
DET102 Data Structures 

and Algorithms
Lecture 04: Sorting Algorithms



The problem of sorting

 Input: n numbers in an array (a list).   A[1…n]

 Output: permutation B[1…n] of A such that B[1]≤B[2] ≤B[3] ≤… 
≤B[n].

For example:

A=[2, 5, 1, 6, 3, 4]                B=[1, 2, 3, 4, 5, 6]

 Increasing order: from small to large

 Decreasing order: from large to small

 How to sort？

 Array/list

 loop



ID A B

Player1 70 80

Player2 90 95

Player3 95 60

Player4 80 95

Original records 

ID A B

Player3 95 60

Player2 90 95

Player4 80 95

Player1 70 80

Decreasing order in A

A: Sort Key

We will need struct or class to deal with records sorting.



Stable sort

 A sorting algorithm is stable in which the two elements 
that are equal remain in the same relative position after 
performing the sorting.

ID A B

Player1 70 80

Player2 90 95

Player3 95 60

Player4 80 95

ID A B

Player2 90 95

Player4 80 95

Player1 70 80

Player3 95 60

ID A B

Player4 80 95

Player2 90 95

Player1 70 80

Player3 95 60

Original records Stable sorting Unstable sorting



Sorting algorithms

 Time complexity 

 Stable or not？

 Extra memory is needed？

 Features of the input data affect the time complexity？

In-place
A sorting algorithm is in-place only if a constant number of data 

elements of an input array are ever stored outside the array. 

No additional storage is required and it is possible to sort a large 

list without the need of additional working storage.



Insertion sort

InsertionSort (A, n)

for j=1 to n-1

insert key A[j] into the (already sorted) sub-array A[0…j-1]

by pairwise key-swaps down to its right position

A

0 n-1ji

sorted
key

New location of key

unsorted



for (a scan from 2nd item to end){   

copy unsorted entry from the list;

shift previous entries;

insert the unsorted entry to correct location;

}

Insertion sort

https://www.youtube.com/watch?v=qktBUYMO7o8

https://www.youtube.com/watch?v=qktBUYMO7o8


Example of insertion sort

8 1 3 74 9

81 3 74 9

81 3 74 9

81 3 74 9

81 3
74 9

81 3 74 9

n=6

n-1=5 rounds



A={8,3,1,5,2,1 } Is it a stable sort？



Insertion Sort

insertionSort (A, N)      

// A is an array that has N items, index from 0.

1. for i = 1 to A.length-1

2. key = A[i]

3. /* insert A[i] into the sorted sequence A[0,...,j-1] */

4. j = i - 1

5. while j >= 0 and A[j] > key

6. A[j+1] = A[j]

7. j--

8. A[j+1] = key



Exercise: InsertionSort

If your answer is wrong

 Is your array large enough？

 Does the array start from 0 or 1？

 Do you use loop variables i, j correctly？

 Any extra blank space or new lines？



Insertion Sort

Time Complexity: O(𝑛2)

Auxiliary Space: O(1)

In Place: Yes

Stable: Yes

Uses

Insertion sort is used when number of elements is small. 

It can also be useful when input array is almost sorted, 

only few elements are misplaced in complete big 

array.



Insertion Sort Complexity (1)

 The best case input is an array that is already sorted. In 

this case insertion sort has a linear running time (i.e., 

O(n)). 

During each iteration, the first remaining element of 

the input is only compared with the right-most 

element of the sorted subsection of the array.



Insertion Sort Complexity (2)

 The simplest worst case input is an array sorted in reverse 

order. 

The set of all worst case inputs consists of all arrays 

where each element is the smallest or second-

smallest of the elements before it. In these cases 

every iteration of the inner loop will scan and shift the 

entire sorted subsection of the array before inserting 

the next element. This gives insertion sort a quadratic 

running time (i.e., O(n2)).

1+2+3+…+n-1=n(n-1)/2=O(n2)



Insertion Sort Complexity (3)

 The average case is also quadratic, which makes 
insertion sort impractical for sorting large arrays. 

