
1

SCC.201
Database Management Systems

2023 – (CONT.) Week 4 – Relational Algebra – Schema
Refinement

Uraz C Turker & Ricki Boswell

2

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

3

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

4

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

5

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

6

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

7

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

8

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form

• No multivalued attributes

• 2nd Normal Form

• No part of a key determines a
non-prime attribute.

• 3rd Normal Form

• No non-prime attribute
determines a non-prime
attribute.

9

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• No non-prime attribute

determines a non-prime
attribute.

10

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• No non-prime attribute

determines a non-prime
attribute.

11

S L

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• No non-prime attribute

determines a non-prime
attribute.

12

S L

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• No non-prime attribute

determines a non-prime
attribute.

13

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• In 2nd Normal form, and no non-

prime attribute determines a
non-prime attribute (only keys
can determine!).

14

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• In 2nd Normal form, and no non-

prime attribute determines a
non-prime attribute (only keys
can determine!).

15

L St

Previously:

• Multivalued attribute:

• An attribute that can hold a set of
values, i.e. a set of phone numbers.

• Prime attribute:

• A part of a (composite) key.

• Non-prime attribute:

• An attribute that is not a part of any
keys.

• 1st Normal Form
• No multivalued attributes

• 2nd Normal Form
• In 1st Normal form, and no part

of a key determines a non-prime
attribute.

• 3rd Normal Form
• In 2nd Normal form, and no non-

prime attribute determines a
non-prime attribute (only keys
can determine!).

16

L St

Boyce-Codd Normal Form (BCNF)

 Relation R with FDs F is in BCNF if, for all X A in

 A X (called a trivial FD), or

 X contains a key for R. (i.e., X is a superkey)

 In other words, R is in BCNF if the only non-trivial FDs that hold over R

are key constraints.

 No dependency in R that can be predicted using FDs alone.

 If example relation is in BCNF and X is a key, the 2 tuples

must be identical (since X is a key).

 To check we must know all keys.

F


X Y A

x y1 a

x y2 ?

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done by using some intuitively.
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

18

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG.

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done by using some intuitively.
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

19

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG.

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

20

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG.

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

21

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

22

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C.

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

23

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.

• Whenever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

24

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

25

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

26

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

27

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG, ABC -> ABCDEFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

28

F

 what is going on here?

• Let us assume that we are given a relation R={A,B,C,D,E,F,G}

• Also let us assume that we are given a set of FDs
• A->B , B->C, BC->D, D->EFG, A->C, BC->DEFG, ABC -> ABCDEFG, A->ABCDEFG.

• When ever we are to optimise a relation, we have to analyse the FDs to reveal
hidden dependencies.

• This can be done intuitively:
• In the above A->B, B->C this implicitly means that A->C ?
• If BC->D and if D->EFG then BC->DEFG ?
• If BC->DEFG then ABC->ADEFG?
• If ABC -> ADEFG then ABBCC - > ABCDEFG?
• So ABC -> ABCDEFG?
• So ABC is a key… What else?
• A->B and A->C so A-> ABC
• So A->ABCDEFG and A is a key.

29

F

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X Y, then Y X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X Y, then Y X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ∈ Y, then Y -> X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ∈ Y, then Y -> X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X -> Y, then XZ-> YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ∈ Y, then Y -> X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X -> Y, then XZ ->Z for any Z

 Transitivity: If X -> Y and Y->Z, then X->Z

 Union: If X -> Y and X -> Z, then X -> YZ

 Decomposition: If X -> YZ, then X -> Y and X -> Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ∈ Y, then Y -> X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X -> Y, then XZ ->Z for any Z

 Transitivity: If X -> Y and Y->Z, then X->Z

 Union: If X -> Y and X -> Z, then X -> YZ

 Decomposition: If X -> YZ, then X -> Y and X -> Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

 A FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ∈ Y, then Y -> X (a trivial FD) “IF X is IN Y” comment 

 Augmentation: If X -> Y, then XZ ->Z for any Z

 Transitivity: If X -> Y and Y->Z, then X->Z

 Union: If X -> Y and X -> Z, then X -> YZ

 Decomposition: If X -> YZ, then X -> Y and X -> Z

 These are sound and complete inference rules for FDs!

