
DET102 Data Structures

and Algorithms
Lecture 06: Tree

Outline

Array

Structure

Tree Structure Binary Tree

Tree TraverseRecursive Algorithm

tree

root

branchleaf

(rooted) tree

Tree is a data structure, containing nodes and

edges.

tree

root

branchleaf

forest

Linked list Tree

Data

A

Next:

Data:

B

Next:

Data:

C

Next:

root

parent

child

They are siblings.

Constraints

1. Connected

Starting from the root, there exists a path

reaching each node

2. NO cycle

Cycle: you will visit some nodes twice

one and only one

path (unique path)

Definition and Terminology

Definition:

Tree is defined as a finite set T of one or more nodes

such that

a) there is one specially designated node called the

root of the tree, root(T) and

b) the remaining nodes (excluding the root) are

partitioned into m  0 disjoint sets T1 , T2 , . . . , Tm

and each of these sets in turn is a tree. The trees

T1 , T2 , . . . , Tm are called the subtrees of the root.

7
4 examples

16

10

16

14 10

9 38 7

2 4 2 4 2 4 2 4

16

14 10

9 38

2 4

9

16

10

92 4

A

B C D

E F G

A is the root.
Level 1

Level 2

Level 3

Each child has only one parent. Root has no

parent.

Siblings: nodes having the same parent.

Parent-child
relationship

Question 1: Who is(are)

node C’s sibling(s)？

Question 2: Who is(are)

node F’s sibling(s)？

The level of a node is defined by

1+ the number of connections

between the node and the root.

A

B C D

E F G

Height of a node is

the number of edges

between it and the

furthest leave on the

tree.

Height=0 Height=0 Height=0

Height=0
Height=1 Height=1

Height=2

Height of the tree is

the height of the

root.

A

B C D

E F G

Depth of a node is

the number of edges

between it and the

root.

depth=2 depth=2 depth=2

depth=1
depth=1 depth=1

depth=0

Height and depth

move inversely.

level = depth +1

A

B C D

E F G

Degree of a node is

the number of

children of that node.

degree(E)

=0

degree(F)

=0

degree(G)

=0

degree(D)

=0

degree(B)

=1
degree(C)

=2

degree(A)

=3

Degree of an

internal node is at

least 1.

Degree of a leaf is

zero.

12

Terminology Explanation

Degree of a node The number of subtrees of a node

Terminal node or

leaf

A node of degree zero

Branch node or

internal node:
A nonterminal node

Parent and Siblings Each root is said to be the parent of the roots of its

subtrees, and the latter are said to be siblings; they are

children of their parent.

A Path from n1 to

nk

a sequence of nodes n1,n2,…nk such that ni is the parent

of ni+1 for 0<i<k. The length of this path is the number of

edges on the path.

Ancestor and

Descendant

If there is a path from n1 to nk, we say nk is the

descendant of n1 and n1 is the ancestor of nk

Level or Depth of

node

The length of the unique path from root to this node

Height of a tree The maximum level of any leaf in the tree

A

B C D

E F G

Every node is an ancestor of itself. Every

node is an descendent of itself.

A proper ancestor of n is any node y such

that node y is an ancestor of node n and y is

not the same node as n. A proper

descendent of n is any node y for which n is

an ancestor of y and y is not the same node

as n.

13

Definition and Terminology

Level of node : State the levels of all the nodes:

A:____, B:____, C:____,

D:____, E:____, F:____,

G:____, H:____, I:____

Root of a tree: Root of the tree is: _____

Height of a tree: Height of the tree is: _____

Degree of a node : State the degrees of:

A:____, B:____, C:____,

D:____, E:____, F:____,

G:____, H:____, I:____

Terminal node or leaf: State all the leaf nodes: _______________________

Branch node: State all the branch nodes: _______________________

A

B C

D FH I E

G

14

Definition and Terminology
Parent and Siblings:

State the parents of: A:___, B:___, C:___,

D:___, E:___, F:___,

G:___, H:___, I:___

State the siblings of: A:_______, B:_______,

C:_______, D:_______, E:_______,

F:_______, G:_______, H:_______, I:_______

Ancestor and Descendant:

State the ancesters of: A:______, B:______, C:______, D:___________,

E:___________, F:___________, G:___________,

H:___________, I:___________

State the descendants of: A:_________________________,

B:___________, C:___________,

D:____, E:____, F:____, G:____, H:____, I:____

A

B C

D FH I E

G

Binary Tree

Definition:

Binary tree can be defined as a

finite set of nodes that either

is empty, or

consists of
(1) a root, and

(2) the elements of 2 disjoint binary

trees called the left and right

subtrees of the root.

