
SCC.201
Database Management Systems

2023 - Week 6 – Physical Storage And Access - Files.
Uraz C Turker & Ricki Boswell-Challand
Further Reading: Elmasri ch.16

1

• Most DB data resides on secondary storage
• HDD/SSD
• May be too large to reside entirely in main memory (e.g. H-Unique

core datasets > 250GB and will grow to several TB)
• Secondary storage costs orders of magnitude lower than main

memory, but slower to access
• Often not all database data required frequently – access from disk

as required
• Secondary storage offers persistence
• Trade off between storage capacity, robustness and speed of access

• Physical access characteristics affect access latency and transfer rate of data

Storage of databases

2

• Main memory DBs do exist
• Entire database held in main memory (along with OS, DBMS and

possibly other applications)
• Suited for real-time applications requiring extremely fast response

times
• E.g. Telephone network routing, high-frequency trading

• Extremely expensive for large datasets
• Many (most?) applications do not require this level of response
• Beyond scope of this module

Storage of databases

3

• Techniques for storage of large amounts of data are important to
understand
• Database designers and administrators need to consider advantages and

disadvantages of each technique
• Physical database design involves selecting appropriate organisation techniques

to select for specific application requirements – domain knowledge as well as
technical knowledge needed!

• DBMS designers need to provide efficient implementations of physical data
organisation techniques for database designers and admins to utilize.

Storage of databases

4

• Data is organised on disk into files of records
• Record is a collection of related data items

• e.g. Personnel record may contain forename, surname, DOB, NI number etc
• Each item consists of one or more bytes of data
• Each data item corresponds to a particular field of the record

Files and records

5

Forename Surname DOB NI_No Salary

Susan Smith 27/04/1989 ND783674V 48,500

Jo Kerr 16/11/1995 BH478256T 39,000

• A record type is a collection of field names and their corresponding
data-types

• Data types of fields are standard data types such as integer, float,
character strings, date etc

• Number of bytes required to store data items of each particular
type if fixed for a given computer system

Files and records

6

Forename Surname DOB NI_No Salary

String String Date Char[9] Float

• A file is a sequence of n records
• Often all records in a file are of the same record type but this does

not have to be the case

• Fixed length records – every record in file is exactly same size (in
bytes)

• Variable length records – file contains records of differing lengths

Files and records

7

• Consider our personnel record

• If forename and surname have a maximum defined length of 15
characters each, a record can be held in a known, fixed number of
bytes:

Fixed length records

8

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

• Starting byte position of each field can be identified relative to start
of record

• Similarly, start position of next record can be identified relative to
position of

Fixed length records

9

0 15 30 40 49

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

0 15 30 40 49 56

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

• Different records in a file may have different sizes in bytes for a
number of reasons
• Records of same record type but have one or more varying length

fields (e.g. name fields of employee record)
• Records of same type but a field may have multiple values for a

record (e.g. multiple contact phone numbers)
• Records of same type but one or more fields may be optional

Variable length records

10

• Records of different types clustered together for performance and
retrieval purposes
• E.g. Student and grade records might be held together
• Grades of each student follow directly after personal information

Variable length records

11

• A file containing variable length records can be represented as a
fixed-length records file

• Values that do not fill maximum available field length can be
padded

• Optional fields can be included with empty (NULL) values if no value
exists

• Repeating fields can be allocated as many ‘spaces’ as maximum
number of values a record can take

• All of these methods waste space on disk!

Variable length records

12
B O B S M I T H 1 9 8 6 - 0 8 - 2 3

Forename [15] Surname [15] DOB [10] NI_No [9] Salary [8]

• Fields in variable length records can be terminated by special
separator character

Variable length records

13

B O B * S M I T H * 1 9 8 6 - 0 8 - 2 3 N Z 1 4 8 7 2 3 B 47000

• Fields in variable length records can be terminated by special
separator character

• Other methods for encoding variable length fields may include
• Fields as name/value pairs <field name, field value>
• Field length (in bytes) can be stored preceding field value

Variable length records

14

B O B * S M I T H * 1 9 8 6 - 0 8 - 2 3 N Z 1 4 8 7 2 3 B 47000

• Records of a file must be allocated to disk blocks
• Block is data transfer unit between disk and main memory

• Three possibilities for block sizing
• Block size > record size

• Block may contain several records
• Block size < record size

• Record is stored across multiple blocks
• Block size = record size

• Exactly one record per block

Record blocking & disk storage

15

• Suppose block size is B bytes and a file contains fixed length records
of size R bytes

• If B > R we can fit bfr = ⎣B / R⎦ records per block
• Floor function = ⎣(x)⎦ rounds the number x down to an integer

• Thus ⎣12.7⎦ = 12
• bfr is known as the blocking factor

• R may not divide B exactly.
• There will be unused space in each block equal to B- (bfr * R) bytes

Record blocking & disk storage

16

• If a block does have enough remaining space to store complete
record, situation may be handled in one of two ways:
• Spanned records may be spread across two blocks, first block has

pointer to block containing rest of record

Record blocking: Spanned records

17

Record 1 Record 2 Record 3 Rec >

ord 4 Record 5 Record 6 Record 7 >

Block i

Block i + n

• In this case records are not allowed to cross block boundaries

•

Record blocking: Unspanned records

18

Record 1 Record 2 Record 3 Empty

Record 4 Record 5 Record 6 Empty

Record 7 Empty

• Database files typically have an initial allocation of blocks on disk

• As data growth occurs (and it nearly always does!) files need be
able to grow to accommodate the enlarged data.