F


Reasoning About FDs

S N L R W H
For example, in the above schema

S N -> S is a trivial FD

since {S,N} is a superset of {S}

Reasoning About FDs

S N L R W H

For example, in the given schema

If S N -> R W, then S N L -> R W L (by augmentation)

If S ->R and R -> W, then S ->W (by transitivity)

Reasoning About FDs

 Example: Contracts(cid,sid,jid,did,pid,qty,value), and given FDs:

 C is the key: C CSJDPQV

 Project purchases each part using single contract: JP C

 Dept purchases at most one part from a supplier: SD P then prove that SDJ

is a KEY:

 SD P implies SDJ JP

 JP C, C CSJDPQV imply JP CSJDPQV

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV



















Reasoning About FDs

For a given FD F we have to find all possible Keys using F+ Closure.

And then using the Normalisation rules we decide on the
Normalisation level.

If required level is not satisfied we decompose the relation according
to the FD that prevents required Normal Form

Normalisation (3 STEPS)

40

For a given FD F we have to find all possible Keys using F+ Closure.

And then using the Normalisation rules we decide on the
Normalisation level.

If required level is not satisfied we decompose the relation according
to the FD that prevents required Normal Form

Normalisation (3 STEPS)

41

For a given FD F we have to find all possible Keys using F+ Closure.

And then using the Normalisation rules we decide on the
Normalisation level.

If required level is not satisfied we decompose the relation according
to the FDs that prevents required Normal Form

Normalisation (3 STEPS)

42

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D

• AC is the candidate key.

43

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E (decomposition)

• ACC->BC…AC->BC

• BC->D….AC->BC->D

• AC is the candidate key.

44

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E (decomposition)

• ACC->BC…AC->BC

• BC->D….AC->BC->D

• AC is the candidate key.

45

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E,AC->B,AC->E }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC (Augmentation)

• BC->D….AC->BC->D

• AC is the candidate key.

46

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC (Augmentation)

• BC->D….AC->BC->D

• AC is the candidate key.

47

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D (Transitivity)

• AC is the candidate key.

48

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D (Transitivity)

• AC is the candidate key.

49

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

50

Normal Forms Contd.

• Ex: R = ABCDE, F= { BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

51

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

52

Observation1: No single

prime attribute determines a

nonprime attribute.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D }

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

53

Observation1: No single

prime attribute determines a

nonprime attribute, so in

2NF.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

54

Observation2: B determines

E, so Relation is not in 3NF.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

55

Observation3: B determines

E, so Relation is not in 3NF

and so not in BCNF.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

56

Answer is 2NF.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

57

Solution:

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

58

Solution: As B->E nonprime attribute implies

nonprime attribute. We decompose ABCDE to

ABCD, and BE.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

59

Solution: However we have FD BC ->D. BC is not a

key. So we will decompose ABCD to ABC and BCD.

Normal Forms Contd.

• Ex: R = ABCDE, F= {BC->D, AC->BE, B->E , AC->B, AC->E,AC->BC,AC->D}

• What is the maximum Normalisation level?

• AC->BE……….AC->B, AC->E

• ACC->BC…AC->BC

• BC->D….AC->BC->D…AC->D

• AC is the candidate key as AC->BE, AC->D, by union and augmentation
ABCABCDE.

• {A,C} are PRIME ATTRIBUTES & {B,D,E} are NONPRIME ATTRIBUTES.

60

Solution: Finally we have three tables ABC, BE,

and BCD. This is in 3NF, and BCNF.

More examples are in Lab material Next Week.

Summary

• Relational algebra and Normal forms are quite important apparatuses
to optimise

• Database (Normal forms)

• Querying (Relational algebra)

• We have seen four normal forms

• 1st, 2nd, 3rd, and Boyce-Codd normal forms.

• Each Normalisation level guarantees a level of non-redundancy.

• Decomposition is done on FDs.

61

62

SCC.201
Database Management Systems

2023 - Week 5 – SQL and JDBC

Uraz C Turker & Ricki Boswell

63

What will you learn today?

• Advanced SQL queries

• Connection with JDBC.

64

65

Lecture 1 Introduction to the module, Why do we need Databases? Entity Relationship Model

Lecture 2 Entity Relationship Model (ERM) (cont.)

Lecture 1 Relational Model (RM)

Lecture 2 ER to RM

Lecture 1 Relational Model To SQL & SQL scripting

Lecture 2 Review

Lecture 1 Relational Algebra

Lecture 2 Functional Dependencies + 1st, 2nd Normal Forms

Lecture 1 3dr and Boycott normal forms. Advanced SQL queries.

Lecture 2 JDBC

Lecture 1 Physical Storage - record files

Lecture 2 Storage - secondary files

Lecture 1 Record Search - B-Trees

Lecture 2 Search - Hashing

Lecture 1 Access Routines

Lecture 2 Query Optimisation

Lecture 1 Concurrency - Transaction Processing

Lecture 2 Locking

Lecture 1 Advanced SQL - schemas, views, access control

Lecture 2 Review and recap?

