Lancaster
U]_’llV e I, S].ty a5 4ze

SCC.201
Database Management Systems

2023 - Week 6 — Physical Storage And Access - Files.
Uraz C Turker & Ricki Boswell-Challand
Further Reading: Elmasri ch.16

Storage of databases pancaster &=

Most DB data resides on secondary storage

HDD/SSD

May be too large to reside entirely in main memory (e.g. H-Unique
core datasets > 250GB and will grow to several TB)

Secondary storage costs orders of magnitude lower than main

memory, but slower to access

Often not all database data required frequently — access from disk

as required

Secondary storage offers persistence

Trade off between storage capacity, robustness and speed of access
Physical access characteristics affect access latency and transfer rate of data

Storage of databases pancaster &=

Main memory DBs do exist

Entire database held in main memory (along with OS, DBMS and
possibly other applications)

Suited for real-time applications requiring extremely fast response
times
E.g. Telephone network routing, high-frequency trading

Extremely expensive for large datasets
Many (most?) applications do not require this level of response
Beyond scope of this module

Storage of databases pancaster &=

Techniques for storage of large amounts of data are important to
understand

Database designers and administrators need to consider advantages and
disadvantages of each technique

Physical database design involves selecting appropriate organisation techniques
to select for specific application requirements — domain knowledge as well as
technical knowledge needed!

DBMS designers need to provide efficient implementations of physical data
organisation techniques for database designers and admins to utilize.

'
Files and records %g%%%g}teyf 3

Data is organised on disk into files of records

Record is a collection of related data items
e.g. Personnel record may contain forename, surname, DOB, NI number etc

Each item consists of one or more bytes of data
Each data item corresponds to a particular field of the record

Forsname | sumame __JooB NN |say

Susan Smith 27/04/1989 ND783674V 48,500
Jo Kerr 16/11/1995 BH478256T 39,000

.
Files and records pancasier&=

A record type is a collection of field names and their corresponding
data-types

Data types of fields are standard data types such as integer, float,
character strings, date etc

Number of bytes required to store data items of each particular
type if fixed for a given computer system

Forename |Sumame D08 [NNo |saay

String String Date Char[9] Float

.
Files and records pancasier&=

A file is a sequence of n records

Often all records in a file are of the same record type but this does
not have to be the case

Fixed length records — every record in file is exactly same size (in
bytes)

Variable length records — file contains records of differing lengths

-
Fixed length records pancasier&=

Consider our personnel record

If forename and surname have a maximum defined length of 15
characters each, a record can be held in a known, fixed number of
bytes:

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

-
Fixed length records pancaster &=

Starting byte position of each field can be identified relative to start
of record

15 30 40 49
]
Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]
Similarly, start position of next record can be identified relative to
position of
15 30 40 49 86
]
Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

i
Variable length records pancaster &=

Different records in a file may have different sizes in bytes for a
number of reasons

Records of same record type but have one or more varying length
fields (e.g. name fields of employee record)

Records of same type but a field may have multiple values for a
record (e.g. multiple contact phone numbers)

Records of same type but one or more fields may be optional

10

-
Variable length records pancaster &=

Records of different types clustered together for performance and
retrieval purposes

E.g. Student and grade records might be held together

Grades of each student follow directly after personal information

11

i
Variable length records pancaster 628

A file containing variable length records can be represented as a
fixed-length records file

Values that do not fill maximum available field length can be
padded

Optional fields can be included with empty (NULL) values if no value
exists

Repeating fields can be allocated as many ‘spaces’ as maximum
number of values a record can take

All of these methods waste space on disk!

BloB | | [[| [[[][][] ENEEEEEE

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

i
Variable length records pancaster &=

Fields in variable length records can be terminated by special
separator character

B 0 B [* | 47000

13

i
Variable length records pancaster &=

Fields in variable length records can be terminated by special
separator character

B o B [* 47000

Other methods for encoding variable length fields may include

Fields as name/value pairs <field name, field value>
Field length (in bytes) can be stored preceding field value

14

Record blocking & disk storage

Records of a file must be allocated to disk blocks
Block is data transfer unit between disk and main memory
Three possibilities for block sizing

Block size > record size

Block may contain several records
Block size < record size

Record is stored across multiple blocks

Block size = record size
Exactly one record per block

Lancaster
University = °

15

. .
Record blocking & disk storage %%%%%g}g}” o

Suppose block size is B bytes and a file contains fixed length records
of size R bytes

If B> R we can fit bfr = lB / RJ records per block

Floor function = [(X)J rounds the number x down to an integer
Thus l12.7J =12
bfr is known as the blocking factor

R may not divide B exactly.