However, insertion sort is one of the fastest 
algorithms for sorting very small arrays, even faster 
than quicksort; indeed, good quick sort 
implementations use insertion sort for arrays smaller 
than a certain threshold, also when arising as 
subproblems; the exact threshold must be 
determined experimentally and depends on the 
machine, but is commonly around ten.



Bubble sort

Starting from the beginning of the list,

➢compare every adjacent pair, swap their position if they are 

not in the right order (the latter one is smaller than the 

former one). 

➢After each iteration, one less element (the last one) is 

needed to be compared until there are no more elements 

left to be compared.

From Wikipedia https://en.wikipedia.org/wiki/Bubble_sort

What is the asymptotic complexity of bubble sort？

How many passes are there？

https://en.wikipedia.org/wiki/Bubble_sort


Bubble Sort

bubbleSort (A, N) 

// A is an array consisting of N items. Index from 0

1. flag = 1     // there exists at least one reverse-order pair

2. while flag>0

3. flag = 0

4. for j from N-1 to 1

5. if A[j] < A[j-1]

6. swap A[j] and A[j-1]

7. flag = 1



A={5,3,2,4,1 }



Improved Bubble Sort

bubbleSort (A, N)

1. flag = 1

2. i = 0      // starting index of the unsorted part

3. while flag > 0

4. flag = 0

5. for j from N-1 to i+1

6. if A[j] < A [j-1]

7. swap A [j] and A [j-1] 

8. flag = 1

9. i++



Bubble Sort

 The previous program sorts an array's values into 

ascending order.  

 The technique is called the bubble sort or the sinking sort

because the smaller values gradually “bubble” their way 

upward to the top of the array like air bubbles rising in 

water, while the larger values sink to the bottom of the 

array of elements are compared.

Complexity: O(n2)

 In Place: Yes

 Stable: Yes

https://www.youtube.com/watch?v=Jdtq5uKz-w4

https://www.youtube.com/watch?v=Jdtq5uKz-w4


Selection sort

 The selection sort algorithm sorts an array by repeatedly 
finding the minimum element (considering ascending 
order) from unsorted part and putting it at the beginning. 

 The algorithm maintains two subarrays in a given array.

 The subarray which is already sorted.

 Remaining subarray which is unsorted.

 In every iteration of selection sort, the minimum element 
(considering ascending order) from the unsorted 
subarray is picked and moved to the sorted subarray.



Selection Sort

selectionSort(A, N) 

1. for i from 0 to N-l

2. minj = i

3. for j from i  to N-1

4. if A[j] < A[minj]

5. minj = j

6. swap A[i] and A[minj]



A={5, 4, 8, 7, 9, 3, 1}



Another example:  A={3H, 5S, 3D, 1S}

There are four items. We sort based on the numbers. 

3H is in front of 3D.

After sorting, 3D is in front of 3H.

Not stable



Selection Sort

 Time Complexity

O(n2) as there are two nested loops.

 Auxiliary Space:

O(1)

 The good thing about selection sort is that it never makes more 

than O(n) swaps and can be useful when memory write is a 

costly operation.

 Stability :

 The default implementation is not stable. However it can be 

made stable. 

 In Place :

 Yes, it does not require extra space.



Summary

Worst Case 

complexity

When to use Stable In-

place

Insertion 

Sort

O(n2) when number of 

elements is small; when 

input array is almost 

sorted

Yes Yes

Bubble

Sort

O(n2) Easy to implement Yes Yes

Selection 

Sort

O(n2) when memory write is a 

costly operation.

No Yes



Challenge Question

 The default selection sorting is not stable. Let’s write a 

program to verify it.

 Suppose we are given a deck of cards. There are totally 

36 cards of four suits {S, H, C, D} and 9 values {1, 2, 3, 4, 5, 

6, 7, 8, 9}. For example, ‘nine of heart’  is represented by 

H9, and ‘one of diamond’ is represented by D1.

Write a program to sort a given set of cards in ascending 

order by their values using Bubble sort and selection sort 

respectively. Then verify if the selection sort is stable for 

each given input.



Hint

 Use struct or class to represent each card

 Remember that Bubble sort is stable.