Lab Project Grade Phase 2

Lab Project Grade Phase 3

Lab Working on project

Lab Project Grade Phase 1

Lab Functional dependencies and Normalisation.

Lab Functional dependencies and Normalisation + JDBC Example.

Lab ER to Relational Model.

Lab Relational Algebra + SQL + Relational Model To SQL.

Lab A gentle start to the ER diagrams.

Lab ER diagrams.

 AND : Used to compute the set

intersection of two union-compatible

sets of tuples

BID Colr

b1 red

b2 grn

SID BID

s1 b1

s1 b2

s2 b1

B R

Find sid’s of sailors who’ve reserved a red and a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND (B.color=‘red’ AND B.color=‘green’)

BID Colr SID BID

b1 red s1 b1

b1 red s1 b2

b1 red s2 b1

b2 grn s1 b1

b2 grn s1 b2

b2 grn s2 b1

B1 X R1

?

Find sid’s of sailors who’ve reserved a red and a green boat

BID Colr

b1 red

b2 grn

SID BID

s1 b1

s1 b2

s2 b1

BID Colr SID BID

b1 red s1 b1

b1 red s1 b2

b1 red s2 b1

b2 grn s1 b1

b2 grn s1 b2

b2 grn s2 b1

B1

R1

B1 X R1

))Re)
''

((,1(servesBoats
redcolorsid

Tmp 




))Re)
''

((,2(servesBoats
greencolorsid

Tmp 




Tmp1 ᴖ Tmp2

BID Colr

b1 red

b2 grn

SID BID

s1 b1

s1 b2

s2 b1

BID Colr SID BID

b1 red s1 b1

b1 red s1 b2

b1 red s2 b1

b2 grn s1 b1

b2 grn s1 b2

b2 grn s2 b1

B2 R2

B2 X R2

Tmp1

Tmp2

s1

s2

?

Find sid’s of sailors who’ve reserved a red and a green boat

 INTERSECT: Can be used to

compute the intersection of

any two union-compatible

sets of tuples.

 Included in the SQL/92

standard, but some systems

don’t support it.
 Contrast symmetry of the

UNION and INTERSECT queries

with how much the other

versions differ.

SELECT R.sid
FROM Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE R1.sid = R2.sid AND
 R1.bid=B1.bid AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’
INTERSECT

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘green’

Nested Queries

 WHERE clause can itself contain an SQL query! (As well as FROM and HAVING clauses which

we will see later on.)

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid (ONLY ONE Colum)

 FROM Reserves R

 WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Nested Queries

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=103)

Find names of sailors
who did NOT reserve boat #103:

Nested Queries

with Correlation

 EXISTS returns true TRUE if the set, is nonempty.

EXISTS operator is another set comparison

operator, like IN.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors
who’ve reserved boat #103:

 To understand semantics of correlated

queries, think of a nested loops evaluation:

For each Sailors tuple, check the qualification

by computing the subquery.

For (i=1…10) do {
For (j=1…5) do {
 y=x+1;

}

}

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Nested Queries with Correlation

 UNIQUE construct can be used.

 UNIQUE checks for duplicate tuples. Returns TRUE if the corresponding set does not contain duplicates.

SELECT S.sname

FROM Sailors S

WHERE UNIQUE (SELECT R.bid

 FROM Reserves R

 WHERE S.sid=R.sid)

Find names of sailors who reserved a boat at most once

More on Set-Comparison Operators

 We’ve already seen IN, EXISTS and UNIQUE. Can also use NOT IN, NOT EXISTS and NOT

UNIQUE.

 Also available: op ANY, op ALL

 Find sailors whose rating is greater than that of some sailor called Horatio:

'',,,,, 

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

 FROM Sailors S2

 WHERE S2.sname=‘Horatio’)

ANY (returns true if there exist tuples (returned from nested

WHERE clause) obey the condition!)

ALL (returns true if all tuples (returned from nested WHERE

clause) obey the condition!)

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

 ((SELECT B.bid
 FROM Boats B)
 EXCEPT

 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid = S.sid))

Find sailors who’ve reserved all boats.

EXISTS (.. Is nonempty ?)

NOT EXISTS (.. Is empty ?)
THINK ABOUT HOW YOU CAN WRITE THE RELATIONAL

ALGEBRA VERSION WITHOUT USING THE DIVISION OPERATOR

A

-

B

Aggregate Operators

 Significant extension of relational algebra.

 They are used to write statistical queries

 Mainly used for reporting, such as

 the total sales in 2004,

 average, max, min income of employees

 Total number of employees hired/fired in

2004

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

Aggregate Operators
COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

SELECT COUNT (*)

FROM Sailors S

The total number of sailors in the club?