There will be unused space in each block equal to B- (bfr * R) bytes

16

:
Record blocking: Spanned records %gg,cg;g}te; s

If a block does have enough remaining space to store complete
record, situation may be handled in one of two ways:

Spanned records may be spread across two blocks, first block has
pointer to block containing rest of record

=N

17

:
Record blocking: Unspanned records %%%%%g}g o

In this case records are not allowed to cross block boundaries

Empty

18

Allocating File Blocks On Disk %%%%%g}g}” £

Database files typically have an initial allocation of blocks on disk

As data growth occurs (and it nearly always does!) files need be
able to grow to accommodate the enlarged data.

Block allocation routines need to balance performance, flexibility
and space efficiency

Disk space is shared with any OS and other application files that are
using the same disk

19

Allocating File Blocks On Disk pancaster 628

Various ways of allocating file blocks to disk blocks

Continuous allocation

File blocks allocated to consecutive disk blocks

Linked allocation

Each file block contains a pointer to next file block

Cluster allocation

H

Combines continuous and linked allocations

Allocate clusters of blocks and link them with pointers
Indexed Allocation
One or more index blocks contain pointers to actual file blocks

20

Allocating File Blocks On Disk

Continuous allocation

[LLancaster E

University #

Empty disk block
DB file block
Used disk block

File growth space

+ve: Very fast reading of whole file as blocks
are contiguous

-ve: File expansion difficult due to used
blocks on disk

21

Allocating File Blocks On Disk

Linked allocation

[LLancaster E

......

University ©

Empty disk block
DB file block
Used disk block

File growth space

+ve: Very easy to expand file, just allocate
next free block and add a pointer

-ve: File reads are slower, especially with
magnetic disks

22

Allocating File Blocks On Disk

Continuous allocation

Lancaster

University %

Empty disk block
DB file block
Used disk block

File growth space

Achieves a balance between ease of
expansion and read performance

23

Allocating File Blocks On Disk

Indexed allocation

[LLancaster E
University #

Empty disk block
DB file block

Used disk block

Index Block

Read index blocks to find pointer to blocks
containing desired data

Analagous to using a library card index
Indexing covered later in course

24

i
File Headers pancasier&=

Also known as file descriptor

Contains information needed by programs accessing records in the
file
Information to determine disk addresses of file blocks

Record format descriptions
For both fixed and variable length records

Order of fields
Type codes
Field & record separators

The Rosetta Stone for reading a file

25

' ER
Going off on a tangent... %%%Ce%g}g

Rosetta Stone

= Egyptian ‘Stele’ or stone slab with
a-mf-‘a;n I2A2 (T L
*"f.f“t":fw m engraved texts

b Sile
..(; 'ﬁﬁ," st > i AT ' .-,w“;

V
e e
i o \|,, n\n!w‘r)! "'“Ir
A 1 292 S e 7 L&\ e
e
¥ T

bt /3|38 'h%
i n.z*‘ T,
R i L T s SE) 4ol .]
‘P.ﬂ‘:\ “4.»@7‘. S o) Sl
SRR
o . ‘“vf-p;tnmﬁ?‘& ong

AL s
o i '("“3‘

il
groiny .-..?

z»\u. w.mr iy

st Contains inscriptions which provided the

Sl
ww,g,,,h,g iz
3@ S
av h,‘gw,. :
wmbuc

m ﬁ“ﬁw key to deciphering Egyptian hieroglyphics
ﬂ ..afé"ri':gem:ﬂ"

e
Tmlk:-x:'“‘w-m Eal
AT Sty
.,:if‘,y,‘:é,‘gﬁwww.z'f.. e
oo :;ﬁ“"'&:**:‘w..mm.,.‘..:;‘“ S =
S s S

