Grade Phase 3

Lab Working on project

Lab Project Grade Phase 1

Lab Functional dependencies and Normalisation.

Lab Functional dependencies and Normalisation + JDBC Example.

Lab ER to Relational Model.

Lab Relational Algebra + SQL + Relational Model To SQL.

Lab A gentle start to the ER diagrams.

Lab ER diagrams.



 AND  : Used to compute the set 

intersection of two union-compatible 

sets of tuples  

BID Colr 

b1 red 

b2 grn 

SID BID 

s1 b1 

s1 b2 

s2 b1 

B R 

Find sid’s of sailors who’ve reserved a red and a green boat 

SELECT  R.sid 
FROM  Boats B, Reserves R 
WHERE  R.bid=B.bid 
  AND (B.color=‘red’ AND B.color=‘green’) 

BID Colr SID BID 

b1 red s1 b1 

b1 red s1 b2 

b1 red s2 b1 

b2 grn s1 b1 

b2 grn s1 b2 

b2 grn s2 b1 

B1 X R1 

? 



Find sid’s of sailors who’ve reserved a red and a green boat 

BID Colr 

b1 red 

b2 grn 

SID BID 

s1 b1 

s1 b2 

s2 b1 

BID Colr SID BID 

b1 red s1 b1 

b1 red s1 b2 

b1 red s2 b1 

b2 grn s1 b1 

b2 grn s1 b2 

b2 grn s2 b1 

B1 

R1 

B1 X R1 

))Re)
''

((,1( servesBoats
redcolorsid

Tmp 




  

  

))Re)
''

((,2( servesBoats
greencolorsid

Tmp 




Tmp1 ᴖ Tmp2 

BID Colr 

b1 red 

b2 grn 

SID BID 

s1 b1 

s1 b2 

s2 b1 

BID Colr SID BID 

b1 red s1 b1 

b1 red s1 b2 

b1 red s2 b1 

b2 grn s1 b1 

b2 grn s1 b2 

b2 grn s2 b1 

B2 R2 

B2 X R2 

Tmp1 

Tmp2 

s1 

s2 

? 



Find sid’s of sailors who’ve reserved a red and a green boat 

 INTERSECT: Can be used to 

compute the intersection of 

any two  union-compatible 

sets of tuples.  

 Included in the SQL/92 

standard, but some systems 

don’t support it. 
 Contrast symmetry of the 

UNION and INTERSECT queries 

with how much the other 

versions differ. 

SELECT  R.sid 
FROM  Boats B1, Reserves R1, 
             Boats B2, Reserves R2 
WHERE  R1.sid = R2.sid AND  
      R1.bid=B1.bid AND R2.bid=B2.bid 
  AND (B1.color=‘red’ AND B2.color=‘green’) 

SELECT  R.sid 
FROM  Boats B, Reserves R 
WHERE  R.bid=B.bid 
                AND B.color=‘red’ 
INTERSECT 

SELECT  R.sid 
FROM  Boats B, Reserves R 
WHERE   R.bid=B.bid 
                AND B.color=‘green’ 



Nested Queries 

 WHERE clause can itself contain an SQL query!  (As well as FROM and HAVING clauses which 

we will see later on.) 

SELECT  S.sname 

FROM  Sailors S 

WHERE  S.sid IN  (SELECT  R.sid  (ONLY ONE Colum) 

                               FROM  Reserves R 

                               WHERE  R.bid=103) 

Find names of sailors who’ve reserved boat #103: 



Nested Queries 

SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN  (SELECT  R.sid 
                               FROM  Reserves R 
                               WHERE  R.bid=103) 

Find names of sailors who’ve reserved boat #103: 



Nested Queries 

SELECT  S.sname 

FROM  Sailors S 

WHERE  S.sid NOT IN  (SELECT  R.sid 

                               FROM  Reserves R 

                               WHERE  R.bid=103) 

Find names of sailors  
who did NOT reserve boat #103: 



Nested Queries  

with Correlation 

 EXISTS returns true TRUE if the set, is nonempty. 

EXISTS operator is another set comparison 

operator, like IN.   

SELECT  S.sname 
FROM  Sailors S 
WHERE   EXISTS  (SELECT  * 
                             FROM  Reserves R 
                             WHERE  R.bid=103 AND S.sid=R.sid) 

Find names of sailors  
who’ve reserved boat #103: 

 To understand semantics of correlated 

queries, think of a nested loops evaluation:  

For each Sailors tuple, check the qualification 

by computing the subquery. 

