
Reflect in ePortfolio

Download Print

Open with docReader

assignment3

You have viewed this topic

Last Visited Nov 22, 2023 12:35 AM

Assignment 3: Blockchain
Topics covered

UDP communication
Synchronization
Consensus
Messaging strategies
State handling

Create a Blockchain peer that stores messages in blocks.
Each block contains

the name of who mined the block
1 to 10 messages
a nonce (string [really bytes…])
A known hash (this can be re-calculated every time)
with a minimum difficulty. Difficulty is currently set
to 9.
A height (again, can be calculated)

Some constraints:

1. Messages have a maximum length of 20 characters
(keeps us under MTU)

2. Blocks have a maximum of 10 messages in them.
3. A nonce is a string (really, bytes) and must be less

than 40 characters

Consensus is proof-of-work, where mining finds a nonce
that has certain number of 0s after it - this is the “difficul-
ty”, which is usually expressed in a number. The miners
must find a nonce that creates a full block hash with diffi-
culty number of 0s. True blockchains use binary 0s (ie.
0b0010 has 2 leading 0s in binary), while we will use ascii
0s.

Joining the network is done with gossiping. A well-known
host is available at silicon.cs.umanitoba.ca:8999.
This host will forward the GOSSIP message to all known
peers. Gossiping will be used as a ‘keepalive’ ping - re-
GOSSIP every 30s to ensure you are not assumed offline.
If you have not been heard from in a minute, you will be
dropped. The message will be repeated to 3 peers that
your peer is tracking, who will then also gossip. All peers
hosted by us also have a web server to show the current
status on port 8998, example:
http://silicon.cs.umanitoba.ca:8998/. After gos-
siping, you should see your name on the peer list.

Upon receiving a GOSSIP message, you should reply us-
ing GOSSIP-REPLY to the originating sender - to the host
and port in the message.

You will need to keep a list of your peers to send updates
to them.

Upon joining - do a consensus to find the longest chain.
Request STATS from everyone. Choose the most-agreed-
upon chain (same height/hash combination). Load it by
sending GET_BLOCK requests distributed all the peers that
agree on that chain. Remember: some requests will get
lost! You will likely need to resend some requests.

Once you have the chain, you must verify it. There are
cryptographic properties that must be respected by
blockchains.

This course is not a cryptography course! Use hashlib to
do the cryptographic one-way hash. The hash must re-
spect the following order

1. The hash from the previous block (unless this is the
genesis block, in which case this is skipped)

2. The name of the miner in minedBy
3. The messages in the order provided
4. The time the block was mined
5. The nonce

This will create the hash for this block. Which is, in turned
the the first input to the hash of the next block. This is
called “cipher block chaining”.

Code example, if we were trying to add a new block to the
top of our chain:

You should validate your full chain, from genesis to the
height of the chain on joining. Adding blocks to the chain
you do not need to validate the full chain, but should vali-
date the hash of the new block yourself.

Edge cases for joining:

A new block was added while you were syncing. You
may re-sync, or intelligently add the block to your
chain
The chain is not valid! Move to the next-highest
chain.

Run a consensus every few minutes. Also run consensus
when given a DO_CONSENSUS message. Check all your
peers: Are you at the same height and hash as the majori-
ty? Move to the longest chain - you may do this by re-
building the entire chain. This is not optimal, but good
enough for us! There are a number of optimizations possi-
ble, but not required.

Protocol

Your peer must fulfill the following protocol.

GOSSIP

Announce your peer to the network. Gossip to one well-
known host. Reply any GOSSIP messages you receive, but
do not repeat a gossip message (as known by the ID) that
you’ve already repeated. Repeat your message to 3 peers
you are tracking (make this a constant at the top of your
file).

The id can be any string. The uuid library can be useful.
Or, consider using random.

Reply with your info to the originator, not the sender (may
be the same, but may be different if you are received a
forward of the original message)

GET_BLOCK

Requests a single block from a peer. Peer returns the con-
tents of that block.

Which replies with a GET_BLOCK_REPLY:

If given GET_BLOCK for an invalid height, return with
GET_BLOCK_REPLY with null/None height, message,
nonce, and minedBy.

Test with

Adding words to the blockchain

Test sending new words with

There is no reply. You only need to implement a handler
for this for the bonus, if you are doing the bonus.