Ax.‘-w ENERY
(o e

% i"n'»\nuvymw‘n.;lu S
oXTE AR

T TR e o

NN rn.m-.ww&‘..‘

AN e e &
e i b e :26
T o TN TR v T g |
Ay M o en va el

Typical File Operations %%%%%g}g; 23

Operations on a file grouped into two groups

Retrieval Operations
Do not change data in file
Locate records so field values can be read and processed
Update Operations

Modify the data file

Insertion or deletion of records
Alteration of field values within a record or records

These are the underlying file operations for which SQL
SELECT/INSERT/UPDATE/DELETE statements provide an abstraction

27

Typical File Operations %%%%%g}g*

Open

Prepares file for reading/writing

Allocates buffers (usually minimum of 2) to hold file blocks from
disk

Retrieves file header

Set file pointer to beginning of file

Reset
Set file pointer back to beginning of file

28

Typical File Operations %%%%%gitf}; 23

Find/Locate

Searches for first record satisfying search condition

Transfers block containing matched record into main memory buffer
(if not already in memory)

Points file pointer to fetched record in file
FindNext
Same as find, but gets the NEXT matching record in file

29

Typical File Operations

Read/Get

Copies current record from buffer to program variable
May also advance file pointer to next record in file
May cause next block to be read from disk

Delete

Deletes current record
Updates file on disk to reflect deletion

Modify

Modifies some fields for current record
Updates file on disk to reflect changes

[.ancaster

University = °

30

Typical File Operations %%%%%gitf}; 23

Insert
Locates block where record to be inserted
Transfers block to main memory buffer
Writes record into buffer
Writes buffer to disk

Close

Releases all buffers
Performs any other cleanup operations required

All of the previous operations (except Open and Close) are record-at-a-
time operations

31

Typical File Operations

Set-at-a-time operations
FindAll

Locate all records that satisfy a search condition
FindOrdered

Retrieves all records in a file in a specified order
Reorganise

E.g. Reorder file records based on a specified field value

Lancaster
University = °

32

File organisation

Primary file organisation

How records are physically placed on disk
Determines how records are accessed

Secondary file organisation

Efficient access to records
E.g. index structures (covered later in course)

Lancaster
University = °

33

Primary organisation: unordered records

Also known as heap files
Simplest most basic type of organisation

Records placed in file in insertion order
New records placed at end of file
Inserting new record very efficient

Address of last block kept in file header
Last file block copied to buffer
New record added and written to disk

Lancaster
University = °

34

Primary organisation: unordered records

Searching for record very expensive
Linear search required
Deletion of record expensive and inefficient

Linear search to find block with record to be deleted
Copy block to buffer

Delete record from buffer

Rewrite block to disk

Leaves unused space on disk

Large no. of deletes leads to much wasted space

[.ancaster

University = °

35

° ° °
Primary organisation: unordered records %%%%%g}g s

Alternative deletion approach

Use deletion marker
Extra bit set to mark records as deleted
Search operations ignore deleted records

Unordered records require periodic file reorganisations to reclaim
unused space

36

° ° °
Primary organisation: ordered records pancaster £33

Physically order records in a file based on one of their fields (called
ordering field)

Ordering field called ordering key if it is a key field of file

i.e. unique value for each record

37

Primary organisation: ordered records pancasters

Sumamerorename 100 IWiNo sy

Abbot Alan
Block 1
Abbot Julie
Barker Simone
Surname [Forename |DOB |[NINo |Salary
Smith Karen
Block n
Turker Uraz

Wilson Charlotte 38

+ve:

° ° °
Primary organisation: ordered records pancaster 628

Reading records in order defined by key extremely efficient

No sorting required
Finding next record in order requires no additional block access
unless current record is last in block

Using search conditions based on ordering key results in faster
access

39

. . .
Primary organisation: ordered records pancaster 628
-ve:

No advantage for access based on values of non-ordering fields
Insertion and deletion of records very expensive
Records must remain physically ordered

E.g insert:
Find correct position in file
Make space and insert record
Very expensive operation for large files
Modification of a record
Record may change position in file > equivalent to deletion + insertion

40

'
Conclusion %%%%%g}g 3%

Physical file organisation is a complex process

The DBMS abstracts a large amount of this away from the DB
admin/designer allowing them to focus on implementing
applications

Understanding of underlying storage structures allows us to
optimise our designs

41