  

For (i=1…10) do  { 
For (j=1…5)  do { 
     y=x+1; 

} 

} 

SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN  (SELECT  R.sid 
                               FROM  Reserves R 
                               WHERE  R.bid=103) 



Nested Queries with Correlation 

 

 UNIQUE construct can be used.  

 UNIQUE checks for duplicate tuples. Returns TRUE if the corresponding set does not contain duplicates. 

SELECT  S.sname 

FROM  Sailors S 

WHERE   UNIQUE  ( SELECT  R.bid 

                                 FROM  Reserves R 

                                                 WHERE   S.sid=R.sid) 

Find names of sailors who reserved a boat at most once 



More on Set-Comparison Operators 

 We’ve already seen IN, EXISTS and UNIQUE.  Can also use NOT IN, NOT EXISTS and NOT 

UNIQUE. 

 Also available:  op ANY, op ALL 

 Find sailors whose rating is greater than that of some sailor called Horatio: 

'',,,,, 

SELECT  * 

FROM  Sailors S 

WHERE  S.rating > ANY  (SELECT  S2.rating 

                                           FROM  Sailors S2 

                                           WHERE S2.sname=‘Horatio’) 

ANY (returns true if there exist tuples (returned from nested 

WHERE clause) obey the condition!) 

ALL (returns true if all tuples (returned from nested WHERE 

clause) obey the condition!) 



Division in SQL 

SELECT  S.sname 
FROM  Sailors S 
WHERE  NOT EXISTS  

              ((SELECT  B.bid 
                 FROM  Boats B) 
                EXCEPT 

                 (SELECT  R.bid 
                  FROM  Reserves R 
                  WHERE  R.sid =  S.sid)) 

Find sailors who’ve reserved all boats. 

EXISTS (.. Is nonempty ?) 

NOT EXISTS (.. Is empty ?) 
THINK ABOUT HOW YOU CAN WRITE THE RELATIONAL 

ALGEBRA VERSION WITHOUT USING THE DIVISION OPERATOR 

A  

-  

B 



Aggregate Operators 

 Significant extension of relational algebra. 

 They are used to write statistical queries 

 Mainly used for reporting, such as 

  the total sales in 2004,  

 average, max, min income of employees 

 Total number of employees hired/fired in 

2004 

 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 



Aggregate Operators 
COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 

SELECT  COUNT (*) 

FROM  Sailors S 

The total number of sailors in the club? 



Aggregate Operators 

SELECT  AVG (S.age) 

FROM  Sailors S 

WHERE  S.rating=10 

Average age of sailors in the club 

Whose rating is 10? 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 



Aggregate Operators 

Average distinct ages of sailors in the club 

Whose rating is 10? 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 

SELECT  AVG ( DISTINCT S.age) 

FROM  Sailors S 

WHERE  S.rating=10 



Aggregate Operators 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 

SELECT  S.sname 

FROM  Sailors S 

WHERE  S.rating= (SELECT  MAX(S2.rating) 

                                 FROM  Sailors S2) 

Names of sailors whose rating is equal to the maximum 

rating in the club.  



Aggregate Operators 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 

SELECT  COUNT(S.sid) 

FROM  Sailors S 

WHERE  S.rating= (SELECT  MAX(S2.rating) 

                                 FROM  Sailors S2) 

Number of sailors whose rating is equal to the maximum 

rating in the club.  



Aggregate Operators 

COUNT (*) 

COUNT ( [DISTINCT] A) 

SUM ( [DISTINCT] A) 

AVG ( [DISTINCT] A) 

MAX (A) 

MIN (A) 

How many different ratings are there in the club?  

SELECT  COUNT (S.rating) 

FROM  Sailors S 

SELECT  COUNT (DISTINCT S.rating) 

FROM  Sailors S 

Above query is not correct. Think why!  



Find name and age of the oldest sailor(s) 

 This query is correct and it is allowed in the SQL/92 standard, but is not 

supported in some systems. 

 

SELECT  S.sname, S.age 

FROM  Sailors S 

WHERE  S.age = 

              (SELECT  MAX (S2.age) 

               FROM  Sailors S2) 



Find name and age of the oldest sailor(s) 

 This query is valid for all systems . 