Merge sort



Merge Sort

The process overall is thus: 

Split the original list into two halves 

Sort each half (using merge sort) 

Merge the two sorted halves together into a 

single sorted list

https://www.youtube.com/watch?v=3aTfQvs-_hA

https://www.youtube.com/watch?v=3aTfQvs-_hA


Example

34  56  78  12  45  3  99  23

34  56  78  12 | 45  3  99  23

34  56 | 78  12 | 45  3 | 99  23

34 | 56 | 78 | 12 | 45 |3 | 99 | 23

34  56 | 12  78 | 3  45 | 23  99

12  34  56  78 | 3  23  45  99

3  12  23  34  45  56  78  99



Algorithm for Merge Sort

procedure mergesort (first, last, array)

mid= (first + last) / 2

mergesort (first, mid, array)

mergesort (mid+1, last, array)

merge_two_halves (mid, array)

end mergesort



L: 12  34  56  78

R: 3  23  45  99

3

12

34

23

45

56

78

99

L: 12  34  56  78

R: 3  23  45  99

L: 12  34  56  78

R: 23  45  99

L: 34  56  78

R: 23  45  99

L: 34  56  78

R: 45  99

R: 45  99

L: 56  78

L: 56  78

R: 99

L: 78

R: 99

R: 99

Merge two sorted lists



L: 1,    4,   5,   10

R: 2,  12,  18,  27

1 2 4 5 10 12, 18, 27

Time =Θ(n) to merge a total of n elements (linear time)

Merge two sorted lists



Analyzing merge sort

MERGE-SORT A[1 . . n] 

1. If n = 1, done. 

2. Recursively sort A[ 1 . . ⎡n/2⎤ ] 

and A[ ⎡n/2⎤+1 . . n ] . 

3. “Merge” the two sorted lists 

T(n)

Θ(1)

T(n/2)

T(n/2)

Θ(n)

𝑇 𝑛 = ቐ
Θ(1), 𝑖𝑓 𝑛 = 1

2𝑇
𝑛

2
+ Θ(n), if n>1

T(n)=？



Recurrence solving

 Solve T(n)=2T(n/2)+cn, where c>0 is constant.

We can use recursion tree.



T(n)

T(n)=2T(n/2)+cn

T(n/2) T(n/2)

cn



T(n)=2T(n/2)+cn

T(n/2) T(n/2)

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)



T(n)=2T(n/2)+cn

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)cn/4 cn/4 cn/4 cn/4

Θ(1)



T(n)=2T(n/2)+cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

Θ(1)

ℎ = 1 + 𝑙𝑔𝑛

cn

cn

cn

Θ(n)



Merge Sort

Merge sort is a more efficient sorting algorithm than 
either selection sort or bubble sort. 

Complexity: Θ(nlog n) in all 3 cases

T(N)=2T(N/2)+Θ(N)

 The basic idea is that if you know you have two sorted 
lists, you can combine them into a single large sorted list 
by just looking at the first item in each list.  Whichever is 
smaller is moved to the single list being assembled.  
There is then a new first item in the list from which the 
item was moved, and the process repeats.



Merge Sort

 Auxiliary Space

O(n)

 Sorting In Place

 No in a typical implementation

 Stable

 Yes

 Applications of Merge Sort

Merge Sort is useful for sorting linked lists in O(nLogn) time.

Used in External Sorting





Sort {9,6,7,2,5,1,8,4,2}



Quick sort



Quick Sort

Quick Sort is a very efficient sorting algorithm 
invented by Sir Charles Antony Richard Hoare when he was 26. 

Complexity

Average O(nlogn)

Worst case O(n2)

 It has two phases:

 the partition phase and

 the sort phase.



Always pick first element as pivot.

Always pick last element as pivot (implemented below)

Pick a random element as pivot.

Pick median as pivot.

Quick Sort

 In each step of quick sort a range of an array is 

sorted.

 The last element in the range is used as the pivot value.

 The rest of the values in the range are grouped into two 

partitions: one containing the values larger than the pivot 

value and the other containing the values smaller than the 

pivot value. 