Announcing new block on the chain

Add a new block to the chain. You must handle receiving
these messages appropriately. Verify the hash before
adding to your chain.

Sending these messages only required for bonus.

There is no reply.

Get statistics

Get some statistics about the chain in this host.

Can test with

Do a consensus

Force the peer to do a consensus immediately. If doing a
consensus, can be ignored.

Limitations

Ideally you would not add a block with a word that you
have not seen announced. For our needs, we will ignore
this, accepting any mined block. In a real blockchain this
would be a SERIOUS issue.

Bonus: Mining

Add a miner to your code! There are a number of ways of
doing this, with increasing difficulty.

1. Add a miner in your main loop +5%. Every so often
(maybe a timeout amount…) do some mining for a
short period of time, and return back to listening for
requests

2. Add a mining thread +10%. Keep a thread continu-
ously running that is mining blocks. You must handle
synchronization with your main thread

3. Add mining clients that communicate with TCP
+20%. Create a different program or add command-
line arguments to create a mining process. This
process calls home to your Blockchain-synchronized
process. Your “Blockchain” process forwards new
words to mine on to the n workers. The workers re-
port back if they have successfully mined a block to
your Blockchain process, which in-turn notifies the
network.

Be sure to add your name, or other unique identifier, to
your mined blocks. Rob will take the person who has
mined the most blocks (other than himself) to lunch. Or,
he will just buy them lunch if they don’t want to hang out
with him.

You may only get one of the mining bonuses.

Rubric

Points for:

1. GOSSIPing, joining network, repeating GOSSIPs ex-
actly once, responding to GOSSIPs.

2. Fetching the blockchain
3. Validating the blockchain
4. Updating the blockchain appropriately
5. Running a consensus appropriately

hashBase = hashlib.sha256()
get the most recent hash
lastHash = self.lastBlockHash()

add it to this hash
hashBase.update(lastHash.encode())

add the miner
hashBase.update(newBlock['minedBy'].encode())

add the messages in order
for m in newBlock['messages']:
 hashBase.update(m.encode())

the time (different because this is a number, not a string)
hashBase.update(newBlock['time'].to_bytes(8, 'big'))

add the nonce
hashBase.update(newBlock['nonce'].encode())

get the pretty hexadecimal
hash = hashBase.hexdigest()

is it difficult enough? Do I have enough zeros?
if hash[-1 * DIFFICULTY:] != '0' * DIFFICULTY:
 print("Block was not difficult enough: {}".format(hash))

{
 "type": "GOSSIP",
 "host": "192.168.0.27",
 "port": 8999,
 "id": "5b29f4c7-40ac-4522-b217-e90e9587c1e5",
 "name": "Some name here!"
}

{
 "type": "GOSSIP_REPLY",
 "host": "192.168.0.28",
 "port": 8001,
 "name": "I have a name, too"
}

{
 "type": "GET_BLOCK",
 "height": 0
}

{ 'type': 'GET_BLOCK_REPLY'
 'hash': '2483cc5c0d2fdbeeba3c942bde825270f345b2e9cd28f22d12ba347300000000',
 'height': 0,
 'messages': ['3010 rocks',
 'Warning:',
 'Procrastinators',
 'will be sent back',
 'in time to start',
 'early.'],
 'minedBy': 'Prof!',
 'nonce': '7965175207940',
 'timestamp': 1699293749,
 }

echo '{"type":"GET_BLOCK", "height":0}' | nc -u 130.179.28.37 8999

echo '{"type":"NEW_WORD", "word":"test"}' | nc -u [somehost] [someport]

{
 "type": "ANNOUNCE",
 "height": 3,
 "minedBy": "Rob!",
 "nonce": "27104978",
 "messages": ["test123"],
 "hash": "75fb3c14f11295fd22a42453834bc393872a78e4df1efa3da57a140d96000000"
}

{
 "type":"STATS"
}
/*
reply with the height of your chain
and the hash of the block at the maximum height
*/
{
 "type": "STATS_REPLY",
 "height": 2,
 "hash": "519507660a0dd9d947e18b863a4a54b90eb53c82dde387e1f5e9b48f3d000000"
}

echo '{"type":"STATS"}' | nc -u [your host] [your port]

{
 "type": "CONSENSUS"
}

Listen

Activity Details

2023-11-22, 00:37
Page 1 of 1

Mobile User