• Block allocation routines need to balance performance, flexibility
and space efficiency

• Disk space is shared with any OS and other application files that are
using the same disk

Allocating File Blocks On Disk

19

• Various ways of allocating file blocks to disk blocks
• Continuous allocation

• File blocks allocated to consecutive disk blocks
• Linked allocation

• Each file block contains a pointer to next file block
• Cluster allocation

• Combines continuous and linked allocations
• Allocate clusters of blocks and link them with pointers

• Indexed Allocation
• One or more index blocks contain pointers to actual file blocks

Allocating File Blocks On Disk

20

• Continuous allocation

Allocating File Blocks On Disk

21

Empty disk block

DB file block

Used disk block

File growth space

• +ve: Very fast reading of whole file as blocks
are contiguous

• -ve: File expansion difficult due to used
blocks on disk

• Linked allocation

Allocating File Blocks On Disk

22

Empty disk block

DB file block

Used disk block

File growth space

• +ve: Very easy to expand file, just allocate
next free block and add a pointer

• -ve: File reads are slower, especially with
magnetic disks

• Continuous allocation

Allocating File Blocks On Disk

23

Empty disk block

DB file block

Used disk block

File growth space

• Achieves a balance between ease of
expansion and read performance

• Indexed allocation

Allocating File Blocks On Disk

24

Empty disk block

DB file block

Used disk block

Index Block

• Read index blocks to find pointer to blocks
containing desired data

• Analagous to using a library card index
• Indexing covered later in course

• Also known as file descriptor

• Contains information needed by programs accessing records in the
file
• Information to determine disk addresses of file blocks
• Record format descriptions

• For both fixed and variable length records
• Order of fields
• Type codes
• Field & record separators

• The Rosetta Stone for reading a file

File Headers

25

• Rosetta Stone

• Egyptian ‘Stele’ or stone slab with
engraved texts

• Discovered in 1799

• Contains inscriptions which provided the
key to deciphering Egyptian hieroglyphics

Going off on a tangent…

26

• Operations on a file grouped into two groups
• Retrieval Operations

• Do not change data in file
• Locate records so field values can be read and processed

• Update Operations
• Modify the data file

• Insertion or deletion of records
• Alteration of field values within a record or records

• These are the underlying file operations for which SQL
SELECT/INSERT/UPDATE/DELETE statements provide an abstraction

Typical File Operations

27

• Open
• Prepares file for reading/writing
• Allocates buffers (usually minimum of 2) to hold file blocks from

disk
• Retrieves file header
• Set file pointer to beginning of file

• Reset
• Set file pointer back to beginning of file

Typical File Operations

28

• Find/Locate
• Searches for first record satisfying search condition
• Transfers block containing matched record into main memory buffer

(if not already in memory)
• Points file pointer to fetched record in file

• FindNext
• Same as find, but gets the NEXT matching record in file

Typical File Operations

29

• Read/Get
• Copies current record from buffer to program variable
• May also advance file pointer to next record in file

• May cause next block to be read from disk

• Delete
• Deletes current record
• Updates file on disk to reflect deletion

• Modify
• Modifies some fields for current record
• Updates file on disk to reflect changes

Typical File Operations

30

• Insert
• Locates block where record to be inserted
• Transfers block to main memory buffer
• Writes record into buffer
• Writes buffer to disk

• Close
• Releases all buffers
• Performs any other cleanup operations required

• All of the previous operations (except Open and Close) are record-at-a-
time operations

Typical File Operations

31

• Set-at-a-time operations
• FindAll

• Locate all records that satisfy a search condition
• FindOrdered

• Retrieves all records in a file in a specified order
• Reorganise

• E.g. Reorder file records based on a specified field value

Typical File Operations

32

• Primary file organisation
• How records are physically placed on disk
• Determines how records are accessed

• Secondary file organisation
• Efficient access to records
• E.g. index structures (covered later in course)

File organisation

33

• Also known as heap files

• Simplest most basic type of organisation

• Records placed in file in insertion order
• New records placed at end of file

• Inserting new record very efficient
• Address of last block kept in file header
• Last file block copied to buffer
• New record added and written to disk

Primary organisation: unordered records

34

• Searching for record very expensive
• Linear search required

• Deletion of record expensive and inefficient
• Linear search to find block with record to be deleted
• Copy block to buffer
• Delete record from buffer
• Rewrite block to disk
• Leaves unused space on disk
• Large no. of deletes leads to much wasted space

Primary organisation: unordered records

35

• Alternative deletion approach
• Use deletion marker
• Extra bit set to mark records as deleted
• Search operations ignore deleted records

• Unordered records require periodic file reorganisations to reclaim
unused space

Primary organisation: unordered records

36

• Physically order records in a file based on one of their fields (called
ordering field)
• Ordering field called ordering key if it is a key field of file

• i.e. unique value for each record

Primary organisation: ordered records

37

Primary organisation: ordered records

38

Surname Forename DOB NI_No Salary

Abbot Alan

Abbot Julie

Barker Simone

Surname Forename DOB NI_No Salary

Smith Karen

Turker Uraz

Wilson Charlotte

Block 1

Block n

• +ve:
• Reading records in order defined by key extremely efficient

• No sorting required
• Finding next record in order requires no additional block access

unless current record is last in block
• Using search conditions based on ordering key results in faster

access

Primary organisation: ordered records

39

• -ve:
• No advantage for access based on values of non-ordering fields
• Insertion and deletion of records very expensive

• Records must remain physically ordered
• E.g insert:

• Find correct position in file
• Make space and insert record
• Very expensive operation for large files

• Modification of a record
• Record may change position in file > equivalent to deletion + insertion

Primary organisation: ordered records

40

• Physical file organisation is a complex process

• The DBMS abstracts a large amount of this away from the DB
admin/designer allowing them to focus on implementing
applications

• Understanding of underlying storage structures allows us to
optimise our designs

Conclusion

41