Each of the partitions is sorted by a recursive call of quick 

sort.





Case 1: A[j]>x



Case 2: A[j]<=x





Quick Sort

Quick sort partitions the array into two sections, the first 
of “small” elements and the second of “large” elements. 
It then sorts the small and large elements separately.

 Ideally, partitioning would use the median of the given 
values, but the median can only be found by scanning 
the whole array and this would slow the algorithm down. 
In that case the two partitions would be of equal size; In 
the simplest versions of quick sort an arbitrary element, 
typically the first/last element is used as an estimate 
(guess) of the median.

https://www.youtube.com/watch?v=RFyLsF9y83c

https://www.youtube.com/watch?v=RFyLsF9y83c


Quick Sort





Quick Sort complexity (1)

Worst Case: The worst case occurs when the partition 

process always picks greatest or smallest element as 

pivot.



Quick Sort complexity (2)

Best Case: The best case occurs when the 
partition process always picks the middle 

element as pivot.



Quick Sort complexity (3)

 To do average case analysis, we need to consider all possible 
permutation of array and calculate time taken by every permutation 
which doesn’t look easy.

 We can get an idea of average case by considering the case when 
partition puts O(n/9) elements in one set and O(9n/10) elements in 
other set



Is Quick Sort really quick?

Although the worst case time complexity of QuickSort is O(n2) 
which is more than many other sorting algorithms like Merge 
Sort and Heap Sort, QuickSort is faster in practice, because 
its inner loop can be efficiently implemented on most 
architectures, and in most real-world data. QuickSort can be 
implemented in different ways by changing the choice of 
pivot, so that the worst case rarely occurs for a given type of 
data. 

However, merge sort is generally considered better when 
data is huge and stored in external storage.



Quick Sort

Is QuickSort stable?

The default implementation is not stable. However 

any sorting algorithm can be made stable by 

considering indexes as comparison parameter.

Is QuickSort In-place?

As per the broad definition of in-place algorithm it 

qualifies as an in-place sorting algorithm as it uses 

extra space only for storing recursive function calls 

but not for manipulating the input.

https://www.geeksforgeeks.org/stability-in-sorting-algorithms/
https://www.geeksforgeeks.org/in-place-algorithm/


Comparison based sorting

A sorting algorithm is compared-based if an operation of 

comparing two keys can be preformed on a given list of 

data elements having keys.

To determine the relative order of given two elements ai

and aj, we perform one of the following tests: 

ai< aj, ai> aj, ai≤ aj, ai≥ aj, ai=aj

Algorithm Worst-case Average-

case

Best-case In-place

Insertion sort O(n2) O(n2) O(n) √

Merge sort O(nlogn) O(nlogn) O(nlogn) X

Heap sort O(nlogn) O(nlogn) O(nlogn) √

Quick sort O(n2) O(nlogn) O(nlogn) √

Bubble sort O(n2) O(n2) O(n) √



Lower Bounds for sorting

 No matter what the algorithm might be , there is some 

input which will cause it to run in Ω(nlogn) time.

 Decision tree model

 The decision tree is a fully binary tree. 

 Each node corresponds to one of the comparisons in the 
algorithm.

 The sorting algorithm starts at the root node.

 The whole process is repeated until a leaf is encountered.

 Each leaf represents one (correct) ordering of the input.



a1 Vs a2

a2 Vs a3 a1 Vs a3

a1,a2,a3 a1 Vs a3 a2,a1,a3 a2 Vs a3

a1, a3,a2 a3, a1,a2 a2,a3,a1 a3,a2,a1

input: <a1,a2,a3>

≤

≤

≤

≤

≤

>

>

>

>>

The decision tree model for an insertion sort.



Ω(nlogn) Lower Bound

 Two properties

 there must be n! permutation leaves, one corresponding 
for each possible ordering of n elements.

 length (number of edges) of longest path in decision tree 
(its height) is either equal to the worst case number of 
comparisons or less than or equal to the worst-case 
number of operations of algorithm (lower bound on time).

 Theorem

Any decision tree for sorting n elements has height 
Ω(nlogn).