15

6 Examples of Binary tree:

16

Binary Tree

Comparison:

1

2 3

4 5

1

23

54

Tree Binary tree

• Each node has 0, 1, or 2 subtrees.• Each node has 0, 1, 2, .. or many

subtrees.

• We distinguish between the left

and right subtree.

For example, these are _______:

• We don’t distinguish subtrees

according to their orders.

For example, these are _________:

1

2 3

4 5

1

23

54

6

7

6

7

• A tree must have at least 1

node

• A binary tree may be empty

17

Properties of Binary Tree

Maximum number of nodes

⚫ Consider the levels of a binary tree: level 1, level 2, level 3, ..

⚫ Maximum number of nodes on a level is 2level_id-1.

⚫ Maximum number of nodes in a binary tree is 2height_of_tree+1 - 1.

Full Binary Tree: No. of nodes = 2height_of_tree +1-1

Example: 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Height of tree = 3

No. of nodes = 2height_of_tree +1-1

= _____

1

2 3

4 5

18

Properties of Binary Tree

Each leaf in a tree is either at level k or level k+1

Each node has exactly 2 subtrees at level 1 to level k-1

Complete Binary Tree:

…
• The bottom level:

A complete binary tree is like a full binary tree,

But in a complete binary tree,

Definition: A binary tree with n nodes and height k is complete if and only if

its nodes correspond to the nodes numbered from 1 to n in the

fully binary tree of height k.

The filled slots are at the left
of the empty slots (if any).

• Except the bottom level: all are fully filled.

1

2 3

4 5 6 7

8 9 10 11 12

19

Array Representation of Binary Tree

A numbering scheme:

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Example 1:

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9

We can represent

binary trees using array

by applying this

numbering scheme.

Example 2:

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

A

B

C

D

E

0
1

3

7

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array Representation

of Binary Tree

20

Array Representation of Binary Tree

Left(i) = 2i+1

Right(i) = 2i+2

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Children of a node at slot i:

Parent(i) =  (i-1)/2 

Parent of a node at slot i:

x: “Floor” The greatest integer less than x

x: “Ceiling” The least integer greater than x

For any slot i,

If i is odd: it represents a left son.

If i is even (but not zero): it represents a right son.

The node at the right of the represented node of i (if any), is at i+1.

The node at the left of the represented node of i (if any), is at i-1.

21

Array Representation of Binary Tree

A

B

C

D

E

0
1

3

7

15

A B - C - - - D - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- - - - - E

Unused array elements (not exist or is NULL)

must be flagged for non-full binary tree.

Solutions: 1. put a special value in the location

2. Add a “used” field (true/false) to each node.

Advantages and Disadvantages of using array to represent binary tree:

• Simpler

• Save storage for trees known to be almost full.

• Waste of space (except complete binary tree)

• Maximum size of the tree is fixed in advance

• Inadequacy: insertion and deletion of nodes from the middle of a tree require

the movement of potentially many nodes

22

Linked Representation of Binary Tree

Link Representation of Binary Tree

• Each node can contains info, left, right, parent fields

• where left, right, parent fields are node pointers pointing

to the node's left son, right son, and parent, respectively.

rightleft

info

parent

rightleft

info

• If the tree is always traversed in

downward fashion

(from root to leaves),

the parent field is unnecessary.

left A right

left B right left C right

left F right left G rightleft E right ________

T

• If the tree is empty, root = NULL; otherwise

from root you can find all nodes.

• root->left and root->right point to the left and

right subtrees of the root, respectively.

T.left(p): Return the position that

represents the left child of p, or None

if p has no left child.

T.right(p): Return the position that

represents the right child of p, or
None if p has no right child.

T.sibling(p): Return the position that

represents the sibling of p, or None if

p has no sibling.

23

Binary Tree Operations - height

Example:

Height of a

NULL binary

tree is 0

Height of a

tree with 1

node is 0
Height = 1 Height = 2

Review:

Depth of node : The depth of root(T) is zero.

The depth of any other node is

one larger than his parent’s depth

Height of a tree: The maximum depth of any leaf in

the tree

A

B C

FD E

G H

24

Binary Tree Operations - countleaves

//To count the number of leaf nodes

def count_leaf(p):

if p == None):

return 0

elif ((p.left == None) and (p.right == None)):

return 1

else:

return(count_leaf(p.left) + count_leaf(p.right))

Example:

A NULL binary

tree has 0 leaf

node

A tree with

1 node has

1 leaf node
No. of

leaf nodes = 1

No. of

leaf nodes = 3

A

B C

FD E

G H

Binary Tree Operations - equal
25

x x

Traversing Binary Tree

Traversing /

walking through

A method of

examining the

nodes of the tree

systematically so

that each node
is visited exactly

once.

