
DET102 Data Structures

and Algorithms
Lecture 11: Hash

Sparse data

 There are many players in a complex game. Each player

has an identification number (key). The range of the

keys can be 1~1,000,000. No two players have the same

key

 Suppose now we have 3 players

 954,323

 447,829

 194,332

 They are far away from each other.

 The player information is called key-based data

2

Sparse data

 How to store those data in the computer so that we can

easily get the player’s information by their keys?

 Array:

A lot of memory space wasted

 Linked List:

Hard to search if we have 10,000 players

 Hash Table

Best solution in this case!

3

447,829

2

954,323

1

194,332

3

Basic Hash Table4

 Advantages:

 Quickly store sparse key-based data in a reasonable amount of space

 Quickly determine if a certain key is within the table

0 1 2 3 4 5 6 7 8 9

194,332 447,829954,323

194,332%10=2 or 194,332≡2 (mod 10)

447,879%10=9 or 447,879≡9 (mod 10)

954,323%10=3 or 954,323≡3 (mod 10)

To get the information, we use: player=table[key%10];

key

Player

info

slot

Hash Table

• Hash table is one of the most practical data

structures.

• The location of each inserted item is decided by

a hash function.

insert(data)

A[h(data.key)]=data

search(data)

return h(data.key)

data is the input

data.key is an integer

h is the hash function, which

calculates an index based

on data.key

h(data.key) is called hash

value.

Hash function

 The goal of a hash function, h, is to map each key k
to an integer in the range [0,N −1], where N is the
capacity of the bucket array for a hash table.

Equipped with such a hash function, h, the main
idea of this approach is to use the hash function
value, h(k), as an index into our bucket array, A,
instead of the key k (which may not be appropriate
for direct use as an index). That is, we store the item
(k,v) in the bucket A[h(k)].

Hash function

 h(k) is called a hash function, which returns an index of

A.

 Assume that A’s size is m, then h(k) is from 0 to m-1.

 Hash function examples

 h(k)=k mod m

Question 1: How to get k？

Question 2: How about two keys with the same hash value？

Hash function

hash code : map a key k to an integer

Compression function : maps the

hash code to an integer within a range

of indices, [0,N −1], for a bucket array.

Collision

 If there are two or more keys with the same hash

value, then two different items will be mapped

to the same bucket in T. In this case, we say that

a collision has occurred.

Good Hash function

1. It maps the keys in our map so as to sufficiently

minimize collisions.

2. For practical reasons, we also would like a hash

function to be fast and easy to compute.

Hash function example

1. The division method

h(i)= i mod N

• i is the hash code

• N is the size of the bucket array (a fixed positive integer, prime
is better)

Example: hash codes {200,205,210, 215,…,600} into a bucket
array of size N.

if N=100

if N=101

also called Compression Functions

Hash function example

2. The MAD method (Multiply-Add-and-Divide)

h(i)= [(ai+b) mod p] mod N

• i is the hash code

• p is a prime number larger than N

• N is the size of the bucket array (a fixed positive integer)

• a and b are integers chosen at random from the interval
[0, p-1].

Other example: h(k) = (k2 + k + 41) % N

Combination of Hash Functions13

Collision is easy to happen if we use % function

Combination:

Apply hash function h1 on key to obtain mid_key

Apply hash function h2 on mid_key to obtain Slot_id

Example:

We apply %101 on 12320324111220 and get 79

We apply %10 on the result 79 obtained by %101

79 % 10 =9

Collisions

Two players mapped to the same cell

Method to deal with collisions

Change the table

collision-handling schemes

separate chaining

open addressing

14

0 1 2 3 4 5 6 7 8 9

194,333 954,323

Collision Resolution - Separate Chaining

Using linked list to solve Collision

Every slot in the hash table is a linked list

Collision→Insert into the corresponding list

Find data→Search the corresponding list

15

1

2

3

4

441 361 91

63 723

74

512

Collision Resolution - Open Addressing16

Linear Probing

If collide, try Slot_id+1, Slot_id+2

Quadratic Probing

If collide, try Slot_id+1, Slot_id+4,…

Double Hashing

If collide, try Slot_id+h2(x), Slot_id+2h2(x),… (prime size important)

0 1 2 Full Full 5 6 7 8 9

954,323

0 1 2 Full Full 5 6 7 8 9

954,323

Collision Resolution - Open Addressing

▪ General rule: If collide, try other slots in a certain
order

▪ How to find data?

▪ If not found, try the next position according to
different probing rule

▪ Every key has a preference over all the positions

▪ When finding them, just search in the order of their
preferences

Collision Resolution

 Example: 11,22,33,44,55,66,77,88,99,21

 Using linear probing

 Using separate chaining

18

21 11 22 33 44 55 66 77 88 99

1

2

3

4

21

5

11

22

33

44

55

More on Hash Table Size

Table of prime size is important in the following cases:

a) For quadratic probing, we have the following property:

 If quadratic probing is used and the table size is prime, then a
new element can always be inserted if the table is at least half
empty (Why only prime can do?).

b) For double hashing, we have the following property:

 If double hashing is used and the table size is prime, then a
new element can always be inserted if the table is not full (Is
this correct?).