Non-comparison based sorting



Counting Sort (1/2)

Comparison-based sorting algorithms require 

Ω(nlogn) time 

But we can sort in O(n) time using more powerful 

operations

When elements are integers in {0,…, M-1}, bucket 

sort needs O(M+n) time and O(M) space

When M=O(n), counting sort needs O(2n)=O(n) 

time



Counting Sort (2/2)

 Idea: Require a counter (auxiliary) array C[0..M-1] to 

count the number of occurrences of each integer in 

{0,…,M-1}

 Algorithm: 

 Step 1: initialize all entries in C[0..M-1] to 0

 Step 2: For i=0 to n-1

 Use A[i] as an array index and increase C[A[i]] by one

 Step 3: For j=0 to M-1

 Write C[j] copies of value j into appropriate places in A[0..n-1]

https://www.geeksforgeeks.org/python-program-for-counting-

sort/?ref=lbp

https://www.geeksforgeeks.org/python-program-for-counting-sort/?ref=lbp


Counting Sort (Example)

• Input: 3, 4, 6, 9, 4, 3 where M=10

0 1 2 3 4 5 6 7 8 9

• Step 1: Initialization

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

Counter array A:

• Step 2: Read 3 
(A[3] = A[3] + 1) 0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 0 0 0 0



• Read 4
(A[4] = A[4] + 1)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 1 0 0 0 0 0

• Read 6
(A[6] = A[6] + 1)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 1 0 1 0 0 0

• Read 9
(A[9] = A[9] + 1)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 1 0 1 0 0 1

• Read 4
(A[4] = A[4] + 1)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 0 1 0 0 1

• Read 3
(A[3] = A[3] + 1)

0 1 2 3 4 5 6 7 8 9

0 0 0 2 2 0 1 0 0 1



 Step 3: Print the result (from index 0 to 9)

• Result: 3, 3 0 1 2 3 4 5 6 7 8 9

0 0 0 2 2 0 1 0 0 1

• Result: 3, 3, 4, 4 0 1 2 3 4 5 6 7 8 9

0 0 0 0 2 0 1 0 0 1

• Result: 3, 3, 4, 4, 6 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 1 0 0 1

• Result: 3, 3, 4, 4, 6, 9 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1



Bucket Sort

 Set up a list of empty buckets. A bucket is initialized for each 

element in the array.

 Iterate through the bucket list and insert elements from the array. 

Where each element is inserted depends on the input list and the 

largest element of it. We can end up with 0..n elements in each 

bucket. 

 Sort each non-empty bucket. You can do this with any sorting 

algorithm. If we're working with a small dataset, each bucket won't 

have many elements then Insertion Sort works wonders for us here.

 Visit the buckets in order. Once the contents of each bucket are 
sorted, when concatenated, they will yield a list in which the 

elements are arranged based on your criteria.

https://stackabuse.com/bucket-sort-in-python/

https://stackabuse.com/bucket-sort-in-python/


Review: Stable Sort

 Definition: A stable sorting algorithm is one that preserves the original 
relative order of elements with equal key

 E.g., suppose the left attribute is the key attribute

(2,5) (3,2) (9,3) (2,2) (3,4)

(9,3)(2,5) (3,2)(2,2) (3,4)

Initial array:

Stable sort by 

left attribute:

Original relative order: (2,5) is before (2,2)

New relative order: (2,5) is still before (2,2)



Using Stable Sort (1/4)

 Suppose we sort some 2-digit integers

 Phase 1: Stable sort by the right digit (the least significant digit)

25 32 93 22 34

2532 9322 34

Initial array:

Sort by 

right digit:



Using Stable Sort (2/4)

 Suppose we sort some 2-digit integers

 Phase 2: Stable sort by the left digit (the second least significant 

digit)

25 32 93 22 34

2532 9322 34

22 25Stable sort by 

left digit:

Initial array:

Sort by 

right digit:



Using Stable Sort (3/4)

 Suppose we sort some 2-digit integers

 Phase 2: Stable sort by the left digit (the second least 

significant digit)

25 32 93 22 34

2532 9322 34

22 3225 34Stable sort by 

left digit:

Initial array:

Sort by 

right digit:



Using Stable Sort (4/4)

 Suppose we sort some 2-digit integers

 Phase 2: Stable sort by the left digit (the second least significant 

digit)

25 32 93 22 34

2532 9322 34

9322 3225 34Stable sort by 

left digit:

Initial array:

Sort by 

right digit:



Radix Sort

 Bucket sort is not efficient if M is large

 The idea of radix sort:

 Apply stable bucket sort on each digit (from Least Significant 

Digit to Most Significant Digit)

 A complication:

 Just keeping the count is not enough

 Need to keep the actual elements 

 Use a queue for each digit

https://www.geeksforgeeks.org/python-program-for-radix-sort/

https://www.geeksforgeeks.org/python-program-for-radix-sort/


Radix Sort (Example) (1/3)

 Input: 170, 045, 075, 090, 002, 024, 802, 066

 The first pass

Consider the least significant digits as keys and move the 
keys into their buckets

Output: 170, 090, 002, 802, 024, 045, 075, 066

0

1

2

3

4

5

6

7

8

9

170, 090

002, 802

024

045, 075

066



Radix Sort (Example) (2/3)

• The second pass

• Input: 170, 090, 002, 802, 024, 045, 075, 066

Consider the second least significant digits as keys 
and move the keys into their buckets

Output: 002, 802, 024, 045, 066, 170, 075, 090

0

1

2

3

4

5

6

7

8

9

002, 802

024

045

066

170, 075

090



Radix Sort (Example) (3/3)

• The third pass

• Input: 002, 802, 024, 045, 066, 170, 075, 090

Consider the third least significant digits as keys and 
move the keys into their buckets

Output: 002, 024, 045, 066, 075, 090, 170, 802 (Sorted)

0

1

2

3

4

5

6

7

8

9

002, 024, 045, 066, 075, 090

170

802



Worst-case Time Complexity

Assume d digits, each digit comes from {0,…,M-1}

For each digit, 

O(M) time to initialize M queues,

O(n) time to distribute n numbers into M queues

 Total time = O(d(M+n)) 

When d is constant and M = O(n), we can make 

radix sort run in linear time, i.e., O(n).



Non-comparison based sorts

Sort by means other than comparing two 
elements.

Counting sort: input elements are in a range of 
1,2,3,…,k. Use array indexing to count the number of 
elements of each value.

Radix sort: each integer consists of d digits, and each 
digit is in the range of 1,2,…,m.

Bucket sort: require advanced knowledge of input 
distribution.

Algorithm Worst case Average 

case

Best case In-place

Counting O(n+k) O(n+k) O(n+k) X

Radix sort O(d(n+m)) O(d(n+m)) O(d(n+m)) X

Bucket sort O(n^2) O(n) O(n) X



The std::sort() Function in C++

 The std::sort() function in C++ is a built-in function that is used to sort any 

form of data structure in a particular order. It is defined in the algorithm 

header file. The sort() function prototype is given below.

 The function does not return anything. It just updates the elements/items 

from the first up to the last iterables or positions. The third 

parameter(optional) comp has to be a function that determines the order 

in which the elements are going to be sorted. When not specified, the 

sorting takes place in ascending order considering it to be the 

std::less<int>() function by default.

void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

https://www.digitalocean.com/community/tutorials/sort-in-c-plus-plus#the-std-sort-function-in-c


Sort() in STL



Sort Algorithm

 In C++ STL, we have a sort function which can sort in increasing and 

decreasing order. Not only integral but you can sort user-defined data too 

using this function.

 Internally it uses IntroSort, which is a combination of QuickSort, HeapSort

and InsertionSort. (This is important as it occurs internally and no one knows 

about it.)

 By default, it uses QuickSort, but if QuickSort is doing unfair partitioning and 

taking more than N*logN time, it switches to HeapSort. When the array size 

becomes very small, it switches to InsertionSort. (This conversion and 

checking occurs internally and is not very popular to people)



More sorting functions in Algorithm

https://www.cplusplus.com/reference/algorithm/