26

Three principle ways:

When the binary tree is empty, it is “traversed” by

doing nothing, otherwise:

preorder traversal

Visit the root

Traverse the
left subtree

Traverse the
right subtree

A B D C E G F H I

A

B C

E FD

G H I

inorder traversal

Traverse the
left subtree

Visit the root

Traverse the
right subtree

D B A E G C H F I

postorder traversal

Traverse the
left subtree

Traverse the
right subtree

Visit the root

D B G E H I F C A

Preorder Traversal

The order of visitation of nodes is “root, left, right”

first visit the node at the root of any subtree

then visit its left child

then visit its right child

Any child may itself be the root of a subtree, so

this traversal is inherently recursive.

27

procedure PREORDER(T)

visit T

if there is a left child, PREORDER(left child(T))

if there is a right child, PREORDER(right child(T))

Inorder Traversal

 The order of visitation of nodes is “left, root, right”

 first visit its left child

 then visit the node at the root of any subtree

 then visit its right child

 Any child may itself be the root of a subtree, so
this traversal is also inherently recursive.

28

procedure INORDER(T)

if there is a left child, INORDER(left child(T))

visit T

if there is a right child, INORDER(right child(T))

Postorder Traversal

The order of visitation of nodes is “left, right, root”

first visit its left child

then visit its right child

then visit the node at the root of any subtree

Any child may itself be the root of a subtree, so

this traversal is also inherently recursive.

29

procedure POSTORDER(T)

if there is a left child, POSTORDER(left child(T))

if there is a right child, POSTORDER(right child(T))

visit T

30
Traversing Binary Tree

Result:

= A (A’s left) (A’s right)

= A B (B’s left) (B’s right = NULL) (A’s right)

= A B (B’s left) (A’s right)

= A B D (D’s left=NULL) (D’s right = NULL) (A’s right)

= A B D (A’s right)

= A B D C (C’s left) (C’s right)

= A B D C E (E’s left=NULL) (E’s right) (C’s right)

= A B D C E (E’s right) (C’s right)

= A B D C E G (G’s left=NULL) (G’s right = NULL) (C’s right)

= A B D C E G (C’s right)

= A B D C E G F (F’s left) (F’s right)

= A B D C E G F H (H’s left=NULL) (H’s right =NULL) (F’s right)

= A B D C E G F H I (I’s left=NULL) (I’s right =NULL)

= A B D C E G F H I

A

B C

E FD

G H I

Example:

preorder traversal

Visit the root

Traverse the
left subtree

Traverse the
right subtree

When the binary

tree is empty, it is

“traversed” by

doing nothing,

otherwise:

A B D C E G F H I

31

Traversing Binary Tree

Exercise:

1. Examine the inorder and postorder traversals of the tree:

A

B C

E FD

G H I

inorder:

postorder:

2. Examine the preorder, inorder and postorder traversals of the tree:

3

5 0

27

9 6

8

preorder:

postorder:

inorder:

32

Traversing Binary Tree

Looking at the whole tree:

 “preorder : ABCDEXZUTY”
==> A is the root.

 Then, “inorder : DCEBAUZTXY”

==>

Reconstruction of

Binary Tree from

its preorder and

Inorder sequences

Example: Given the following sequences,

find the corresponding binary tree:

preorder : ABCDEXZUTY

inorder : DCEBAUZTXY

A

DCEB (inorder)

BCDE (preorder)

Looking at the left subtree of A:

• “preorder : BCDE”

==> B is the root

• Then, “inorder: DCEB”

=>
A

UZTXY (inorder)

XZUTY (preorder)

B

DCE (inorder)

CDE (preorder)

DCEB (inorder)

BCDE (preorder)

UZTXY (inorder)

XZUTY (preorder)

DCE (inorder)

CDE (preorder)

33

Traversing Binary Tree

Reconstruction of

Binary Tree from

its preorder and

Inorder sequences

Example: Given the following sequences, find

the corresponding binary tree:

preorder : ABCDEXZUTY

inorder : DCEBAUZTXY

Looking at the left subtree of B:

• “preorder : CDE”

==> C is the root

• Then, “inorder: DCE”

=>

A

UZTXY (inorder)

XZUTY (preorder)

B

C

D E

Looking at the right subtree of A:

• “preorder : XZUTY”

==> X is the root

• Then, “inorder: UZTXY”

=>

A

B

C

D E

X

UZT (inorder)
ZUT (preorder)

Y

34

Traversing Binary Tree

Reconstruction of

Binary Tree from

its preorder and

Inorder sequences

Example: Given the following sequences,

find the corresponding binary tree:

preorder : ABCDEXZUTY

inorder : DCEBAUZTXY

Looking at the left subtree of X:

• “preorder : ZUT”

==> Z is the root

• Then, “inorder: UZT”

=>

A

B

C

D E

X

YZ

U T

Traversing Binary Tree
35

But: A binary tree may not be uniquely defined by its

preorder and postorder sequences.