Aggregate Operators

SELECT AVG (S.age)

FROM Sailors S

WHERE S.rating=10

Average age of sailors in the club

Whose rating is 10?

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

Aggregate Operators

Average distinct ages of sailors in the club

Whose rating is 10?

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

SELECT AVG (DISTINCT S.age)

FROM Sailors S

WHERE S.rating=10

Aggregate Operators

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

SELECT S.sname

FROM Sailors S

WHERE S.rating= (SELECT MAX(S2.rating)

 FROM Sailors S2)

Names of sailors whose rating is equal to the maximum

rating in the club.

Aggregate Operators

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

SELECT COUNT(S.sid)

FROM Sailors S

WHERE S.rating= (SELECT MAX(S2.rating)

 FROM Sailors S2)

Number of sailors whose rating is equal to the maximum

rating in the club.

Aggregate Operators

COUNT (*)

COUNT ([DISTINCT] A)

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

How many different ratings are there in the club?

SELECT COUNT (S.rating)

FROM Sailors S

SELECT COUNT (DISTINCT S.rating)

FROM Sailors S

Above query is not correct. Think why!

Find name and age of the oldest sailor(s)

 This query is correct and it is allowed in the SQL/92 standard, but is not

supported in some systems.

SELECT S.sname, S.age

FROM Sailors S

WHERE S.age =

 (SELECT MAX (S2.age)

 FROM Sailors S2)

Find name and age of the oldest sailor(s)

 This query is valid for all systems .

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (S2.age)

 FROM Sailors S2)
 = S.age

GROUP BY and HAVING

 So far, we’ve applied aggregate operators to all (qualifying) tuples. Sometimes, we want to apply them to each of

several groups of tuples.

Consider: Find the age of the youngest sailor for each rating level.

In general, we don’t know how many rating levels exist and what the rating values for these levels are!
 Suppose we know that rating values go from 1 to 10; we can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Queries With GROUP BY and HAVING

 The target-list contains (i) attribute list(ii) terms with aggregate operations (e.g., MIN
(S.age)).

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Conceptual Evaluation

 The cross-product of relation-list is computed, tuples that fail qualification are discarded,

`unnecessary’ fields are deleted, and the remaining tuples are partitioned into groups by

the value of attributes in grouping-list.

 The group-qualification is then applied to eliminate some groups. Expressions in group-

qualification must have a single value per group!

 One answer tuple is generated per qualifying group.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Conceptual Evaluation

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

gr1

gr2

gr3

gr4

gr5

SELECT target-list
FROM relation-list
WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

RESULT

Conceptual Evaluation

Age=70

Age = 33

Age = 60

Age = 19

Age = 22

Age = 40

Age = 25

Age = 20

Age = 32

Age = 18

Age = 39

Rating = 4

Rating=4

Rating=1

Rating=5

Rating=3

Rating=2

Rating =3

Rating=1

Rating=3

Rating=4

Rating=1

Rating=5

Rating=4

Rating=4

Rating=4

Rating=3

Rating=3

Rating=3

Rating=2

Rating=2

Rating=1

SELECT S.rating
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

gr1

gr2

gr3

gr4

gr5

GROUP BY
S.rating

HAVING COUNT (*) > 1

Rating = 1

Rating = 2

Rating = 3

RESULT

Rating =2

Rating = 4

SELECT S.rating
FROM Sailors S
WHERE S.age >= 18

Find the age of the youngest sailor with age 18, for

each rating with at least 2 such sailors

 Only S.rating and S.age are mentioned in the

SELECT, GROUP BY or HAVING clauses;

 2nd column of result is unnamed. (Use AS to

name it.)

SELECT S.rating, MIN (S.age)

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 zorba 10 16.0

64 horatio 7 35.0

29 brutus 1 33.0

58 rusty 10 35.0

rating age

1 33.0

7 45.0

7 35.0

8 55.5

10 35.0

rating

7 35.0

Answer relation



Find the age of the youngest sailor with age 18, for

each rating with at least 2 such sailors

 Only S.rating and S.age are mentioned in the

SELECT, GROUP BY or HAVING clauses;

 2nd column of result is unnamed. (Use AS to

name it.)

SELECT S.rating, ag=MIN (S.age)

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 zorba 10 16.0

64 horatio 7 35.0

29 brutus 1 33.0

58 rusty 10 35.0

rating age

1 33.0

7 45.0

7 35.0

8 55.5

10 35.0

rating ag

7 35.0

Answer relation