SELECT  S.sname, S.age 

FROM  Sailors S 

WHERE  (SELECT  MAX (S2.age) 

               FROM  Sailors S2) 
               = S.age 



GROUP BY and HAVING 

 So far, we’ve applied aggregate operators to all (qualifying) tuples.  Sometimes, we want to apply them to each of 

several groups of tuples. 

 

Consider:  Find the age of the youngest sailor for each rating level.  

 

In general, we don’t know how many rating levels exist and what the rating values for these levels are! 
 Suppose we know that rating values go from 1 to 10; we can write 10 queries that look like this (!): 

SELECT  MIN (S.age) 
FROM  Sailors S 
WHERE  S.rating = i 

For i = 1, 2, ... , 10: 



Queries With GROUP BY and HAVING 

 The target-list contains (i) attribute list(ii) terms with aggregate operations (e.g., MIN 
(S.age)). 

SELECT        [DISTINCT]  target-list 

FROM         relation-list 

WHERE        qualification 

GROUP BY  grouping-list 

HAVING      group-qualification 



Conceptual Evaluation 

 The cross-product of relation-list is computed, tuples that fail qualification are discarded, 

`unnecessary’ fields are deleted, and the remaining tuples are partitioned into groups by 

the value of attributes in grouping-list.   

 The group-qualification is then applied to eliminate some groups.  Expressions in group-

qualification must have a single value per group! 

 One answer tuple is generated per qualifying group. 

SELECT        [DISTINCT]  target-list 
FROM         relation-list 
WHERE        qualification 
GROUP BY  grouping-list 
HAVING      group-qualification 



Conceptual Evaluation 

SELECT        [DISTINCT]  target-list 
FROM         relation-list 
WHERE        qualification 
GROUP BY  grouping-list 
HAVING      group-qualification 

gr1 

gr2 

gr3 

gr4 

gr5 

SELECT   target-list 
FROM     relation-list 
WHERE   qualification 

GROUP BY  grouping-list 

HAVING      group-qualification 

RESULT 



Conceptual Evaluation 

Age=70 

Age = 33 

Age = 60 

Age = 19 

Age = 22 

Age = 40 

Age = 25 

Age = 20 

Age = 32 

Age = 18 

Age = 39 

Rating = 4 

Rating=4 

Rating=1 

Rating=5 

Rating=3 

Rating=2 

Rating =3 

Rating=1 

Rating=3 

Rating=4 

Rating=1 

Rating=5 

Rating=4 

Rating=4 

Rating=4 

Rating=3 

Rating=3 

Rating=3 

Rating=2 

Rating=2 

Rating=1 

SELECT  S.rating 
FROM  Sailors S 
WHERE  S.age >= 18 
GROUP BY  S.rating 
HAVING  COUNT (*) > 1 

gr1 

gr2 

gr3 

gr4 

gr5 

GROUP BY  
S.rating 

HAVING  COUNT (*) > 1     

Rating = 1 

Rating = 2 

Rating = 3 

RESULT 

Rating =2 

Rating = 4 

SELECT  S.rating 
FROM  Sailors S 
WHERE  S.age >= 18 



Find the age of the youngest sailor with age       18, for 

each rating with at least 2 such sailors 

 Only S.rating and S.age are mentioned in the 

SELECT, GROUP BY or HAVING clauses;  

 2nd column of result is unnamed.  (Use AS to 

name it.) 

SELECT  S.rating,  MIN (S.age) 

FROM  Sailors S 

WHERE  S.age >= 18 

GROUP BY  S.rating 

HAVING  COUNT (*) > 1 

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 zorba 10 16.0

64 horatio 7 35.0

29 brutus 1 33.0

58 rusty 10 35.0

rating age

1 33.0

7 45.0

7 35.0

8 55.5

10 35.0

rating

7 35.0

Answer relation 





Find the age of the youngest sailor with age    18, for 

each rating with at least 2 such sailors 

 Only S.rating and S.age are mentioned in the 

SELECT, GROUP BY or HAVING clauses;  

 2nd column of result is unnamed.  (Use AS to 

name it.) 

SELECT  S.rating,  ag=MIN (S.age)  

FROM  Sailors S 

WHERE  S.age >= 18 

GROUP BY  S.rating 

HAVING  COUNT (*) > 1 

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 zorba 10 16.0

64 horatio 7 35.0

29 brutus 1 33.0

58 rusty 10 35.0

rating age

1 33.0

7 45.0

7 35.0

8 55.5

10 35.0

rating ag 

7 35.0 
 

 

Answer relation 