Example: Preorder sequence: ABC

Postorder sequence: CBA

We can construct 2 different binary trees:

A

B

C

A

B

C

36

Applications of Binary Tree

Example:

For 3+4*(6-7)/5+3:

Representation of General Function Expression

+

3+

3 /

5*

4 -

6 7

*

+ -

3 2 5 1

Level Traversal

 The order that nodes are visited is based on their distance from the
root node.

 first the root node is visited

 then all those nodes that are of distance 1 to the root are visited

 and then those nodes that are of distance 2 to the root are visited

 …

 Since the standard binary representation of a tree does not allow
for direct determination of all nodes on the same level, a queue
must be used to maintain that information. By adding the children
of the node being visited to the end of the queue, each level will
be traversed before going on to the next.

Data Structures and Algorithms

37

Algorithm for Level Traversal38

add the root node to the queue

while the queue is not empty

remove a node, T, from the queue

visit T

add T’s children (if any) to the queue

*

+ -

3 2 5 1

Visiting Order is: * + - 3 2 5 1

Level traversal is not normally used

with expression tree. But it is very

important when you deal with

graphs.

39

Binary Representation of General Tree

 One node can have many children nodes

 Impossible to make so many links

 Is there a way that each node uses only two links?

 Link1:

 Link2:

Tree Representation

 Interface for each node

 root()

 parent()

 firstChild()

 nextSibling()

 insert(i,e): insert e as the i-th child

 remove(i): remove the i-th child

 traverse()

Each non-root node has one and only one parent.

Idea: organize all the nodes as a sequence.

rank data parent

0 R -1

1 A 0

2 B 0

3 C 0

4 D 1

5 E 1

6 F 3

7 G 6

8 H 6

9 K 6

R

A B C

D E F

G H K

R

A B C

D E F

G H K

rank data parent

0 R -1

1 A 0

2 B 0

3 C 0

4 D 1

5 E 1

6 F 3

7 G 6

8 H 6

9 K 6

Space: O(n)

Time:

• parent(): O(1)

• root(): O(n) or O(1)

• firstChild(): O(n)

• nextSibling(): O(n)

How to find child or sibling quickly?

R

A B C

D E F

G H K

rank data children

0 R

1 A

2 B ^

3 C

4 D ^

5 E ^

6 F

7 G ^

8 H ^

9 K ^

1 2

6 ^

4 5 ^

3 ^

7 8 9 ^

Finding Children

R

A B C

D E F

G H K

rank data parent children

0 R -1

1 A 0

2 B 0 ^

3 C 0

4 D 1 ^

5 E 1 ^

6 F 3

7 G 6 ^

8 H 6 ^

9 K 6 ^

1 2

6 ^

4 5 ^

3 ^

7 8 9 ^

Finding Parent andChildren

Problem: the degree may vary.

Left-child right-sibling representation

 In an n-ary tree, a node
holds just two references,
first a reference to its first
child, and the other to its
immediate next sibling.

 At each node,

 link children of same parent
from left to right.

 Parent should be linked with
only first child.

Left-Child Right-Sibling Representation of Tree - GeeksforGeeks

https://www.geeksforgeeks.org/left-child-right-sibling-representation-tree/

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Outline
	投影片 3
	投影片 4
	投影片 5
	投影片 6: Constraints
	投影片 7: Definition and Terminology
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13: Definition and Terminology
	投影片 14: Definition and Terminology
	投影片 15: Binary Tree
	投影片 16: Binary Tree
	投影片 17: Properties of Binary Tree
	投影片 18: Properties of Binary Tree
	投影片 19: Array Representation of Binary Tree
	投影片 20: Array Representation of Binary Tree
	投影片 21: Array Representation of Binary Tree
	投影片 22: Linked Representation of Binary Tree
	投影片 23: Binary Tree Operations - height
	投影片 24: Binary Tree Operations - countleaves
	投影片 25: Binary Tree Operations - equal
	投影片 26: Traversing Binary Tree
	投影片 27: Preorder Traversal
	投影片 28: Inorder Traversal
	投影片 29: Postorder Traversal
	投影片 30: Traversing Binary Tree
	投影片 31: Traversing Binary Tree
	投影片 32: Traversing Binary Tree
	投影片 33: Traversing Binary Tree
	投影片 34: Traversing Binary Tree
	投影片 35: Traversing Binary Tree
	投影片 36: Applications of Binary Tree
	投影片 37: Level Traversal
	投影片 38: Algorithm for Level Traversal
	投影片 39: Binary Representation of General Tree
	投影片 40: Tree Representation
	投影片 41
	投影片 42
	投影片 43
	投影片 44
	投影片 45: Left-child right-sibling representation