19

Load Factor

λ = n/N

• n is the number of slots occupied.

• N is the number of total slots

With open addressing, as the load factor λ grows beyond 0.5

and starts approaching 1, clusters of entries in the bucket

array start to grow as well.

➢ suggest to maintain λ <0.5 for an open addressing scheme with

linear probing.

➢ perhaps only a bit higher for other open addressing schemes

(Python’s implementation λ <2/3)

Rehashing

Each rehashing will generally scatter the items
throughout the new bucket array.

When rehashing to a new table, it is a good
requirement for the new array’s size to be at least
double the previous size.

 Indeed, if we always double the size of the table
with each rehashing operation, then we can
amortize the cost of rehashing all the entries in the
table against the time used to insert them in the first
place.

Rehashing

When half full, rehash all the elements into a double-size
table

 In an interactive system, the user who triggers rehashing
is unlucky

 In total, only O(n) cost incurred for a hash table of size n

 Example: initial hash table size 2, when the size grows to
32, how many rehashes are done?

2→4 1 number rehashed

4→8 2 numbers rehashed

8→16 4 numbers rehashed

16→32 8 numbers rehashed

In total, 15 numbers rehashed, 15<16=32/2

22

More Questions

How can rehashing be used?

If we allow rehashing, then quadratic probing can always

succeed in inserting new items because the table will always

be at least half empty.

How to keep the table size still prime when you do

rehashing?

23

Application —— Dictionary24

How do Word perform spelling check?

A dictionary (large hash table) is kept

Hash words into that dictionary

 The way to hash words

Establish a map between characters and numbers

E.g. A—136, F—356, T—927, E—442, R—091

“AFTER” corresponds to the key 136,356,927,442,091

Hashing ‘AFTER’ will be equivalent to hashing the key

Double Hashing

 Double hashing can be done using :
(h1(key) + i * h2(key)) % TABLE_SIZE
Here h1() and h2() are hash functions and TABLE_SIZE is size of
hash table.
(We repeat by increasing i when collision occurs)

 First hash function is typically

h1(key) = key % TABLE_SIZE

 A popular second hash function is :

h2(key) = PRIME – (key % PRIME)

where PRIME is a prime smaller than the TABLE_SIZE.

h2(key) cannot be zero.

https://www.geeksforgeeks.org/double-hashing/

Exercise

1. Draw the 11-entry hash table that results from using the
hash function, h(i) = (3i+5) mod 11, to hash the keys 12,
44, 13, 88, 23, 94, 11, 39, 20, 16, and 5, assuming
collisions are handled by chaining.

2. What is the result of the previous exercise, assuming
collisions are handled by linear probing?

3. What is the result of the previous exercise, assuming
collisions are handled by quadratic probing?

4. What is the result of the previous exercise, assuming
collisions are handled by double hashing and

h2(x)= 5-(x mod 5).

Answer to Exercises

 h(i) = (3i+5) mod 11

 h2(x)= 5-(x mod 5).

 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5

12 44 13 88 23 94 11 39 20 16 5

h(x) 8 5 0 5 8 1 5 1 10 9 9

h2(x) 3 1 2 2 2 1 4 1 5 4 5

1.collisions are handled by chaining

 h(i) = (3i+5) mod 11

 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5

12 44 13 88 23 94 11 39 20 16 5

h(x) 8 5 0 5 8 1 5 1 10 9 9

h2(x) 3 1 2 2 2 1 4 1 5 4 5

0 1 2 3 4 5 6 7 8 9 10

13 94 44 12 16 20

39 88 23 5

11

2.collisions are handled by linear probing

 h(i) = (3i+5) mod 11

 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5

12 44 13 88 23 94 11 39 20 16 5

h(x) 8 5 0 5 8 1 5 1 10 9 9

h2(x) 3 1 2 2 2 1 4 1 5 4 5

0 1 2 3 4 5 6 7 8 9 10

13 94 39 16 5 44 88 11 12 23 20

3. collisions are handled by quadratic

probing

 h(i) = (3i+5) mod 11

 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5

12 44 13 88 23 94 11 39 20 16 5

h(x) 8 5 0 5 8 1 5 1 10 9 9

h2(x) 3 1 2 2 2 1 4 1 5 4 5

0 1 2 3 4 5 6 7 8 9 10

13 94 39 11 44 88 16 12 23 20

(9+1)%11=10, (9+4)%11=2, (9+9)%11=7, (9+16)%11=3, (9+25)%11=1,

(9+36)%11=1, (9+49)%11=3, (9+64)%11=7, (9+81)%11=2, (9+100)%=10

4.collisions are handled by double

hashing

 h(i) = (3i+5) mod 11

 h2(x)= 5-(x mod 5).

 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5

12 44 13 88 23 94 11 39 20 16 5

h(x) 8 5 0 5 8 1 5 1 10 9 9

h2(x) 3 1 2 2 2 1 4 1 5 4 5

0 1 2 3 4 5 6 7 8 9 10

13 94 39 5 20 44 16 88 12 11 23

